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ABSTRACT
So�ware is now a key component present in all aspects of our
society. Its preservation has a�racted growing a�ention over the
past years within the digital preservation community. We claim
that source code—the only representation of so�ware that contains
human readable knowledge—is a precious digital object that needs
special handling: it must be a �rst class citizen in the preservation
landscape and we need to take action immediately, given the in-
creasingly more frequent incidents that result in permanent losses
of source code collections.

In this paper we present So�ware Heritage, an ambitious ini-
tiative to collect, preserve, and share the entire corpus of publicly
accessible so�ware source code. We discuss the archival goals of
the project, its use cases and role as a participant in the broader
digital preservation ecosystem, and detail its key design decisions.
We also report on the project road map and the current status of the
So�ware Heritage archive that, as of early 2017, has collected more
than 3 billion unique source code �les and 700 million commits
coming from more than 50 million so�ware development projects.
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1 INTRODUCTION
So�ware is everywhere: it powers industry and fuels innovation,
it lies at the heart of the technology we use to communicate, en-
tertain, trade, and exchange, and is becoming a key player in the
formation of opinions and political powers. So�ware is also an
essential mediator to access all digital information [1, 5] and is a
fundamental pillar of modern scienti�c research, across all �elds
and disciplines [38]. In a nutshell, so�ware embodies a rapidly
growing part of our cultural, scienti�c, and technical knowledge.

Looking more closely, though, it is easy to see that the actual
knowledge embedded in so�ware is not contained into executable bi-
naries, which are designed to run on speci�c hardware and so�ware
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platforms and that o�en become, once optimized, incomprehensi-
ble for human beings. Rather, knowledge is contained in so�ware
source code which is, as eloquently stated in the very well cra�ed
de�nition found in the GPL license [13], “the preferred form [of a
program] for making modi�cations to it [as a developer]”.

Yes, so�ware source code is a unique form of knowledge which is
designed to be understood by a human being, the developer, and at
the same time is easily converted into machine executable form. As
a digital object, so�ware source code is also subject to a peculiar
work�ow: it is routinely evolved to cater for new needs and changed
contexts. To really understand so�ware source code, access to its
entire development history is an essential condition.

So�ware source code has also established a new relevant part
of our information commons [20]: the so�ware commons—i.e., the
body of so�ware that is widely available and can be reused and
modi�ed with minimal restrictions. �e raise of Free/Open Source
So�ware (FOSS) over the past decades has contributed enormously
to nurture this commons [32] and its funding principles postulate
source code accessibility.

Authoritative voices have spoken eloquently of the importance of
source code: Donald Knuth, a founding father of computer science,
wrote at length on the importance of writing and sharing source
code as a mean to understand what we want computers to do
for us [19]; Len Shustek, board director of the Computer History
Museum, argued that “source code provides a view into the mind
of the designer” [33]; more recently the importance of source code
preservation has been argued for by digital archivists [4, 22].

And yet, li�le action seem to have been put into long-term source
code preservation. Comprehensive archives are available for variety
of digital objects, pictures, videos, music, texts, web pages, even
binary executables [18]. But source code in its own merits, despite
its signi�cance, has not yet been given the status of �rst class citizen
in the digital archive landscape.

In this article, we claim that it is now important and urgent to
focus our a�ention and actions to source code preservation and
build a comprehensive archive of all publicly available so�ware
source code. We detail the basic principles, current status, and
design choices underlying So�ware Heritage,1 launched last year to
�ll what we consider a gap in the digital archiving landscape.

�is article is structured as follows: Sections 2 through 4 discuss
the state of the art of source code preservation and the mission of
So�ware Heritage in context. Sections 5 and 6 detail the design
and intended use cases of So�ware Heritage. Before concluding,
Sections 7 through 9 present the data model, architecture, current
status, and future roadmap for the project.

1h�ps://www.so�wareheritage.org
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2 RELATEDWORK
In the broad spectrum of digital preservation, many initiatives have
taken notice of the importance of so�ware in general, and it would
be di�cult to provide an exhaustive list, so we mention here a few
that show di�erent aspects of what has been addressed before.

A number of these initiatives are concerned with the execution
of legacy so�ware in binary form, leveraging various forms of
virtualisation technologies: the Internet Archive [18] uses web-
based emulators to let visitors run in a browser old legacy games
drawn from one of their so�ware collection; the E-ARK [8] and
KEEP [9] projects brought together several actors to work on mak-
ing emulators portables and viable on the long term, while UNESCO
Persist [36] tries to provide a host organization for all activities
related to preserving the executability of binaries on the long term.

NIST maintains a special collection of binaries for forensic anal-
ysis use [26]: while the content of the archive is not accessible to
the public, it has produced interesting studies on the properties of
di�erent cryptographic hashes they use on their large collection of
so�ware binaries use [23].

�e raising concern for the sore state of reproducibility of scien-
ti�c results has spawn interest in preserving so�ware for science
and research, and several initiatives now o�er storage space for
depositing so�ware artefacts: CERN’s Zenodo [39] also provides
integration with GitHub allowing to take snapshots of the source
code of a so�ware project (without its history).

Finally, the raise of so�ware engineering studies on so�ware
repositories have led several researchers to build large collections
of source code [17, 25, 35] and more recently databases with event
metadata from GitHub [10, 14]; these initiatives have as main goal
to provide a research platform, not an archive for preservation.

To the best of our knowledge, in the broader digital preservation
landscape the niche of so�ware archival in source code form has not
been addressed in its own right before.

3 SOFTWARE SOURCE CODE IS AT RISK
Despite the importance of source code in the development of sci-
ence, industry, and society at large, it is easy to see that we are
collectively not taking care of it properly. In this section we outline
the three most evident reasons why this is the case.

�esource code diaspora. With the meteoric rise of Free/Open
Source So�ware (FOSS), millions of projects are developed on pub-
licly accessible code hosting platforms [34], such as GitHub, GitLab,
SourceForge, Bitbucket, etc., not to mention the myriad of insti-
tutional “forges” sca�ered across the globe, or developers simply
o�ering source code downloads from their web pages. So�ware
also tend to move among code hosting places during its lifetime,
following current trends or the changing needs and habits of its
developer community.

Once a particular version of a so�ware is released, the question
arises of how to distribute it to users. Here too the landscape is quite
varied: some developers use the code hosting also for distribution,
as most forges allow it. Other communities have their own archives
organized by so�ware ecosystems (e.g., CPAN, CRAN, . . . ), and
then there are di�erent so�ware distributions (Debian, Fedora, . . . )
and package management systems (npm, pip, OPAM, . . . ), which
also retain copies of source code released elsewhere.

It is very di�cult to appreciate the extent of the so�ware com-
mons as a whole: we direly need a single entry point—a modern
“great library” of source code, if you wish—where one can �nd
and monitor the evolution of all publicly available source code,
independently of its development and distribution platforms.

�e fragility of source code. We have known for a long time
that digital information is fragile: human error, material failure, �re,
hacking, can easily destroy valuable digital data, including source
code. �is is why carrying out regular backups is important.

For users of code hosting platforms this problem may seem a
distant one: the burden of “backups” is not theirs, but the platforms’
one. As previously observer [37], though, most of these platforms
are tools to enable collaboration and record changes, but do not
o�er any long term preservation guarantees: digital contents stored
there can be altered or deleted over time.

Worse, the entire platform can go away, as we learned the hard
way in 2015, when two very popular FOSS development platforms,
Gitorious [11] and Google Code [16] announced shutdown. Over
1.5 million projects had to �nd a new accommodation since, in an
extremely short time frame as regards Gitorious. �is shows that
the task of long term preservation cannot be assumed by entities
that do not make it a stated priority: for a while, preservation may
be a side e�ect of other missions, but in the long term it won’t be.

We lack a comprehensive archive which undertakes this task,
ensuring that if source code disappears from a given code hosting
platform, or if the platform itself disappears altogether, the code
will not be lost forever.

A big scienti�c instrument for so�ware, or lack thereof.
With the growing importance of so�ware, it is increasingly more
important to provide the means to improve its quality, safety, and
security properties. Sadly we lack a research instrument to analyze
the whole body of publicly available source code.

To build such a “very large telescope” of source code—in the spirit
of mutualized research infrastructures for physicists such as the
Very Large Telescope in the Atacama Desert or the Large Hadron
Collider in Geneva—we need a place where all information about
so�ware projects, their public source code, and their development
history is made available in a uniform data model. �is will allow to
apply a large variety of “big code” techniques to analyze the entire
corpus, independently of the origin of each source code artifact,
and of the many di�erent technologies currently used for hosting
and distributing source code.

4 MISSION AND CHALLENGES
In order to address these three challenges, in June 2016 the So�ware
Heritage project was unveiled, with initial support by Inria, with the
stated goal to collect, organize, preserve, and make easily accessible
all publicly available source code, independently of where and
how it is being developed or distributed. �e aim is to build a
common archival infrastructure, supporting multiple use cases and
applications (see Section 6), but all exhibiting synergies with long-
term safeguard against the risk of permanent loss of source code.

To give an idea of the complexity of the task, let’s just review
some of the challenges faced by the initial source code harvesting
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phase, ignoring for the moment the many others that arise in sub-
sequent stages. First, we need to identify the code hosting places
where source code can be found, ranging from a variety of well
known development platforms to raw archives linked from obscure
web pages. �ere is no universal catalog: we need to build one!

�en we need then to discover and support the many di�erent
protocols used by code hosting platforms to list their contents, and
maintain the archive up to date with the modi�cations made to
projects hosted there. �ere is no standard, and while we hope to
promote a set of best practices for preservation “hygiene”, we must
now cope with the current lack of uniformity.

We must then be able to crawl development histories as captured
by a wide variety of version control systems [28]: Git, Mercurial,
Subversion, Darcs, Bazaar, CVS, are just some examples of the tools
that need to be supported. Also, there is no grand unifying data
model for version control systems: one needs to be built.

To face such challenges, it is important that computer scientist
get directly involved: source code is the DNA of their discipline
and they must be at the forefront when it comes to designing the
infrastructure to preserve it.

5 CORE PRINCIPLES
Building the So�ware Heritage archive is a complex task, which re-
quires long term commitment. To maximize the chances of success,
we based this work on solid foundations, presented in this section
as a set of core principles for the project.

Transparency andFree So�ware. As stated by Rosenthal [31],
in order to ensure long term preservation of any kind of informa-
tion it is necessary to know the inner workings of all tools used to
implement and run the archive. �at is why So�ware Heritage will
develop and release exclusively Free/Open Source So�ware (FOSS)
components to build its archive—from user-facing services down
to the recipes of so�ware con�guration management tools used
for the operations of project machines. According to FOSS devel-
opment best practices development is conducted collaboratively
on the project forge2 and communication happens via publicly
accessible media.

Replication all the way down. �ere is a plethora of threats,
ranging from technical failures, to mere legal or even economic
decisions that might endanger long-term source code preservation.
We know that we cannot entirely avoid them. �erefore, instead of
a�empting to create a system without errors, we design a system
which tolerates them.

To this end, we will build replication and diversi�cation in the
system at all levels: a geographic network of mirrors, implemented
using a variety of storage technologies, in various administrative
domains, controlled by di�erent institutions, and located in di�erent
jurisdictions. Releasing our own code as FOSS is expected to further
ease the deployment of mirrors by a variety of actors.

Multi-stakeholder and non-pro�t. Experience shows that a
single for pro�t entity, however powerful, does not provide su�-
cient durability guarantees in the long term. We believe that for
So�ware Heritage it is essential to build a non pro�t foundation

2h�ps://forge.so�wareheritage.org/

that has as its explicit objective the collection, preservation, and
sharing of our so�ware commons.

In order to minimise the risk of having a single points of failure
at the institutional level, this foundation needs to be supported by
various partners from civil society, industry, and governments, and
must provide value to all areas which may take advantage of the
existence of the archive, ranging from the preservation of cultural
heritage to research, from industry to education, (see Section 6).

�e foundation should be run transparently according to a well-
documented governance, and should be accountable to the public
by reporting periodicly about its activities.

No a priori selection. A natural question that arises when
building a long term archive is what should be archived in it among
the many candidates available. In building So�ware Heritage we
have decided to avoid any a priori selection of so�ware projects,
and rather archive them all.

�e �rst reason behind this choice is pragmatic: we have the
technical ability to archive every so�ware project available. Source
code is usually small in comparison to other digital objects, in-
formation dense and expensive to produce, unlike the millions of
(cat) pictures and videos exchanged on social media. Additionally,
source code is heavily redundant/duplicated, allowing for e�cient
storage approaches (see Section 7).

Second, so�ware is nowadays massively developed in the open,
so we get access to the history of so�ware projects since their very
early phase. �is is a precious information for understanding how
so�ware is born and evolves and we want to preserve it for any
“important” project. Unfortunately, when a project is in its infancy
it is extremely hard to know whether it will grow into a king or a
peasant. Consider PHP: when it was released in 1995 by Rasmus
Lerdorf as PHP/FI (Personal Home Page tools, Forms Interpreter),
who would have thought that it would have grown into the most
popular Web programming language 20 years later?

Hence our approach to archive everything available: important
projects will be pointed at by external authorities, emerging from
the mass, less relevant ones will dri� into oblivion.

Source code �rst. Ideally, one might want to archive so�ware
source code “in context”, with as much information about its broader
ecosystem: project websites, issues �led in bug tracking systems,
mailing lists, wikis, design notes, as well as executables built for
various platforms and the physical machines and network environ-
ment on which the so�ware was run, allowing virtualization in the
future. In practice, the resources needed for doing all this would be
enormous, especially considering the no a priori selection principle,
and we need to draw the scope line somewhere.

So�ware Heritage will archive the entire source code of so�ware
projects, together with their full development history as it is captured
by state-of-the-art version control systems (or “VCS”).

On one side, this choices allow to capture relevant context for
future generations of developers—e.g., VCS history includes commit
messages, precious information that detail why speci�c changes
have been made to a given so�ware at a given moment—and is
precisely what currently nobody else comprehensively archives.

On the other side, a number of other digital preservation initia-
tives are already addressing some of the other contextual aspects
we have mentioned: the Internet Archive [18] is archiving project

https://forge.softwareheritage.org/
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websites, wikis, and web-accessible issue trackers; Gmane [12] is
archiving mailing lists; several initiatives aim at preserving so�-
ware executables, like Olive [21], the Internet Archive, KEEP [9],
E-ARK [8], and the PERSIST project [36], just to mention a few.

In a sense, So�ware Heritage embraces the Unix philosophy [30],
focusing on the source code only, where it contribution is most
relevant, and will go to great lengths to make sure that the source
code artifacts it archives are easy to reference from other digital
archives, using state-of-the-art linked data [3] technologies, paving
the way to a future “semantic wikipedia” of so�ware.

Intrinsic identi�ers. �e quest for the “right” identi�er for
digital objects has been raging for quite a while [2, 29, 37], and it
has mainly focused on designing digital identi�ers for objects that
are not necessarily natively digital, like books or articles. Recent
so�ware development practices has brought to the limelight the
need for intrinsic identi�ers of natively digital objects, computed
only on the basis of their (byte) content.

Modern version control systems like Git [6] no longer rely on
arti�cial opaque identi�ers that need third party information to be
related to the so�ware artifacts they designate. �ey use identi�ers
that can be computed from the object itself and are tightly connected
to it; we call these identi�ers intrinsic. �e SHA1 cryptographic
hash [7] is the most used approach for computing them today. �e
clear advantage of crypto-hard intrinsic identi�ers is that they
allow to check that an obtained object is exactly the one that was
requested, without having to involve third party authorities.

Intrinsic identi�ers also natively support integrity checks—e.g.,
you can detect alteration of a digital object for which an intrinsic
identi�ers was previously computed as a mismatch between its
(current) content and its (previous) identi�er—which is a very good
property for any archival system.

So�ware Heritage will use intrinsic identi�er for all archived
source code. Pieces of information that are not natively digital, such
as author or project names, metadata, or ontologies, non-intrinsic
identi�er will also be used. But for the long term preservation of
the interconnected network of knowledge that is built natively by
source code, intrinsic identi�ers are best suited.

Facts and provenance. Following best archival practices, So�-
ware Heritage will store full provenance information, in order to be
able to always state what was found where and when.

In addition, in order to become a shared and trusted knowledge
base, we push this principle further, and we will store only quali�ed
facts about so�ware. For example, we will not store bare metadata
stating that the programming language of a given �le is, say, C++,
or that its license is GPL3. Instead we will store quali�ed metadata
stating that version 3.1 of the program pygments invoked with a
given command line on this particular �le reported it as wri�en in
C++; or that version 2.6 of the FOSSology license detection tool,
ran with a given con�guration (also stored), reported the �le as
being released under the terms of version 3 of the GPL license.

Minimalism. We recognize that the task that So�ware Heritage
is undertaking is daunting and has wide rami�cations. Hence we
focus on building a core infrastructure whose objective is only
collecting, organizing, preserving, and sharing source code, while

Figure 1: �e scienti�c knowledge preservation trifecta

establishing collaborations with any initiative that may add value
on top or on the side of this infrastructure.

6 APPLICATIONS AND USE CASES
A universal archive of so�ware source code enables a wealth of
applications in a variety of areas, broader than preservation for
its own sake. Such applications are relevant to the success of the
archive itself though, because long term preservation carries sig-
ni�cant costs: chances to meet them will be much higher if there
are more use cases than just preservation, as the cost may then be
shared among a broader public of potential archive users.

Cultural heritage. Source code is clearly starting to be recog-
nized as a �rst class citizen in the area of cultural heritage, as it
is a noble form of human production that needs to be preserved,
studied, curated, and shared. Source code preservation is also an
essential component of a strategy to defend against digital dark age
scenarii [1, 5] in which one might lose track of how to make sense
of digital data created by so�ware currently in production.

For these reasons Inria has established an agreement with UN-
ESCO on source code preservation,3 whose main actions will be
carried on in the context of So�ware Heritage.

Science. In the long quest for making modern scienti�c results
reproducible, and pass the scienti�c knowledge over to future gen-
erations of researchers, the three main pillars are: scienti�c articles,
that describe the results, the data sets used or produced, and the
so�ware that embodies the logic of the data transformation, as
shown in Figure 1.

Many initiatives have been taking care of two of these pillars,
like OpenAire [27] for articles and Zenodo [39] for data,4 but for
so�ware source code, researchers keep pointing from their arti-
cles to disparate locations, if any, where their source code can be
found: web pages, development forges, publication annexes, etc.
By providing a central archive for all publicly available source code,
So�ware Heritage contributes a signi�cant building block to the
edi�ce of reproducibility in all �elds of science.

And there is more: in the speci�c �eld of Computer Science, there
is a signi�cant added value in providing a central repository where
all the history of public so�ware development is made available in a

3h�p://fr.unesco.org/events/ceremonie-signature-du-partenariat-unescoinria-
preservation-partage-du-patrimoine-logiciel
4and more recently for self-selected so�ware releases distributed via GitHub
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uniform data model. It enables unprecedented big data analysis both
on the code itself and the so�ware development process, unleashing
a new potential for Mining So�ware Repository research [15].

Industry. Industry is growing more and more dependant on
FOSS components, which are nowadays integrated in all kinds
of products, for both technical and economic reasons. �is tidal
wave of change in IT brought new needs and challenges: ensuring
technical compatibility among so�ware components is no longer
enough, one also needs to ensure compliance with several so�ware
licenses, as well as closely track so�ware supply chain, and bills of
materials to identify which speci�c variants of FOSS components
were used in a given product.

So�ware Heritage makes two key contributions to the IT indus-
try that can be leveraged in so�ware processes. First, So�ware
Heritage intrinsic identi�ers can precisely pinpoint speci�c so�-
ware versions, independently of the original vendor or intermediate
distributor. �is de facto provides the equivalent of “part numbers”
for FOSS components that can be referenced in quality processes
and veri�ed for correctness independently from So�ware Heritage
(they are intrinsic, remember?).

Second, So�ware Heritage will provide an open provenance
knowledge base, keeping track of which so�ware component—at
various granularities: from project releases down to individual
source �les—has been found where on the Internet and when. Such
a base can be referenced and augmented with other so�ware-related
facts, such as license information, and used by so�ware build tools
and processes to cope with current development challenges.

�e growing support and sponsoring for So�ware Heritage com-
ing from industry players like Microso�, Huawei, Nokia, and Intel
provides initial evidence that this potential is being understood.

7 DATA MODEL
In any archival project the choice of the underlying data model—at
the logical level, independently from how data is actually stored on
physical media—is paramount. �e data model adopted by So�ware
Heritage to represent the information that it collects is centered
around the notion of so�ware artifact, that is at the key component
of the So�ware Heritage archive, and we describe it in what follows.
It is important to notice that according to our principles, we must
store with every so�ware artifact full information on where it has
been found (provenance), that is also captured in our data model,
so we start by providing some basic information on the nature of
this provenance information.

7.1 Source code hosting places
Currently, So�ware Heritage uses of a curated list of source code
hosting places to crawl. �e most common entries we expect to
place in such a list are popular collaborative development forges
(e.g., GitHub, Bitbucket), package manager repositories that host
source package (e.g., CPAN, npm), and FOSS distributions (e.g.,
Fedora, FreeBSD). But we may of course allow also more niche
entries, such as URLs of personal or institutional project collections
not hosted on major forges.

While currently entirely manual, the curation of such a list
might easily be semi-automatic, with entries suggested by fellow
archivists and/or concerned users that want to notify So�ware

Heritage of the need of archiving speci�c pieces of endangered
source code. �is approach is entirely compatible with Web-wide
crawling approaches: crawlers capable of detecting the presence of
source code might enrich the list. In both cases the list will remain
curated, with (semi-automated) review processes that will need to
pass before a hosting place starts to be used.

7.2 So�ware artifacts
Once the hosting places are known, they will need to be periodically
looked at in order to add to the archive missing so�ware artifacts.
Which so�ware artifacts will be found there?

In general, each so�ware distribution mechanism will host mul-
tiple releases of a given so�ware at any given time. For VCS, this
is the natural behaviour; for so�ware packages, while a single ver-
sion of a package is just a snapshot of the corresponding so�ware
product, one can o�en retrieve both current and past versions of
the package from its distribution site.

By reviewing and generalizing existing VCS and source package
formats, we have identi�ed the following recurrent artifacts as
commonly found at source code hosting places. �ey form the
basic ingredients of the So�ware Heritage archive:5

�le contents (AKA “blobs”) the raw content of (source code) �les
as a sequence of bytes, without �le names or any other
metadata. File contents are o�en recurrent, e.g., across
di�erent versions of the same so�ware, di�erent directories
of the same project, or di�erent projects all together.

directories a list of named directory entries, each of which point-
ing to other artifacts, usually �le contents or sub-directories.
Directory entries are also associated to arbitrary metadata,
which vary with technologies, but usually includes permis-
sion bits, modi�cation timestamps, etc.

revisions (AKA “commits”) so�ware development within a spe-
ci�c project is essentially a time-indexed series of copies
of a single “root” directory that contains the entire project
source code. So�ware evolves when a developer modi�es
the content of one or more �les in that directory and record
their changes.

Each recorded copy of the root directory is known as
a “revision”. It points to a fully-determined directory and
is equipped with arbitrary metadata. Some of those are
added manually by the developer (e.g., commit message),
others are automatically synthesized (timestamps, preced-
ing commit(s), etc).

releases (AKA “tags”) some revisions are more equals than oth-
ers and get selected by developers as denoting important
project milestones known as “releases”. Each release points
to the last commit in project history corresponding to the
release and might carry arbitrary metadata—e.g., release
name and version, release message, cryptographic signa-
tures, etc.

Additionally, the following crawling-related information are stored
as provenance information in the So�ware Heritage archive:
origins code “hosting places” as previously described are usu-

ally large platforms that host several unrelated so�ware
5as the terminology varies quite a bit from technology to technology, we provide both
the canonical name used in So�ware Heritage and popular synonyms
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projects. For so�ware provenance purposes it is important
to be more speci�c than that. So�ware origins are �ne
grained references to where source code artifacts archived
by So�ware Heritage have been retrieved from. �ey take
the form of 〈type, url〉 pairs, where url is a canonical URL
(e.g., the address at which one can git clone a repository
or wget a source tarball) and type the kind of so�ware
origin (e.g., git, svn, or dsc for Debian source packages).

projects as commonly intended are more abstract entities that
precise so�ware origins. Projects relate together several
development resources, including websites, issue trackers,
mailing lists, as well as so�ware origins as intended by
So�ware Heritage.

�e debate around the most apt ontologies to capture
project-related information for so�ware hasn’t se�led yet,
but the place projects will take in the So�ware Heritage
archive is fairly clear. Projects are abstract entities, which
will be arbitrarily nestable in a versioned project/sub-project
hierarchy, and that can be associated to arbitrary metadata
as well as origins where their source code can be found.

snapshots any kind of so�ware origin o�ers multiple pointers to
the “current” state of a development project. In the case of
VCS this is re�ected by branches (e.g., master, development,
but also so called feature branches dedicated to extending
the so�ware in a speci�c direction); in the case of package
distributions by notions such as suites that correspond to
di�erent maturity levels of individual packages (e.g., stable,
development, etc.).

A “snapshot” of a given so�ware origin records all entry
points found there and where each of them was pointing
at the time. For example, a snapshot object might track the
commit where the master branch was pointing to at any
given time, as well as the most recent release of a given
package in the stable suite of a FOSS distribution.

visits links together so�ware origins with snapshots. Every time
an origin is consulted a new visit object is created, record-
ing when (according to So�ware Heritage clock) the visit
happened and the full snapshot of the state of the so�ware
origin at the time.

7.3 Data structure
With all the bits of what we want to archive in place, the next
question is how to organize them, i.e., which logical data structure
to adopt for their storage. A key observation for this decision is
that source code artifacts are massively duplicated. �is is so for
several reasons:

• code hosting diaspora discussed in Section 3;
• copy/paste (AKA “vendoring”) of parts or entire external

FOSS so�ware components into other so�ware products;
• large overlap between revisions of the same project: usu-

ally only a very small amount of �les/directories are modi-
�ed by a single commit;

• emergence of DVCS (distributed version control systems),
which natively work by replicating entire repository copies
around. GitHub-style pull requests are the pinnacle of this,

Figure 2: So�ware Heritage direct acyclic graph data model

as they result in creating an additional repository copy at
each change done by a new developer;

• migration from one VCS to another—e.g., migrations from
Subversion to Git, which are really popular these days—
resulting in additional copies, but in a di�erent distribution
format, of the very same development histories.

�ese trends seem to be neither stopping nor slowing down, and it
is reasonable to expect that they will be even more prominent in
the future, due to the decreasing costs of storage and bandwidth.

For this reason we argue that any sustainable storage layout
for archiving source code in the very long term should support
deduplication, allowing to pay for the cost of storing source code
artifacts that are encountered more than once. . . only once. For
storage e�ciency, deduplication should be supported for all the
so�ware artifacts we have discussed, namely: �le contents, directo-
ries, revisions, releases, snapshots.

Realizing that principle, the So�ware Heritage archive is con-
ceptually a single (big) Merkle Direct Acyclic Graph [24] (DAG), as
depicted in Figure 2. In such a graph each of the artifacts we have
described—from �le contents up to entire snapshots—correspond to
a node. Edges between nodes emerge naturally: directory entries
point to other directories or �le contents; revisions point to direc-
tories and previous revisions, releases point to revisions, snapshots
point to revisions and releases. Additionally, each node contains all
metadata that are speci�c to the node itself rather than to pointed
nodes; e.g., commit messages, timestamps, or �le names. Note that
the structure is really a DAG, and not a tree, due to the fact that the
line of revisions nodes might be forked and merged back.

In a Merkle structure each node is identi�ed by an intrinsic
identi�er (as per our principles detailed in Section 5) computed as
a cryptographic hash of the node content. In the case of So�ware
Heritage identi�ers are computed taking into the account both
node-speci�c metadata and the identi�ers of child nodes.

Consider the revision node shown in Figure 3. �e node points
to a directory, whose identi�er starts with fff3cc22..., which
has also been archived. �at directory contains a full copy, at a
speci�c point in time, of a so�ware component—in the example
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d i r e c t o r y : f f f 3 c c 2 2 c b 4 0 f 7 1 d 2 6 f 7 3 6 c 0 8 2 3 2 6 e 7 7 d e 0 b 7 6 9 2
p a r e n t : e 4 f e b 0 5 1 1 2 5 8 8 7 4 1 b 4 7 6 4 7 3 9 d 6 d a 7 5 6 c 3 5 7 e 1 f 3 7
a u t h o r : S t e f a n o Z a c c h i r o l i <zack@upsi lon . cc>
d a t e : 1443617461 +0200
commit te r : S t e f a n o Z a c c h i r o l i <zack@upsi lon . cc>
c o m m i t e r d a t e : 1443617461 +0200
message :

o b j s t o r a g e : f i x t e m p f i l e r a c e when add ing o b j e c t s

B e f o r e t h i s change , two workers add ing the same
o b j e c t w i l l end up r a c i n g t o w r i t e <SHA1> . tmp .
[ . . . ]

revision id: 64a783216c1ec69dcb267449c0bbf5e54f7c4d6d

Figure 3: A revision node in the So�ware Heritage DAG

a component that we have developed ourselves for the needs of
So�ware Heritage. �e revision node also points to the preceding
revision node (e4feb051...) in the project development history.
Finally, the node contains revision-speci�c metadata, such as the
author and commi�er of the given change, its timestamps, and the
message entered by the author at commit time.

�e identi�er of the revision node itself (64a78321...) is com-
puted as a cryptographic hash of a (canonical representation of)
all the information shown in Figure 3. A change in any of them—
metadata and/or pointed nodes—would result in an entirely dif-
ferent node identi�er. All other types of nodes in the So�ware
Heritage archive behave similarly.

�e So�ware Heritage archive inherits useful properties from
the underlying Merkle structure. In particular, deduplication is
built-in. Any so�ware artifacts encountered in the wild gets added
to the archive only if a corresponding node with a matching in-
trinsic identi�er is not already available in the graph—�le content,
commits, entire directories or project snapshots are all deduplicated
incurring storage costs only once.

Furthermore, as a side e�ect of this data model choice, the entire
development history of all the source code archived in So�ware
Heritage—which ambitions to match all published source code in the
world—is available as a uni�ed whole, making emergent structures
such as code reuse across di�erent projects or so�ware origins,
readily available. Further reinforcing the use cases described in
Section 6, this object could become a veritable “map of the stars” of
our entire so�ware commons.

8 ARCHITECTURE & DATA FLOW
Both the data model described in the previous section and a so�ware
architecture suitable for ingesting source code artifacts into it have
been implemented as part of So�ware Heritage.

8.1 Listing
�e ingestion data �ow of So�ware Heritage is shown in Figure 4.
Ingestion acts like most search engines, periodically crawling a
set of “leads” (in our case the curated list of code hosting places
discussed in Section 7) for content to archive and further leads. To

facilitate so�ware extensibility and collaboration, ingestion is split
in two conceptual phases though: listing and loading.

Listing takes as input a single hosting place (e.g., GitHub, PyPi,
or Debian) and is in charge of enumerating all so�ware origins (in-
dividual Git or Subversion repositories, individual package names,
etc.) found there at listing time.

�e details of how to implement listing vary across hosting
platforms, and dedicated lister so�ware components need to be
implemented for each di�erent type of platform. �is means that
dedicated listers exist for GitHub or Bitbucket, but that the GitLab
lister—GitLab being a platform that can be installed on premises by
multiple code hosting providers—can be reused to list the content
of any GitLab instance out there.

Listing can be done fully, i.e., collecting the entire list of origins
available at a given hosting place at once, or incrementally, listing
only the new origins since the last listing. Both listing disciplines
are necessary: full listing is needed to be sure that no origin is
being overlooked, but it might be unwieldy if done too frequently
on large platforms (e.g., GitHub, with more than 55 million Git
repositories as of early 2017), hence the need of incremental listing
to quickly update the list of origins available at those places.

Also, listing can be performed in either pull or push style. In
the former case the archive periodically checks the hosting places
to list origins. In the la�er code hosting sites, properly con�gured
to work with So�ware Heritage, contact back the archive at each
change in the list of origins. Push looks appealing at �rst and might
minimize the lag between the appearance of a new so�ware origin
and its ingestion in So�ware Heritage. On the other hand push-only
listing is prone to the risk of losing noti�cations that will result in
so�ware origins not being considered for archival. For this reason
we consider push an optimization to be added on top of pull, in
order to reduce lag where applicable.

8.2 Loading
Loading is responsible of the actual ingestion in the archive of
source code found at known so�ware origins.

Loaders are the so�ware components in charge of extracting
source code artifacts from so�ware origins and adding them to the
archive. Loaders are speci�c to the technology used to distribute
source code: there will be one loader for each type of version
control system (Git, Subversion, Mercurial, etc.) as well as one for
each source package format (Debian source packages, source RPMs,
tarballs, etc).

Loaders natively deduplicate w.r.t. the entire archive, meaning
that any artifact (�le content, revision, etc.) encountered at any
origin will be added to the archive only if a corresponding node
cannot be found in the archive as a whole.

Consider the Git repository used for the development of the
Linux kernel, which is fairly big, totaling 2 GB on disks for more
than 600 000 revisions and also widely popular with thousands of
(slightly di�erent) copies available only on GitHub. At its �rst
encounter ever, the Git loader will load essentially all its �le con-
tents, revisions, etc., into the So�ware Heritage archive. At the
next encounter of an identical repository, nothing will be added at
all. At the encounter of a slightly di�erent copy, e.g., a repository
containing a dozen additional commits not yet integrated in the
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Figure 4: Ingestion data �ow in So�ware Heritage

o�cial release of Linux, only the corresponding revision nodes, as
well as the new �le contents and directories pointed by them, will
be loaded into the archive.

8.3 Scheduling
Both listing and loading happen periodically on a schedule.6 �e
scheduler component of So�ware Heritage is in charge of keeping
track of when the next listing/loading actions need to happen, for
each code hosting place (for listers) or so�ware origins (loaders).

While the amount of hosting places to list is not enormous, the
amount of individual so�ware origins can easily reach the hundreds
of millions given the current size of major code hosting places.
Listing/loading from that many Internet sites too frequently would
be unwise in terms of resource consumption, and also unwelcome
by the maintainers of those sites. �is is why we have adopted an
adaptive scheduling discipline that strikes a good balance between
update lag and resource consumption.

Each run of periodic action, such as listing or loading, can be
“fruitful” or not. It is fruitful if and only if it resulted in new informa-
tion since the last visit. For instance, listing is fruitful if it resulted
in the discovery of new so�ware origins; loading is if the overall
state of the consulted origin di�ers from the last observed one. If a
scheduled action has been fruitful, the consulted site has seen some
activity since the last visit, and we will increase the frequency at
which that site will be visited in the future; in the converse case
(no activity), visit frequency will be decreased.

Speci�cally, So�ware Heritage adopts an exponential backo�
strategy, in which the visit period is halved when activity is noticed,
and doubled when no activity has been observed. Currently, the
fastest a given site will be consulted is twice day (i.e., every 12
hours) and the slowest is every 64 days. Early experiences with

6as discussed, even when listing is performed in push style, we still want to periodically
list pull-style to stay on the safe side, so scheduling is always needed for listing as well

large code hosting sites seem to tell that ≈90% of the repositories
hosted there quickly fall to the slowest update frequency (i.e., they
don’t see any activity in 2-month time windows), with only the
remaining ≈10% seeing more activity than that.

8.4 Archive
At a logical level, the So�ware Heritage archive corresponds to the
Merkle DAG data structure described in Section 7. On disk, the
archive is stored using di�erent technologies due to the di�erences
in the size requirements for storing di�erent parts of the graph.

File content nodes require the most storage space as they contain
the full content of all archived source code �les. �ey are hence
stored in a key-value object storage that uses as keys the intrinsic
node identi�ers of the Merkle DAG. �is allows trivial distribution
of the object storage over multiple machines (horizontal scaling) for
both performance and redundancy purposes. Also, the key-value
access paradigm is very popular among current storage technolo-
gies, allowing to easily host (copies of) the bulk of the archive either
on premise or on public cloud o�erings.

�e rest of the graph is stored in a relational database (RDBMS),
with roughly one table per type of node. Each table uses as primary
key the intrinsic node identi�er and can easily be sharded (horizon-
tal scaling again) across multiple servers. Master/slave replication
and point-in-time recovery can be used for increased performance
and recovery guarantees. �ere is no profound reason for storing
this part of the archive in a RDBMS, but for what is worth our early
experiments seem to show that graph database technologies are
not yet up to par with the size and kind of graph that So�ware
Heritage already is with its current coverage (see Section 9).

A weakness of deduplication is that it is prone to hash collisions:
if two di�erent objects hash to the same identi�er there is a risk
of storing only one of them while believing to have stored them
both. For this reason, where checksums algorithms are no longer
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considered strong enough for cryptographic purposes,7 we use mul-
tiple checksums, with unicity constraints on each of them, to detect
collisions before adding a new artifact to the So�ware Heritage
archive. For instance, we do not trust SHA1 checksums alone when
adding new �le contents to the archive, but also compute SHA256,
and “salted” SHA1 checksums (in the style of what Git does). Also,
we are in the process of adding BLAKE2 checksums to the mix.

Regarding mirroring, each type of node is associated to a change
feed that takes note of all changes performed to the set of those
objects in the archive. Conceptually, the archive is append-only, so
under normal circumstances each feed will only lists additions of
new objects as soon as they get ingested into the archive. Feeds
are persistent and the ideal branching point for mirror operators
who, a�er an initial full mirror step, can cheaply remain up to date
w.r.t. the main archive.

On top of the object storage, an archiver so�ware component
is in charge of both enforcing retention policies and automatically
heal object corruption if it ever arises, e.g., due to storage media
decay. �e archiver keeps track of how many copies of a given
�le content exist and where each of them is—we currently operate
two in-house mirror of the entire object storage, plus a third copy
currently being populated on a public cloud. �e archiver is aware
of the desired retention policy, e.g., “each �le content must exist
in at least 3 copies”, and periodically swipe all known objects for
adherence to the policy. When fewer copies than desired are known
to exist, the archiver asynchronously makes as many additional
copy as needed to satisfy the retention policy.

�e archiver also periodically checks each copy of all known
objects—randomly selecting them at a suitable frequency—and ver-
i�es it for integrity by recomputing its intrinsic identi�er and com-
paring it with the known one. In case of mismatch all known copies
of the object are checked on-the-�y again; assuming at least one
pristine copy is found, it will be used to overwrite corrupted copies,
“healing” them automatically.

9 CURRENT STATUS & ROADMAP
�e So�ware Heritage archive grows incrementally over time as
long as new listers/loaders get implemented and periodically run
to ingest new content.

Listers. In terms of listers, we initially focused on targeting
GitHub as it is today by far the largest and most popular code
hosting platform. We have hence implemented and put in produc-
tion a GitHub lister, capable of both full and incremental listing.
Additionally, we have recently put in production a similar lister
for Bitbucket. Common code among the two has been factored out
to an internal lister helper component that can be used to easily
implement listers for other code hosting platforms.8 Upcoming
listers include FusionForge, Debian and Debian-based distributions,
as well as a lister for bare bone FTP sites distributing tarballs.

Loaders. Regarding loaders, we initially focused on Git as, again,
the most popular VCS today. We have additionally implemented
loaders for Subversion, tarballs, and Debian source packages. A
Mercurial loader is also in the working.

7note that this is already a higher bar than being strong enough for archival purposes
8see h�ps://www.so�wareheritage.org/?p=9594 for a detailed technical description

Archive coverage. Using the above so�ware components we have
already been able to assemble what, to the best of our knowledge,
is the largest so�ware source code archive in existence.

We have fully archived once, and routinely maintain up-to-date,
GitHub into So�ware Heritage, for more than 50 million Git reposi-
tories. GitHub itself has acknowledged So�ware Heritage role as
3rd-party archive of source code hosted there.9

Additionally we have archived, as one shot but signi�cant in
size archival experiments, all releases of each Debian package in
between 2005–2015, and all current and historical releases of GNU
projects as of August 2015. We have also retrieved full copies of
all repositories that were previously available from Gitorious and
Google Code, now both gone. At the time of writing the process of
ingesting those repositories into So�ware Heritage is ongoing.

In terms of storage, each copy of the So�ware Heritage object
storage currently occupies ≈150 TB of individually compressed �le
contents. �e average compression ration is 2x, corresponding to
300 TB of raw source code content. Each copy of the RDBMS used
to store the rest of the graph (Postgres) takes ≈5 TB. We currently
maintain 3 copies of the object storage and 2 copies of the database,
the la�er with point-in-time recovery over a 2-week time window.

As a logical graph, the So�ware Heritage Merkle DAG has ≈5
billion nodes and ≈50 billion edges. We note that more than half
of the nodes are (unique) �le contents (≈3 B) and that there are
≈750 M revision/commit nodes, collected from ≈55 M origins.

Features. �e following functionalities are currently available
for interacting with the So�ware Heritage archive:
content lookup allows to check whether speci�c �le contents

have been archived by So�ware Heritage or not. Lookup
is possible by either uploading the relevant �les or by en-
tering their checksum, directly from the So�ware Heritage
homepage.

browsing via API allows developers to navigate through the en-
tire So�ware Heritage archive as a graph. �e API o�ered
to that end is Web-based and permits to lookup individ-
ual nodes (revisions, releases, directories, etc.), access all
their metadata, follow links to other nodes, and download
individual �le contents. �e API also gives access to visit
information, reporting when a given so�ware origin has
been visited and what its status was at the time.

�e API technical documentation10 has many concrete
examples of how to use it in practice.

�e following features are part of the project technical road map
and will be rolled out incrementally in the future:
Web browsing equivalent to API browsing, but more convenient

for non-developer Web users. �e intended user interface
will resemble state-of-the art interfaces for browsing the
content of individual version control systems, but will be
tailored to navigate a much larger archive.

provenance information will o�er “reverse lookups” of sort, an-
swering questions such as “give me all the places and times-
tamps where you have found a given source code artifact”.

9h�ps://help.github.com/articles/about-archiving-content-and-data-on-github/
10h�ps://archive.so�wareheritage.org/api/

https://www.softwareheritage.org/?p=9594
https://help.github.com/articles/about-archiving-content-and-data-on-github/
https://archive.softwareheritage.org/api/
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�is is the key ingredient to address some of the industrial
use cases discussed in Section 6.

metadata search will allow to perform searches based on project-
level metadata, from simple information (e.g., project name
or hosting place), to more substantial ones like the entity
behind the project, its license, etc.

content search conversely, content search will allow to search
based on the content of archived �les. Full-text search is the
classic example of this, but in the context of So�ware Her-
itage content search can be implemented at various level of
“understanding” of the content of individual �les, from raw
character sequences to full-�edged abstract syntax trees
for a given programming language.

10 CONCLUSIONS
So�ware Heritage is taking over the long overdue task of collecting
all publicly available source code, with all its development history,
organizing it into a canonical structure, and providing unique, in-
trinsic identi�ers for all its parts, enabling its be�er fruition while
ensuring its long term preservation.

�is is a signi�cant undertaking, that faces a broad range of chal-
lenges, from plain technical complexity to economic sustainability.
To maximize the chances of success, the core design principles of
So�ware Heritage include technical choices like archival minimal-
ism and deduplication, up to organizational decisions like running
the project as a multi-stakeholder, transparent, non-pro�t initiative,
open to collaboration with other digital archival initiatives for all
non source code aspects of so�ware archiving.

So�ware Heritage is run as an open collaborative project, and we
call for digital archivists and computer scientists to critically review
our work and join the mission of archiving our entire so�ware
commons. Challenges abound, but we believe they are worth it.
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