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Abstract

The discovery of frequent patterns is a famous problem

in data mining. While plenty of algorithms have been pro-

posed during the last decade, only a few contributions have

tried to understand the influence of datasets on the algo-

rithms behavior. Being able to explain why certain algo-

rithms are likely to perform very well or very poorly on

some datasets is still an open question.

In this setting, we describe a thorough experimental

study of datasets with respect to frequent itemsets. We study

the distribution of frequent itemsets with respect to itemsets

size together with the distribution of three concise represen-

tations: frequent closed, frequent free and frequent essential

itemsets. For each of them, we also study the distribution of

their positive and negative borders whenever possible.

From this analysis, we exhibit a new characterization of

datasets and some invariants allowing to better predict the

behavior of well known algorithms.

The main perspective of this work is to devise adaptive

algorithms with respect to dataset characteristics.

1 Introduction

The discovery of frequent patterns is a famous prob-

lem in data mining, introduced in [2] as a first step for

mining association rules. While plenty of algorithms have

been proposed during the last decade [3, 10, 20, 22, 35],

only a few contributions have tried to understand the influ-

ence of dataset characteristics on the algorithms behavior

[19, 20, 32]. These studies focus on the number of trans-

actions, average length of transactions, or frequent item-

sets distribution, i.e. statistics from frequent itemsets and

maximal frequent itemsets are usually given. Nevertheless

algorithms could have quite different behaviors for (appar-

ently) similar datasets. Benchmarks comparing algorithms

performances have been done on real and synthetic datasets

[5, 19] (see FIMI website [18]). Algorithm implementa-

tions and datasets are freely available from [18] for min-

ing frequent, frequent closed or frequent maximal itemsets.

Even with all these informations, being able to explain why

certain algorithms are likely to perform very well or very

poorly on some datasets is still an open question.

More generally, studying datasets can provide useful

hints for devising adaptive algorithms [17, 31], i.e. algo-

rithms which adapt themselves to data characteristics in or-

der to increase their time or memory efficiency. Adaptive

behavior of algorithms is not new in the setting of frequent

itemsets mining, for example [7, 10] use heuristics to decide

when tries-like data structure, representing datasets and/or

itemset collections, have to be rebuilt. The promising re-

sults obtained by these algorithms show the interest of ap-

plying specific strategies according to dataset features.

Another key point is that some problems have specific in-

variant characteristics, whatever the studied datasets. Their

impact on algorithms could give useful information about

the difficulty to solve these problems while giving hints on

the more appropriate strategies to cope with these difficul-

ties.

Related works Classical characteristics of datasets were

studied in [20], and more particularly a density criteria. Up

to our knowledge no formal definition of density does ex-

ist. According to [20], a dataset is dense when it produces

many long frequent itemsets even for high values of mini-

mum support threshold. The authors studied seven datasets,

each of them capturing a fairly large range of typical uses.

The result of these experimentations is a classification of

datasets in four categories according to the density. The

density is estimated by using the characteristics of maximal

frequent itemsets.

The main problem of their classification concerns its

variability with respect to minimum support threshold val-



ues. For example, a dataset could belong to the first cate-

gory for a given threshold value, and to the second category

for another threshold value1. Moreover, there is no clear

relationship between the proposed classification and algo-

rithms performances. Even worse, a surprising result was

obtained in the last FIMI workshop [5]: algorithms seem to

be more efficient on some very dense datasets than on some

other sparser datasets. Note also that in [37], in order to

easily compare different implementations, a tool has been

developped from information available at the FIMI website.

Based on the works done in [20], [32] proposed a statisti-

cal property of transactional datasets to characterize dataset

density. Actually, they consider the dataset as a transac-

tion source and measure an entropy signal, i.e. the transac-

tions produced by such a source. Moreover, they show how

such a characterization can be used in many fields, from

performance prediction, minimum support threshold range

determination, sampling, to strategy decisions. As for the

previous work, it does not explain algorithms performances

anymore. This may be due to the fact that only frequent

itemsets are used to calculate the entropy measure.

In [27], the positive border distribution (i.e. the num-

ber of maximal elements in each level) is considered as a

key parameter to characterize transaction databases. It is

proved that any distribution is ”feasible”, and thus suscep-

tible to be met in practice. Moreover, a constructive theo-

rem is proposed to compute a synthetic transaction database

given a positive border distribution as input. Nevertheless,

the negative border is never considered and as a result, such

synthetic databases do not match the ”complexity” of real-

world datasets.

Contribution In this setting, we describe a thorough ex-

perimental study of datasets with respect to frequent item-

sets. We study the distribution of frequent itemsets with re-

spect to itemsets size together with the distribution of three

concise representations: frequent closed, frequent free and

frequent essential itemsets. For each of them, we also study

the distribution of their positive and negative borders when-

ever possible. From this analysis, we exhibit a new classi-

fication of datasets and some invariants allowing to better

predict the behavior of well known algorithms.

The main perspective of this work is to devise adaptive

algorithms with respect to dataset/problem characteristics.

Paper organization In section 2, we introduce some pre-

liminaries. Experimental study of datasets is given in sec-

tion 3, including usual representations of frequent itemsets,

experimental protocol, results and analysis. The section 4

1As a concrete example, this case arises with Pumsb∗ dataset with

minimum support threshold values equal to 15% and 25% respectively.

Other examples are given in [16].

presents the main results of this work: a new dataset classi-

fication and a study of the influence of anti-monotone pred-

icate on the resolution of some problems. Finally, we con-

clude and give some perspectives for this work.

2 Preliminaries

Let R be a set of symbols called items, and r a database

of subsets of R. The elements of r are called transactions.

An itemset X is a set of some items of R. The support of

X is the number of transactions in r that contain all items

of X . An itemset is frequent if its support in r exceeds a

minimum support threshold value, called minsup. Given a

minimal support threshold and a database, the goal is to find

all frequent itemsets.

We recall the notion of borders of a set using notations

given in [30]. Let (I,�) be a partially ordered set of ele-

ments. A set S ⊆ I is closed downwards if, for all X ∈ S,

all subsets of X are also in S. S can be represented by

its positive border Bd+ (S) or its negative border Bd− (S)
defined by:

Bd+ (S) = max⊆{X ∈ S}

Bd− (S) = min⊆{Y ∈ I − S}

Let p be an anti-monotone predicate on (I,�), i.e.

∀X,Y ∈ I,X � Y , if p(Y ) is true, then p(X) is true.

If S is the set of elements of I satisfying p, then S is closed

downwards.

For instance, a set of frequent itemsets FI in a database

with respect to a given minimum support threshold value is

closed downwards. In this case, Bd+ (FI) is often called

the set of maximal frequent itemsets.

3 Thorough experimental study of datasets

In order to introduce our experimental study, we first de-

scribe three classical representations of frequent itemsets.

Then, our experimental protocol is explained and our exper-

imental results are given and discussed. To end up, a rela-

tionship between these results and algorithms performances

is also pointed out.

3.1 Usual representation of frequent itemsets

Several concise (or condensed) representations of fre-

quent itemsets have been studied [12, 29]. Their goal is

twofold: improving efficiency of frequent itemsets mining

whenever possible, and compacting the storage of frequent

itemsets for future usages.

Formally, a condensed representation must be equivalent

to frequent itemsets: one can retrieve each frequent item-

set together with its frequency without accessing data [12].



Such a representation is known as closed sets [33, 34, 38].

Two other representations are considered in this paper: fre-

quent free itemsets [4, 8] and frequent essential itemsets

[13]. Notice that these sets are not exactly sufficient to rep-

resent frequent sets, since they need a subset of the frequent

itemsets border to become condensed representations [12].

We briefly describe these representations in the rest of

this section.

Frequent Closed sets Given an itemset X , the closure of

X is the set of all items that appear in all transactions where

X appears. Formally, given a transaction database r:

Cl(X) =
⋂

{t ∈ r|X ⊆ t}

If Cl(X) = X then X is said to be closed.

Frequent free itemsets An itemset X is said to be free if

there is no exact rule of the form X1 → X2 where X1 and

X2 are distinct subsets of X . Free sets can be efficiently

detected through the following property:

X is free ⇐⇒ ∀x ∈ X, sup(X) < sup(X − x)

Frequent essential itemsets The notion of essential item-

sets has been defined recently in [13]. It is based on the

notion of disjunctive rule [11, 25]. A disjunctive rule is of

the form X → A1 ∨ A2... ∨ An. Such a rule is satisfied

if, every transaction that contains X contains at least one of

the elements A1, ..., An.

An itemset X is said to be essential if there is no disjunc-

tive rule of the form A1 → A2∨ . . .∨Ak, where (Ai)i=1..k

are distinct elements in X . As for free sets, they can be

efficiently tested exploiting the following property:

X is essential ⇐⇒ ∀x ∈ X, supdij(X) > supdij(X − x)

where supdij(X) = |{t ∈ r | t ∩ X 6= ∅}|

The predicates ”being a frequent free itemset” and ”being

a frequent essential itemset” are anti-monotone w.r.t. set

inclusion. In the following, we study the distributions of

these three collections w.r.t. itemsets size.

Other concise representations based on the notion of dis-

junctive rules have been defined, the reader is referred to the

general framework proposed in [12] for more details.

To end up, we believe that our choice of concise repre-

sentations covers a fairly large range of typical cases.

3.2 Experimental protocol

For frequent itemsets, a benchmark of fourteen datasets

is commonly used [18]. Most of them are real-life datasets,

only two being synthetic ones, generated by the generator

from the IBM Almaden Quest research group [1]. All ex-

periments have been done on these datasets. Each dataset

has been studied for many representative minimum support

thresholds, from very high to very low values. For each

one, frequent itemsets, frequent closed, frequent free and

frequent essential itemsets, have been collected. We have

studied their distribution with respect to itemsets size, i.e.

the number of elements in each level (from one to the size

of the largest itemsets). Moreover, we have studied the posi-

tive and negative borders distributions of frequent, frequent

free and frequent essential itemsets 2.

To perform these tests, we used algorithms available at

the FIMI website [18]. The discovery of frequent itemsets

and frequent closed itemsets has been done using FPClose

and FP − growth∗ algorithms from [21]. ABS [17] has

been updated to find frequent free and frequent essential

itemsets.

To the best of our knowledge, this work is the first one

to address the understanding of datasets for frequent item-

sets and other concise representations by using their nega-

tive borders.

3.3 Experimental results

In order to perform a fair comparison with [20], re-

sults given in this paper focus on the same datasets, i.e.

Chess, Pumsb, Connect, Pumsb∗, Mushroom and

T10I4D100K. Notations used in the sequel are reported

in Table 1.

FI frequent itemsets

FCI frequent closed itemsets

FFI frequent free itemsets

FEI frequent essential itemsets

Table 1. Notations

Given a dataset and a minimum support threshold value,

the Table 2 describes a typical example of our experimen-

tal results. Due to space limitations, the reader is referred

to [16] for comprehensive results from which the analysis

made in this paper has been performed. A wider range of

minimum support threshold values and other datasets are

also described in [16].

In the rest of this section, we discuss our experimental

results with respect to three main axes: borders distribution

of frequent itemsets, stability of borders distribution with

respect to support threshold values and borders distribution

of frequent free and essential itemsets.

2The set of closed itemsets is not closed downwards, and thus the notion

of borders does not apply.



Itemset size FI FCI FFI FEI Bd-(FI) Bd+(FI) Bd-(FFI) Bd+(FFI) Bd-(FEI) Bd+(FEI)

1 50 27 50 50 25 25 1 25 1

2 896 338 828 828 329 397 2 397 149

3 9049 2568 7628 4240 928 1 988 34 4376 853

4 59589 13221 44096 6283 3371 9 3440 268 8519 3178

5 273069 49002 170161 1635 10118 89 10178 1343 1764 1186

6 907800 137564 456826 116 21405 439 21416 4876 36 109

7 2255159 303661 875938 1 33711 1369 33720 11963 1

8 4276852 540861 1216501 39910 3686 39910 22521

9 6291848 787143 1231162 33890 8200 33890 31137

10 7263312 940504 903996 21894 14804 21894 32243

11 6626801 923310 474618 10160 21183 10160 25491

12 4790827 740773 172688 3507 24638 3507 15326

13 2738089 481499 41186 791 23766 791 6403

14 1227702 250715 5787 114 18088 114 1951

15 425896 102977 360 8 10934 8 314

16 111726 32875 3 5085 3

17 21328 7908 1734

18 2757 1370 496

19 206 145 97

20 6 6 6

total 37282962 5316467 5601828 13153 180161 134624 180438 153876 15117 5477

Table 2. Chess dataset, minsup = 30%

Borders distribution of frequent itemsets Consider the

positive and negative borders of frequent itemsets from five

datasets as given in Figure 1. First of all, we observe

”bell curve” distributions for the two borders in almost all

datasets. Since every distribution of positive border is fea-

sible in theory [27], other properties should exist to explain

these distributions. Moreover, the negative and positive bor-

ders seem to follow the same behavior even if the negative

border is always ”lower” than its corresponding positive

border. From [30], we also know that the negative border

may have elements just one level after the positive border.

This case never occurs in our experiments for frequent item-

sets.

Moreover, we denote two different behaviors of the ”dis-

tance” between the two borders. For Chess, Pumsb and

T10I4D100K (Figure 1), the borders distributions are very

close, i.e. the mean of the negative border curve is only a

few levels before the mean of the positive border curve. The

dataset T10I4D100K is different from the two others since

its borders are made of small itemsets.

For datasets Connect, Pumsb∗ and Mushroom in Fig-

ure 1, a larger distance between the borders exists.

These simple observations will be used as predictors of

the hardness of a dataset in the sequel.

Stability of borders distribution Now, we study the vari-

ation of minimum support threshold values on borders dis-

tribution of frequent itemsets. To do that, we consider

Chess and Connect for the following minimum support

threshold values: 30%, 50% and 80%. For the first min-

imum support threshold value, the results are in Figure 1

and for the two others, in Figure 2.

A surprising observation is that the relative position of

borders distributions is stable w.r.t. variation of minimum

support threshold values.
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Figure 1. Borders of frequent itemsets
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Figure 2. Borders of frequent itemsets with a

different minimum support threshold

In other words, this observation suggests a kind of global

structure for frequent itemsets borders distribution invariant

to variation of minimum support threshold values.

Borders of concise representations Now, we consider

the positive and negative borders of frequent free itemsets

and frequent essential itemsets on Chess and Connect

given in Figure 3 and 4.

From these two figures, one can remark that distributions

of the two borders look like ”bell curves”. Recall that the

same behavior has already been pointed out for frequent

itemsets, suggesting that such kind of curves is almost in-

dependent of the considered anti-monotone predicate.

Moreover, the distance between the mean of the negative

and positive borders appears to be small for each concise

representation.

The same behavior has been observed in all our experi-

ments [16].
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Figure 3. Borders of frequent free itemsets

3.4 Impact on algorithms performances

We focus on the discovery of maximal frequent item-

sets, and we study the performances of implementations

available at the FIMI website [18]. Let us consider results
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Figure 4. Borders of frequent essential item­

sets

given in Figure 5 showing algorithms execution times on

four datasets.

On Chess dataset, for every implementation given in

Figure 5 (upper-left corner), algorithms execution times

increase exponentially with decreasing minimum support

threshold values, whereas for Connect (upper-right corner)

they appear to be almost linear for Mafia [9], fp − zhu

[21], LCM [36] and afopt [26]. Moreover, recall that

Connect has more and longer transactions, and more items

than Chess.

The same kind of behavior can be noticed for datasets

such as Pumsb and Pumsb∗ (Figure 5). These two

datasets are very similar w.r.t. the transactions and num-

ber of items, but their borders distribution is very different

(Figure 1). Algorithms for Pumsb∗ are still very effec-

tive for very low minimum support threshold, whereas for

Pumsb, algorithms do not perform very well for relatively

high minimum support threshold values.

Therefore, we deduce that pruning strategies are much

more efficient on datasets having a ”large” distance between

their positive and negative borders.

A possible explanation could be obtained by looking at

algorithms pruning strategies since most of them take ad-

vantage of minimal unfrequent itemsets to find maximal fre-

quent itemsets and prune the search space.

4 Toward new classifications

Observations described in previous section lead us to de-

vise a new classification for datasets w.r.t. borders distribu-

tion. We also intent to use these results for other data mining

problems, i.e. those problems said to be ”representable as

sets” [30].

4.1 A new dataset classification

This new classification differs from the classification

given in [20] since it takes into account both the negative

border and the positive border of frequent itemsets.
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Figure 5. Algorithms performances

This classification follows from remarks done in the pre-

vious section. Its main interests are:

• a better correspondence between algorithms perfor-

mances and the classification. In other words, this

classification is a first attempt in order to evaluate the

”hardness” of a dataset.

• a stability w.r.t. the variation of minimum support

threshold.

Based on the ”distance” between positive and negative

borders distributions of frequent itemsets, different types of

datasets have been identified. As a consequence, we intro-

duce a new classification of datasets made of three types:

• Type I datasets are datasets where borders distributions

are very close, i.e. the mean of the negative border

curve is not far from the mean of the positive border

curve. In other words, most of the itemsets in the two

borders have approximately the same size. Chess and

Pumsb fall into this category; such datasets can be

expected to be hard for frequent itemsets mining.

• Type II datasets are datasets where there is a large dis-

tance between the two borders distributions. In other

words, the itemsets in the negative border are much

smaller than those of the positive border. Connect,

Pumsb∗ and Mushroom fall into this category; in

practice this type is easier than the previous one.

• Type III is a very special case of type I: the two dis-

tributions are very close, but they are concentrated in

very low levels. This type allows to catch the notion of

sparseness (for example T10I4D100K). It might be

the most easy dataset type in practice.

This classification is simpler than the one presented in

[20], while being very stable w.r.t. variation of minimum

support threshold. In addition to classical characteristics

of datasets, the ”distance” between the mean of the nega-

tive and positive border distributions makes possible a bet-

ter evaluation of the difficulty of a dataset.

For the two other concise representations previously de-

scribed, this classification suggests that almost all datasets

belong to type I or III.

4.2 Predicate classification

In the setting of this paper, we focus our analysis on

datasets with respect to frequent itemsets. In our experi-

ments, we studied three anti-monotone predicates, one for

frequent itemsets, another one for frequent free itemsets

and the last one for frequent essential itemsets. These

three predicates exhibit very different behaviors on the same

datasets (see Figure 1 to 4 on Connect and Chess for dif-

ferent minimum support threshold values).

Quite clearly, this work could be generalized to other

data mining problems, i.e. those which are representable

as sets [30]. We argue that the study of both positive and

negative borders for a given anti-monotone predicate may

allow us to come up with some general results.

From the previous sections, we deduced that studying the



R[XY ] ⊆ S[UV ]
R[XZ] ⊆ S[UW ] ⇒ R[XY Z] ⊆ S[UV W ]

S : U → V

Figure 6. An interaction between FD and IND

gap between the negative and positive borders may be very

insightful to explain the behavior of algorithms and may

also give some hints to guess the existence of properties as-

sociated with anti-monotone predicates. In spite of the huge

amount of work done for frequent itemset mining, we are

not aware of such kind of contributions. Nevertheless, we

introduce in the sequel another data mining problem known

to be representable as sets where such properties have been

clearly identified [15].

Application to inclusion dependency mining Inclusion

dependencies (IND) are fundamental semantic constraints

for relational databases [28]. Let r and s be two relations

over schemas R and S, and X and Y be sequences of at-

tributes into R and S respectively. The IND R[X] ⊆ S[Y ]
is true in (r, s) if all the values of X in r are also values

of Y in s. This notion generalizes foreign keys constraints,

very popular in practice.

The underlying data mining problem can be stated as fol-

lows: ”Given a database, find all inclusion dependencies

satisfied in this database” [23, 30, 24, 15]. From [30], the set

of IND candidates can be organized in a levelwise manner; a

given level, say k, corresponds to INDs whose arity is equal

to k. Moreover, a partial order for INDs can be defined as

follows: if i and j are two INDs, j � i if j can be obtained

by performing the same projection on the two sides of i.

For example, R[AB] ⊆ S[EF ] � R[ABC] ⊆ S[EFG].
In this setting, the predicate ”being satisfied in a database”

is anti-monotone with respect to � [30].

Consider now the well known inference rule for inclu-

sion dependencies together with functional dependencies

[14] given in Figure 6. Intuitively, consider an inclusion

dependency i = R[XAB] ⊆ S[Y EF ] where X and Y are

attribute sequences and A,B,E and F are single attributes.

Suppose that every IND j such that j � i is satisfied, and

let j1 = R[XA] ⊆ S[Y E] and j2 = R[XB] ⊆ S[Y F ] be

two of them. The more |Y | is large, the more Y is likely to

determine E or F . In other words, i is likely to be satisfied

(from inference rule of Figure 6).

From this result, one may logically expect that large

INDs should never appear in the negative border, even if

large INDs exist. It implies a potentially large gap between

the two borders distribution, like for type II datasets for fre-

quent itemsets.

All our experiments corroborate this hypothesis; We

tested three synthetic databases built using the chase pro-

cedure [6]. We enforced large INDs in their positive border,

until size 18. For all databases, INDs in the negative border

were all of size lower than 3.

This particular behavior of the positive border of INDs

justifies an algorithm based on the negative border discov-

ery [15].

5 Conclusion and perspectives

In this paper, we have thoroughly studied datasets for

problems related to frequent itemset mining. We have

shown that the distribution of the negative and positive bor-

ders have an important impact on datasets classification and

algorithms performances. For frequent itemsets mining, a

new classification of datasets has been proposed. This work

is a first step toward a better understanding of the behavior

of algorithms with respect to the search space to be discov-

ered.

This work has two main perspectives. The former is to

find out theoretical foundation of ”bell curves” and stability

obtained for the distributions in most of our experiments.

The latter is the design of adaptive algorithms with respect

to dataset characteristics, i.e. changing dynamically their

strategy during runtime.
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