
HAL Id: hal-01590944
https://hal.science/hal-01590944v1

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query rewriting using views in presence of value
constraints

Hélène Jaudoin, Jean-Marc Petit, Christophe Rey, Michel Schneider, Farouk
Toumani

To cite this version:
Hélène Jaudoin, Jean-Marc Petit, Christophe Rey, Michel Schneider, Farouk Toumani. Query rewrit-
ing using views in presence of value constraints. International Workshop on Description Logics
(DL’05), Jul 2005, Edinburgh, Scotland, United Kingdom. pp.250-262. �hal-01590944�

https://hal.science/hal-01590944v1
https://hal.archives-ouvertes.fr

Query rewriting using views in presence of value
constraints

H. Jaudoin†‡, J-M. Petit‡, C. Rey‡, M. Schneider‡, F. Toumani‡

† Cemagref, France (helene.jaudoin@clermont.cemagref.fr)
‡ LIMOS, Blaise Pascal University, France ({rey,ftoumani,jmpetit,michel.schneider}@isima.fr)

1 Introduction-Motivation
The problem of query rewriting using views can be stated as follows: given a
set of views V and a query Q, both the views and the query are defined over
the same global/mediated schema, the purpose is to rewrite Q into a query
expression that uses only the views in V and is maximally contained in Q [7].

We are interested in query rewriting as a technique for answering queries
in data integration systems that follow a LAV (Local As View)1 mediation ap-
proach [7]. In such systems, queries formulated in terms of a mediated schema
are reformulated (rewritten) into queries expressed in terms of views. In this
paper, we investigate the problem of query rewriting using views in presence
of value constraints. Our approach uses Description Logics (DL) to describe
views, queries, and mediated schema. We use the One-Of constructor to express
value constraints. This kind of constraints have been shown very useful in many
practical applications such as value integrity constraint checking or for express-
ing some forms of incomplete information [5]. Moreover they can also be very
useful to express queries. For example, a typical query Q in our application
can ask for cultural parcels of commune number 23200 or 23400 that have re-
ceived pesticides during years 2001 or 2002. Value constraints provide valuable
information to identify when a view is not useful for answering a query. Con-
sequently, capturing and exploiting value constraints improves query processing
cost in two points: (i) it reduces the number of candidates to be considered
during query rewriting, and (ii) it prunes the set of sources accessed to answer
a query, thereby reducing the communication cost.

This work is part of an ongoing research project2, which aims at providing
a scalable and flexible data sharing infrastructure to enable heterogeneous and
autonomous agricultural data sources to cooperate in order to collect and to
analyze agricultural practices and to verify compliance with respect to national
and european government regulations.

We investigate the problem of query rewriting using views in the setting of
the description logics ALN augmented with the One-Of constructor on values,
noted Ov. We call this language ALN (Ov). In this setting, we formalize the

1In the LAV approach, sources are defined as views over the mediated schema [4, 7].
2This is a collaborative project with the Cemagref (http://www.cemagref.fr/English/) .

query rewriting problem and give its computational complexity. To cope with
a large number of information sources, we point out how our query rewriting
problem can be mapped into a theoretical framework of Knowledge Discovery
in Databases (KDD) [11]. The KDD setting not only supplies scalable solutions
that help solving our rewriting problem but also enables to reuse/adapt existing
algorithms to implement one of the most costly steps of our approach. Proofs
and more details are given in our technical report[8].

2 ALN (Ov) description logic
ALN (Ov) can be viewed as a sub-language of Classic [9] obtained by aug-
menting the language ALN with the One-Of constructor on Classic host in-
dividuals. More precisely, in addition to usual ALN descriptions, ALN (Ov)
allows descriptions of the form ∀R.{o1, . . . , on}, where {o1, . . . , on} denotes the
One-Of constructor and the oi’s denote Classic host individuals. In the sequel,
host individuals are called values. In the spirit of [12], we assume two disjoint
sets of roles: Rc, which denotes roles whose range is the set of usual individuals,
and Rv, which denotes roles whose range is the set of host individuals. Hence,
ALN (Ov) concept descriptions allow for atomic negations (¬A), concept con-
junctions (C u D), number restrictions ((≤ nR), (≥ nR), with R ∈ Rc ∪ Rv),
and values restrictions ((∀Rc.C), with Rc ∈ Rc, or (∀Rv.{o1, . . . , on}), with
Rv ∈ Rv)

3.

The semantics of a concept description is given by an interpretation
I=(∆I ,.I). In the same spirit of Classic [9], we assume ∆I divided into two
disjointed domains: δc, the set of individuals in the domain, and δv, the set of
values. A concept is interpreted as a subset of δc while a value is interpreted
as an element of δv following the unique name assumption (i.e., different values
are assigned to different elements of δv). The One-Of constructor is interpreted
as a set of values, i.e., a subset of δv. A role Rc ∈ Rc is interpreted as a subset
of δc × δc while a role Rv ∈ Rv is interpreted as a subset of δc × δv and, conse-
quently, values cannot have role successors. Semantics of arbitrary descriptions,
subsumption (v) and equivalence (≡) are defined as usual.

We present now a normal form description for ALN (Ov) concepts as well as
a characterization of subsumption w.r.t. this normal form that are appropriate
to deal with our query rewriting problem. In the sequel, we use the letters
A, B, A1, . . . to denote atomic concepts and E, E ′, E1, . . . to denote finite sets
of values. E can be the empty set. P denotes either an atomic concept (A)
or its negation (¬A) or a set of values (E) or a number restriction ((≤ nR)
or (≥ nR)). C, C ′ denote arbitrary descriptions. For sake of simplicity, we
assume that descriptions of the forms (≥ 0R), ∀Rc.>c are translated into >c,
while descriptions of the form C u >c are translated into C, where >c stands

3Note that {o1, . . . , on} is not an ALN (Ov) description while ∀Rv.{o1, . . . , on} is.

for top concept of ALN (Ov) descriptions. Roughly speaking, the normal form
of a concept description C is obtained by first recursively applying on C the
rules (1) to (10) of table 1 until no rule can be more applied. Then, the rule
(11) is recursively applied on the obtained description. With regard to this
normal form, any concept description in ALN (Ov) can be transformed into an
equivalent description that is a (nonempty) conjunction of descriptions of the
form ∀R1. . . .∀Rm.P for m ≥ 0, where R1, . . . , Rm are (not necessarily distinct)
roles. The description ∀R1. . . .∀Rm.P is abbreviated by ∀R1 . . . Rm.P , where
R1 . . . Rm is considered as a word w over Rc ∪Rv

4. When m = 0 then it is the
empty word ε, and ∀ε.P denotes the description P .

(1) ∀w.C u ∀w.C ′ → ∀w.(C u C ′) (2) ≤ 0R u ∀R.C →≤ 0R
(3) A u ¬A → ⊥ (4) (≥ nR) u (≤ mR) → ⊥ if n > m
(5) (≥ nR) u (≥ mR) → (≥ max(n, m)R) (6) (≤ nR) u (≤ mR) → (≤ min(n, m)R)
(7) C u ⊥ → ⊥ (8) E1 u E2 → E such that E = E1 ∩ E2

(9) ∀Rv.E → ∀Rv.Eu(≤ kRv), where |E| = k (10) ∀R.⊥ →≤ 0R
(11)∀w.(C u C ′) → ∀w.C u ∀w.C ′

Table 1: Normalization rules.

In the sequel we use the expression ∀w.P ∈ C to denote that the normal form
of a concept C contains a conjunct of the form ∀w.P in its description. To enable
a characterization of subsumption using the normal form introduced above, we
reuse the so-called value-restriction sets introduced in [2]. The value-restriction
sets of an ALN (Ov) concept C are given in table 2.

VC(A) = {w|∀w.A ∈ C} VC((≥ nR)) = {w|∀w.(≥ mR) ∈ C ∧m ≥ n}
VC(¬A) = {w|∀w.¬A ∈ C} VC((≤ nR)) = {w|∀w.(≤ mR) ∈ C ∧m ≤ n}
VC(E) = {w|∀w.E′ ∈ C and E′ ⊆
E}

E(C) = {w| there exists a prefix w′ = vr of w s.t.
∀v.(≤ 0r) ∈ C}

Table 2: Value-restriction sets.

Theorem 1 (Subsumption) Let C, D be two concept descriptions with C and
D given in their normal form. C v D iff one of the following conditions holds:
(1) C ≡ ⊥ or D ≡ >c, or (2) w ∈ VC(P) ∪ E(C) for each ∀w.P in D.

The proof of this theorem (given in [8]) is easily derived from the structural
characterization of subsumption in Classic [9].

A primitive terminology (or TBox) T is a (finite) set of statements of the form
B v D, where B is a concept name and D is a concept. B is called a primitive
concept. The semantics of TBoxes is defined as usual. In this paper, we assume
that terminologies are acyclic. In this case, reasoning with primitive TBoxes can
be reduced to reasoning with concept descriptions by first translating primitive
concepts into definitions (i.e., statements of the form B ≡ D u B, where B is a

4More precisely, R1 . . . Rm−1 is a word over Rc and Rm ∈ Rc ∪Rv.

new atomic concept) and then unfolding the TBox as described in [3], chapter 2.
Consequently, a normal form of a primitive concept can be obtained by applying
the normalization process described above on its unfolded description.

3 Query Rewriting
Let us first define the query rewriting problem we are considering. As often in
data integration contexts, we are interested by maximally-contained rewritings
[4, 7]. The definition of such a rewriting depends on a particular query language,
which is fixed in our context to be the language {u,t}.

Definition 1 (Maximally-contained Rewriting) Let V be a primitive ter-
minology and Q be a concept. Primitive concepts in V are called views and Q
is called a query. A concept Q′ is a maximally-contained rewriting of Q using
V w.r.t. the language {u,t} if: (i) Q′ is a concept in {u,t} that refers only to
the views in V and Q′ v Q, and (ii) there does not exist a concept Q1 in {u,t}
that refers only to the views in V such that Q′ v Q1 v Q and Q′ 6≡ Q1.

Please note that, assuming views to be primitive concepts in definition 1 allows
to capture the open world assumption (i.e., sources are assumed to be incomplete
[10, 7]). In such a setting, semantics of query answers is usually formalized using
the notion of certain answers [1].

A maximally-contained rewriting Q′ ≡ C1 t ...tCn, where the Ci’s are con-
junctions of views, is said to be redundant if it contains two distinct disjuncts
Ci and Cj such that Ci v Cj. It is clear that redundant rewritings are not
worth considering for computing query answers. This is why, in the rest of
this paper, we focus our attention on the problem of computing non redundant
maximally-contained rewritings of a given query Q using a terminology V . For
simplicity, we use the term maximally-contained rewritings to denote non redun-
dant maximally-contained rewritings. The following lemma shows how a (non
redundant) maximally-contained rewriting of a query Q using V can be obtained
from its maximally-contained conjunctive rewritings (i.e., those rewritings of Q
obtained by using as query language {u} instead of {u,t} in definition 1).

Lemma 1 Let V be a primitive terminology and Q be a query. Let {Q1, . . . , Qn}
be the set of all the maximally-contained conjunctive rewritings of Q using V.
Then, Q′ is a maximally-contained rewriting of Q using V iff Q′ ≡ tn

i=1Qi.

Note that from this lemma, if a maximally-contained rewriting of Q exists, then
it is unique. We focus now on the problem of computing all the maximally-
contained conjunctive rewritings of Q using views V . We note this problem
rewrite(V , Q), where Q and the views are assumed to be unfolded and given in
their normal forms. A näıve approach to solve a rewrite(V , Q) problem would
then consist in computing every conjunction of views of size 1 to |V|, and testing

whether these conjunctions are maximally-contained conjunctive rewritings of Q.
The following lemma points out an interesting property of maximally-contained
conjunctive rewritings that will be useful to reduce the search space.

Lemma 2 Q′ ≡ un
i=1Vi is a maximally-contained conjunctive rewriting of Q

using views V iff for any concept Q′′ obtained by removing from Q′ a conjunct
Vj, with j ∈ [1, n], we have Q′′ 6v Q.

This lemma says that a maximally-contained conjunctive rewriting is necessarily
made of a minimal, w.r.t. set inclusion, subset of V such that the conjunction
of its elements is subsumed by Q. The search space of rewrite(V , Q) solutions
can be further reduced by providing an upper bound on the size of maximally-
contained conjunctive rewritings (i.e., the number of views that appear in the
rewriting). An upper bound that applies in our setting is given below, where
n denotes the number of conjuncts in Q, l the cardinality of the largest set of
values that appears in the views or in the query Q, and p the maximal depth5

of the conjuncts inside the views or the query.

Theorem 2 Maximally-contained conjunctive rewritings of Q using views V are
made of a conjunction of at most n ∗ (l + p + 2) views from V.

The justification of theorem 2 comes from the observation that if Q′ is a
maximally-contained conjunctive rewriting of Q then Q′ v ∀w.P , for every
∀w.P ∈ Q. Hence, an upper bound on the size of Q′ can be computed from
the maximal number of views necessary to rewrite one conjunct of Q. From
Theorem 1 and Lemma 2, to compute the rewritings of a conjunct ∀w.P ∈ Q
it is enough to consider concepts Q′ made of minimal subsets of V such that
w ∈ VQ′(P) ∪ E(Q′). The following lemma characterizes the different forms of
such rewritings, giving an upper bound of their size.

Lemma 3 Consider a conjunct ∀w.P ∈ Q and let l and p defined as previously.
Let Q′ ≡ Vi1 u . . .u Vik . If {Vi1 , . . . , Vik} is a minimal subset of views in V such
that w ∈ VQ′(P) ∪ E(Q′) then one of the following conditions holds:

a) k = 1, i) P ∈ {A,¬A} and ∀w.P ∈ Vi1 or, ii) P = (≥ nR) and ∀w.(≥
pR) ∈ Vi1 with p ≥ n or, iii) P = (≤ nR) and ∀w.(≤ pR) ∈ Vi1 with p ≤ n.

b) 1 ≤ k ≤ l + 1, P = E and {Vi1 ...Vik} is s.t.: for j ∈ [1, k], ∀w.Eij ∈ Vij ,

and ∩ik
j=i1Ej ⊆ E.

c) 1 < k ≤ l + 1, P = (≤ n Rv), with Rv ∈ Rv, {Vi1 ...Vik} is s.t.: for
j ∈ [1, k], ∀w.Eij ∈ Vij , and | ∩ik

j=i1 Ej| ≤ n.

d) 1 ≤ k ≤ l + p + 2 and there exists a prefix w′v of w s.t. ∀w′.(≤ 0v) ∈
uik

j=i1Vj.

5The depth of a conjunct ∀w.P is equal to the length of the word w.

Case (d) of this lemma gives an upper bound on the size of maximally-
contained conjunctive rewritings. This upper bound is the one used by the-
orem 2. Moreover, as a consequence of that theorem, time complexity of
rewrite(V , Q) is in O(mn∗(l+p+2)), where m denotes the number of views in
V and where n, l and p are defined as previously. This result comes from the
fact that to tackle a rewrite(V , Q) problem, and thanks to theorem 2, we only
need to consider subsets of V that are made of at most n ∗ (l + p + 2) views.
The search space being still exponential, näıve approaches are intractable and
clearly do not scale w.r.t. the number of views. However, the previous analysis
suggests that better approaches to narrow the search space in the spirit of the
”bucket algorithm” [7] can be used. Given a rewriting problem rewrite(V , Q)
with Q ≡ ∀w1.P1 u . . .u∀wn.Pn, the main idea is to consider first each conjunct
∀wi.Pi of Q in isolation and to create an associated bucket, noted B(wi, Pi), that
contains all the maximally-contained conjunctive rewritings of this conjunct.
Then, in a second step, candidate rewritings of Q are computed by combining
elements from the buckets by conjunction.

Let us now consider the problem of creating a bucket B(w,P) associated
with a conjunct ∀w.P of a given query Q. Lemma 3 gives the main steps to
solve this problem. In the remainder of this paper, we focus our attention on the
algorithmic difficulties induced by the presence of set of values. A careful look
at lemma 3 shows that set of values are dealt with in two kinds of computations
that are required, respectively, in case (b) and cases (c) and (d). To formulate
precisely these two problems, we use the following notation: Vw = {Vi1 , ..., Vip}
denotes the subset of V such that ∃Eij | (∀w.Eij) ∈ Vij ,∀ij ∈ [i1, ip]. In this case,
we also note Fw = {Ei1 , ..., Eip} the set of the Eij ’s associated to the view of Vw.

Therefore, given a conjunct ∀w.P ∈ Q, the first problem is introduced by
case (b) of lemma 3 (i.e., when P = E) and is related to the computation of
every minimal subset MS of Fw (associated with Vw) such that intersection of
the elements of MS is contained in E. We will denote by S1(w, E) the set of
such subsets Fw. The second problem is introduced by case (c) of lemma 3 (i.e.,
when P = (≤ nRv)) and given VwRv , amounts to the computation of every
minimal subset of MS of FwRv such that the cardinality of the intersection of
the elements of MS is less than the integer n. We denote by S2(wRv, n) the set
of such subsets of FwRv . Note that, the problem of computing S2(wRv, n) occurs
also in case (d) of lemma 3.

More generally for a word w, sets S1(w, E) and S2(w, n) are formally defined
below.

Definition 2 Let E be a set. P(E) is the power set of E.
S1(w, E) = {X ∈ P(Fw)| ∩ {x ∈ X} ⊆ E and ∀Y ⊂ X,∩{y ∈ Y } 6⊆ E}
S2(w, n) = {X ∈ P(Fw)|| ∩ {x ∈ X}| ≤ n and ∀Y ⊂ X, | ∩ {x ∈ X}| > n}
In next section, we show how the problem of computing S1(w,E) and

S2(w, n) can be tied up with the theoretical framework of Knowledge Discov-

ery in Databases (KDD) [11] in order to take benefits from existing scalable
solutions developed in that context.

4 A KDD-based approach for query rewriting
A theoretical framework for KDD has been proposed in [11], in which scalability
issues w.r.t. both the size of the database and the size of the search space can be
dealt with. This framework has been successfully applied in many application
from association rules to functional or inclusion dependencies.

This framework can be stated as follows: Let r be a database, L a finite
language for expressing sentences or patterns, and P a predicate qualifying in-
teresting sentences of L in r. X is said to be an interesting sentence of L in r, iff
P (X, r) is true. Given r,L and P , the purpose is to find all interesting sentences,
the so-called theory of r,L and P , denoted by T h(r,L, P), or simply T h when
r,L and P are clear from context, and defined as T h(r,L, P) = {ϕ ∈ L | P (r, ϕ)
is true}.

Computing the theory T h(r,L, P) can be reduced to the computation of its
borders [11]. To do this, a partial order relation on L has to exist and more
importantly, the predicate P must be anti-monotone with respect to this partial
order. More formally, let � be a partial order on L. P is anti-monotone with
respect to � iff for all X, Y ∈ L such that X � Y , if P (Y, r) is true then P (X, r)
is true. Given a theory T h, two borders can be defined, the so-called positive
an negative borders. They are defined as follows:

Bd+(T h) = {ϕ ∈ T h | for all θ ∈ L with ϕ ≺ θ, θ 6∈ T h}
Bd−(T h) = {ϕ ∈ L \ T h | for all γ ∈ L with γ ≺ ϕ, γ ∈ T h}
We shall see in the sequel how the problem of computing the sets S1(w,E)

and S2(w, n) can be formulated into this framework.

The Identification of S1(w, E) and of S2(w, n) Let Fw = {Ei1 , ..., Eip} be a
set of p elements. In our context, the language Lw turns out to be the powerset
of Fw i.e. P(Fw), the partial order being the subset relation ⊆. The database
being empty in our formulation, the scalability of this framework applies only
on the search space.

Two predicates have to be defined, denoted by P1 and P2, to cope with our
two problems at hand. They are defined as follows: Let X ⊆ Lw

• P1(E, X) is true iff ∩{Eij ∈ X} 6⊆ E.
• P2(n,X) is true iff | ∩ {Eij ∈ X}| > n.
Predicates P1 and P2 being anti-monotone with respect to ⊆, S1(w, E) and

S2(w, n) can be characterized as borders as follows:

Theorem 3 S1(w,E) = Bd−(Th(∅,Lw, P1))
S2(w, n) = Bd−(Th(∅,Lw, P2))

Recently, several algorithms have been proposed to compute efficiently the pos-
itive and negative borders of a given theory [11, 6]. Such algorithms can be
reused in our context to compute S1(w, E) and S2(w, n).

5 Conclusion
Our work complements existing query rewriting approaches [7] by considering
a new kind of constraints that can be very useful in practical situations. It
should be noted that value constraints (or, in general, the one-of construct) can
be simulated by languages that contain negation and disjunction (e.g., ALC).
However, it is well known that such an approach may lead to terminologies
that are very large and hence, reasoning with such terminologies may be very
problematic6.

In this paper, we investigated the query rewriting problem in the setting of
ALN (Ov), a language that is suitable for our application context. However,
the main results presented here can be extended to ALN (O) adopting, in this
case, a non-standard semantics for individuals in order to avoid intractactabil-
ity of subsumption [9]. Finally, up to our knowledge, it is the first time an
hybrid framework that combines knowledge representation and reasoning with
KDD techniques is used to solve such problems. A prototype implementing the
presented approach is currently under development.

References
[1] S. Abiteboul and O. M. Duschka. Complexity of answering queries using materialized

views. In PODS’1998, pages 254–263.
[2] F. Baader and Ralf Küsters. Least common subsumer computation w.r.t. cyclic aln-

terminologies. In Description Logics, 1998.
[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors.

The Description Logic Handbook. Cambridge University Press, 2003.
[4] C. Beeri, A. Halevy, and M.C. Rousset. Rewriting Queries Using Views in Description

Logics. In PODS’97, pages 99–108.
[5] A. T. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for sub-

sumption in the classic description logic. JAIR, 1:277–308, 1994.
[6] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R.S. Sharma. Dis-

covering all most specific sentences. TODS, 28(2), 2003.
[7] Alon Y. Halevy. Answering queries using views: A survey. VLDB, 10(4):270–294, 2001.
[8] H. Jaudoin, F. Toumani, C. Rey, J-M. Petit, and M. Schneider. Query rewrit-

ing in presence of value constraints (extended version). TR-ALNOv-05, 2005.
http://www.isima.fr/jaudoin/

[9] R. Küsters and A. Borgida. What’s in an Attribute? Consequences for the Least Common
Subsumer. JAIR, 14:167–203, 2001.

[10] M. Lenzerini. Data integration : A theoretical perspective. In PODS, 2002.
[11] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge

discovery. DMKD, 1(3):241–258, 1997.
[12] I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description Logic.

IJCAI 2001, 1(3):199–204, 2001.

6For example, using such an approach in our application context requires adding more than
900 millions of new axioms in our terminology.

