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Query rewriting using views in presence of value constraints

Introduction-Motivation

The problem of query rewriting using views can be stated as follows: given a set of views V and a query Q, both the views and the query are defined over the same global/mediated schema, the purpose is to rewrite Q into a query expression that uses only the views in V and is maximally contained in Q [START_REF] Alon | Answering queries using views: A survey[END_REF].

We are interested in query rewriting as a technique for answering queries in data integration systems that follow a LAV (Local As View)1 mediation approach [START_REF] Alon | Answering queries using views: A survey[END_REF]. In such systems, queries formulated in terms of a mediated schema are reformulated (rewritten) into queries expressed in terms of views. In this paper, we investigate the problem of query rewriting using views in presence of value constraints. Our approach uses Description Logics (DL) to describe views, queries, and mediated schema. We use the One-Of constructor to express value constraints. This kind of constraints have been shown very useful in many practical applications such as value integrity constraint checking or for expressing some forms of incomplete information [START_REF] Borgida | A semantics and complete algorithm for subsumption in the classic description logic[END_REF]. Moreover they can also be very useful to express queries. For example, a typical query Q in our application can ask for cultural parcels of commune number 23200 or 23400 that have received pesticides during years 2001 or 2002. Value constraints provide valuable information to identify when a view is not useful for answering a query. Consequently, capturing and exploiting value constraints improves query processing cost in two points: (i) it reduces the number of candidates to be considered during query rewriting, and (ii) it prunes the set of sources accessed to answer a query, thereby reducing the communication cost.

This work is part of an ongoing research project2 , which aims at providing a scalable and flexible data sharing infrastructure to enable heterogeneous and autonomous agricultural data sources to cooperate in order to collect and to analyze agricultural practices and to verify compliance with respect to national and european government regulations.

We investigate the problem of query rewriting using views in the setting of the description logics ALN augmented with the One-Of constructor on values, noted O v . We call this language ALN (O v ). In this setting, we formalize the query rewriting problem and give its computational complexity. To cope with a large number of information sources, we point out how our query rewriting problem can be mapped into a theoretical framework of Knowledge Discovery in Databases (KDD) [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF]. The KDD setting not only supplies scalable solutions that help solving our rewriting problem but also enables to reuse/adapt existing algorithms to implement one of the most costly steps of our approach. Proofs and more details are given in our technical report [START_REF] Jaudoin | Query rewriting in presence of value constraints (extended version)[END_REF].

ALN (O v ) description logic

ALN (O v ) can be viewed as a sub-language of Classic [START_REF] Küsters | What's in an Attribute? Consequences for the Least Common Subsumer[END_REF] obtained by augmenting the language ALN with the One-Of constructor on Classic host individuals. More precisely, in addition to usual ALN descriptions, ALN (O v ) allows descriptions of the form ∀R.{o 1 , . . . , o n }, where {o 1 , . . . , o n } denotes the One-Of constructor and the o i 's denote Classic host individuals. In the sequel, host individuals are called values. In the spirit of [START_REF] Horrocks | Ontology Reasoning in the SHOQ(D) Description Logic[END_REF], we assume two disjoint sets of roles: R c , which denotes roles whose range is the set of usual individuals, and R v , which denotes roles whose range is the set of host individuals. Hence, ALN (O v ) concept descriptions allow for atomic negations (¬A), concept conjunctions (C D), number restrictions ((≤ nR),

(≥ nR), with R ∈ R c ∪ R v ), and values restrictions ((∀R c .C), with R c ∈ R c , or (∀R v .{o 1 , . . . , o n }), with R v ∈ R v ) 3 .
The semantics of a concept description is given by an interpretation I=(∆ I ,. I ). In the same spirit of Classic [START_REF] Küsters | What's in an Attribute? Consequences for the Least Common Subsumer[END_REF], we assume ∆ I divided into two disjointed domains: δ c , the set of individuals in the domain, and δ v , the set of values. A concept is interpreted as a subset of δ c while a value is interpreted as an element of δ v following the unique name assumption (i.e., different values are assigned to different elements of δ v ). The One-Of constructor is interpreted as a set of values, i.e., a subset of δ v . A role R c ∈ R c is interpreted as a subset of δ c × δ c while a role R v ∈ R v is interpreted as a subset of δ c × δ v and, consequently, values cannot have role successors. Semantics of arbitrary descriptions, subsumption ( ) and equivalence (≡) are defined as usual.

We present now a normal form description for ALN (O v ) concepts as well as a characterization of subsumption w.r.t. this normal form that are appropriate to deal with our query rewriting problem. In the sequel, we use the letters A, B, A 1 , . . . to denote atomic concepts and E, E , E 1 , . . . to denote finite sets of values. E can be the empty set. P denotes either an atomic concept (A) or its negation (¬A) or a set of values (E) or a number restriction ((≤ nR) or (≥ nR)). C, C denote arbitrary descriptions. For sake of simplicity, we assume that descriptions of the forms (≥ 0R . When m = 0 then it is the empty word , and ∀ .P denotes the description P .

(

1) ∀w.C ∀w.C → ∀w.(C C ) (2) ≤ 0R ∀R.C → ≤ 0R (3) A ¬A → ⊥ (4) (≥ nR) (≤ mR) → ⊥ if n > m (5) (≥ nR) (≥ mR) → (≥ max(n, m)R) (6) (≤ nR) (≤ mR) → (≤ min(n, m)R) (7) C ⊥ → ⊥ (8) E 1 E 2 → E such that E = E 1 ∩ E 2 (9) ∀R v .E → ∀R v .E (≤ kR v ), where |E| = k (10) ∀R.⊥ → ≤ 0R (11)∀w.(C C ) → ∀w.C ∀w.C Table 1: Normalization rules.
In the sequel we use the expression ∀w.P ∈ C to denote that the normal form of a concept C contains a conjunct of the form ∀w.P in its description. To enable a characterization of subsumption using the normal form introduced above, we reuse the so-called value-restriction sets introduced in [START_REF] Baader | Least common subsumer computation w.r.t. cyclic alnterminologies[END_REF]. The value-restriction sets of an ALN (O v ) concept C are given in table 2.

V C (A) = {w|∀w.A ∈ C} V C ((≥ nR)) = {w|∀w.(≥ mR) ∈ C ∧ m ≥ n} V C (¬A) = {w|∀w.¬A ∈ C} V C ((≤ nR)) = {w|∀w.(≤ mR) ∈ C ∧ m ≤ n} V C (E) = {w|∀w.E ∈ C and E ⊆ E} E(C) = {w| there exists a prefix w = vr of w s.t. ∀v.(≤ 0r) ∈ C} Table 2: Value-restriction sets.
Theorem 1 (Subsumption) Let C, D be two concept descriptions with C and D given in their normal form. C D iff one of the following conditions holds:

(1) C ≡ ⊥ or D ≡ c , or (2) w ∈ V C (P ) ∪ E(C) for each ∀w.P in D.
The proof of this theorem (given in [START_REF] Jaudoin | Query rewriting in presence of value constraints (extended version)[END_REF]) is easily derived from the structural characterization of subsumption in Classic [START_REF] Küsters | What's in an Attribute? Consequences for the Least Common Subsumer[END_REF].

A primitive terminology (or TBox) T is a (finite) set of statements of the form B D, where B is a concept name and D is a concept. B is called a primitive concept. The semantics of TBoxes is defined as usual. In this paper, we assume that terminologies are acyclic. In this case, reasoning with primitive TBoxes can be reduced to reasoning with concept descriptions by first translating primitive concepts into definitions (i.e., statements of the form B ≡ D B, where B is a new atomic concept) and then unfolding the TBox as described in [START_REF] Baader | The Description Logic Handbook[END_REF], chapter 2. Consequently, a normal form of a primitive concept can be obtained by applying the normalization process described above on its unfolded description.

Query Rewriting

Let us first define the query rewriting problem we are considering. As often in data integration contexts, we are interested by maximally-contained rewritings [START_REF] Beeri | Rewriting Queries Using Views in Description Logics[END_REF][START_REF] Alon | Answering queries using views: A survey[END_REF]. The definition of such a rewriting depends on a particular query language, which is fixed in our context to be the language { , }.

Definition 1 (Maximally-contained Rewriting) Let V be a primitive terminology and Q be a concept. Primitive concepts in V are called views and Q is called a query. A concept Q is a maximally-contained rewriting of Q using V w.r.t. the language { , } if: (i) Q is a concept in { , } that refers only to the views in V and Q Q, and (ii) there does not exist a concept Q 1 in { , } that refers only to the views in

V such that Q Q 1 Q and Q ≡ Q 1 .
Please note that, assuming views to be primitive concepts in definition 1 allows to capture the open world assumption (i.e., sources are assumed to be incomplete [START_REF] Lenzerini | Data integration : A theoretical perspective[END_REF][START_REF] Alon | Answering queries using views: A survey[END_REF]). In such a setting, semantics of query answers is usually formalized using the notion of certain answers [START_REF] Abiteboul | Complexity of answering queries using materialized views[END_REF].

A maximally-contained rewriting Q ≡ C 1 ... C n , where the C i 's are conjunctions of views, is said to be redundant if it contains two distinct disjuncts C i and C j such that C i C j . It is clear that redundant rewritings are not worth considering for computing query answers. This is why, in the rest of this paper, we focus our attention on the problem of computing non redundant maximally-contained rewritings of a given query Q using a terminology V. For simplicity, we use the term maximally-contained rewritings to denote non redundant maximally-contained rewritings. The following lemma shows how a (non redundant) maximally-contained rewriting of a query Q using V can be obtained from its maximally-contained conjunctive rewritings (i.e., those rewritings of Q obtained by using as query language { } instead of { , } in definition 1).

Lemma 1 Let V be a primitive terminology and Q be a query. Let {Q 1 , . . . , Q n } be the set of all the maximally-contained conjunctive rewritings of Q using V.

Then, Q is a maximally-contained rewriting of Q using V iff Q ≡ n i=1 Q i .
Note that from this lemma, if a maximally-contained rewriting of Q exists, then it is unique. We focus now on the problem of computing all the maximallycontained conjunctive rewritings of Q using views V. We note this problem rewrite(V, Q), where Q and the views are assumed to be unfolded and given in their normal forms. A naïve approach to solve a rewrite(V, Q) problem would then consist in computing every conjunction of views of size 1 to |V|, and testing whether these conjunctions are maximally-contained conjunctive rewritings of Q.

The following lemma points out an interesting property of maximally-contained conjunctive rewritings that will be useful to reduce the search space.

Lemma 2 Q ≡ n i=1 V i is a maximally-contained conjunctive rewriting of Q using views V iff for any concept Q obtained by removing from Q a conjunct V j , with j ∈ [1, n], we have Q Q.

This lemma says that a maximally-contained conjunctive rewriting is necessarily made of a minimal, w.r.t. set inclusion, subset of V such that the conjunction of its elements is subsumed by Q. The search space of rewrite(V, Q) solutions can be further reduced by providing an upper bound on the size of maximallycontained conjunctive rewritings (i.e., the number of views that appear in the rewriting). An upper bound that applies in our setting is given below, where n denotes the number of conjuncts in Q, l the cardinality of the largest set of values that appears in the views or in the query Q, and p the maximal depth 5 of the conjuncts inside the views or the query.

Theorem 2 Maximally-contained conjunctive rewritings of Q using views V are made of a conjunction of at most n * (l + p + 2) views from V.

The justification of theorem 2 comes from the observation that if Q is a maximally-contained conjunctive rewriting of Q then Q ∀w.P , for every ∀w.P ∈ Q. Hence, an upper bound on the size of Q can be computed from the maximal number of views necessary to rewrite one conjunct of Q. From Theorem 1 and Lemma 2, to compute the rewritings of a conjunct ∀w.P ∈ Q it is enough to consider concepts Q made of minimal subsets of V such that w ∈ V Q (P ) ∪ E(Q ). The following lemma characterizes the different forms of such rewritings, giving an upper bound of their size.

Lemma 3 Consider a conjunct ∀w.P ∈ Q and let l and p defined as previously. 5 The depth of a conjunct ∀w.P is equal to the length of the word w.

Let Q ≡ V i 1 . . . V i k . If {V i 1 , . . . , V i k } is a minimal subset of views in V such that w ∈ V Q (P ) ∪ E(Q ) then one of the following conditions holds: a) k = 1, i) P ∈ {A, ¬A} and ∀w.P ∈ V i 1 or, ii) P = (≥ nR) and ∀w.(≥ pR) ∈ V i 1 with p ≥ n or, iii) P = (≤ nR) and ∀w.(≤ pR) ∈ V i 1 with p ≤ n. b) 1 ≤ k ≤ l + 1, P = E and {V i 1 ...V i k } is s.t.: for j ∈ [1, k], ∀w.E i j ∈ V i j , and 
∩ i k j=i 1 E j ⊆ E. c) 1 < k ≤ l + 1, P = (≤ n R v ), with R v ∈ R v , {V i 1 ...V i k } is s.t.: for j ∈ [1, k], ∀w.E i j ∈ V i j , and | ∩ i k j=i 1 E j | ≤ n. d) 1 ≤ k ≤ l + p + 2 and there exists a prefix w v of w s.t. ∀w .(≤ 0v) ∈ i k j=i 1 V j .
Case (d) of this lemma gives an upper bound on the size of maximallycontained conjunctive rewritings. This upper bound is the one used by theorem 2. Moreover, as a consequence of that theorem, time complexity of rewrite(V, Q) is in O(m n * (l+p+2) ), where m denotes the number of views in V and where n, l and p are defined as previously. This result comes from the fact that to tackle a rewrite(V, Q) problem, and thanks to theorem 2, we only need to consider subsets of V that are made of at most n * (l + p + 2) views. The search space being still exponential, naïve approaches are intractable and clearly do not scale w.r.t. the number of views. However, the previous analysis suggests that better approaches to narrow the search space in the spirit of the "bucket algorithm" [START_REF] Alon | Answering queries using views: A survey[END_REF] can be used. Given a rewriting problem rewrite(V, Q) with Q ≡ ∀w 1 .P 1 . . . ∀w n .P n , the main idea is to consider first each conjunct ∀w i .P i of Q in isolation and to create an associated bucket, noted B(w i , P i ), that contains all the maximally-contained conjunctive rewritings of this conjunct. Then, in a second step, candidate rewritings of Q are computed by combining elements from the buckets by conjunction.

Let us now consider the problem of creating a bucket B(w, P ) associated with a conjunct ∀w.P of a given query Q. Lemma 3 gives the main steps to solve this problem. In the remainder of this paper, we focus our attention on the algorithmic difficulties induced by the presence of set of values. A careful look at lemma 3 shows that set of values are dealt with in two kinds of computations that are required, respectively, in case (b) and cases (c) and (d). To formulate precisely these two problems, we use the following notation:

V w = {V i 1 , ..., V ip } denotes the subset of V such that ∃E i j | (∀w.E i j ) ∈ V i j , ∀i j ∈ [i 1 , i p ].
In this case, we also note F w = {E i 1 , ..., E ip } the set of the E i j 's associated to the view of V w .

Therefore, given a conjunct ∀w.P ∈ Q, the first problem is introduced by case (b) of lemma 3 (i.e., when P = E) and is related to the computation of every minimal subset M S of F w (associated with V w ) such that intersection of the elements of M S is contained in E. We will denote by S 1 (w, E) the set of such subsets F w . The second problem is introduced by case (c) of lemma 3 (i.e., when P = (≤ nR v )) and given V wRv , amounts to the computation of every minimal subset of M S of F wRv such that the cardinality of the intersection of the elements of M S is less than the integer n. We denote by S 2 (wR v , n) the set of such subsets of F wRv . Note that, the problem of computing S 2 (wR v , n) occurs also in case (d) of lemma 3.

More generally for a word w, sets S 1 (w, E) and S 2 (w, n) are formally defined below. Definition 2 Let E be a set. P(E) is the power set of E.

S 1 (w, E)

= {X ∈ P(F w )| ∩ {x ∈ X} ⊆ E and ∀Y ⊂ X, ∩{y ∈ Y } ⊆ E} S 2 (w, n) = {X ∈ P(F w )|| ∩ {x ∈ X}| ≤ n and ∀Y ⊂ X, | ∩ {x ∈ X}| > n}
In next section, we show how the problem of computing S 1 (w, E) and S 2 (w, n) can be tied up with the theoretical framework of Knowledge Discov-ery in Databases (KDD) [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF] in order to take benefits from existing scalable solutions developed in that context.

A KDD-based approach for query rewriting

A theoretical framework for KDD has been proposed in [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF], in which scalability issues w.r.t. both the size of the database and the size of the search space can be dealt with. This framework has been successfully applied in many application from association rules to functional or inclusion dependencies.

This framework can be stated as follows: Let r be a database, L a finite language for expressing sentences or patterns, and P a predicate qualifying interesting sentences of L in r. X is said to be an interesting sentence of L in r, iff P (X, r) is true. Given r, L and P , the purpose is to find all interesting sentences, the so-called theory of r, L and P , denoted by T h(r, L, P ), or simply T h when r, L and P are clear from context, and defined as T h(r, L, P ) = {ϕ ∈ L | P (r, ϕ) is true}.

Computing the theory T h(r, L, P ) can be reduced to the computation of its borders [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF]. To do this, a partial order relation on L has to exist and more importantly, the predicate P must be anti-monotone with respect to this partial order. More formally, let be a partial order on L. P is anti-monotone with respect to iff for all X, Y ∈ L such that X Y , if P (Y, r) is true then P (X, r) is true. Given a theory T h, two borders can be defined, the so-called positive an negative borders. They are defined as follows:

Bd

+ (T h) = {ϕ ∈ T h | for all θ ∈ L with ϕ ≺ θ, θ ∈ T h} Bd -(T h) = {ϕ ∈ L \ T h | for all γ ∈ L with γ ≺ ϕ, γ ∈ T h}
We shall see in the sequel how the problem of computing the sets S 1 (w, E) and S 2 (w, n) can be formulated into this framework.

The Identification of S 1 (w, E) and of S 2 (w, n) Let F w = {E i 1 , ..., E ip } be a set of p elements. In our context, the language L w turns out to be the powerset of F w i.e. P(F w ), the partial order being the subset relation ⊆. The database being empty in our formulation, the scalability of this framework applies only on the search space.

Two predicates have to be defined, denoted by P 1 and P 2 , to cope with our two problems at hand. They are defined as follows: Let X ⊆ L w

• P 1 (E, X) is true iff ∩{E i j ∈ X} ⊆ E.

• P 2 (n, X) is true iff | ∩ {E i j ∈ X}| > n.

Predicates P 1 and P 2 being anti-monotone with respect to ⊆, S 1 (w, E) and S 2 (w, n) can be characterized as borders as follows: Theorem 3 S 1 (w, E) = Bd -(T h(∅, L w , P 1 )) S 2 (w, n) = Bd -(T h(∅, L w , P 2 )) Recently, several algorithms have been proposed to compute efficiently the positive and negative borders of a given theory [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF][START_REF] Gunopulos | Discovering all most specific sentences[END_REF]. Such algorithms can be reused in our context to compute S 1 (w, E) and S 2 (w, n).

Conclusion

Our work complements existing query rewriting approaches [START_REF] Alon | Answering queries using views: A survey[END_REF] by considering a new kind of constraints that can be very useful in practical situations. It should be noted that value constraints (or, in general, the one-of construct) can be simulated by languages that contain negation and disjunction (e.g., ALC). However, it is well known that such an approach may lead to terminologies that are very large and hence, reasoning with such terminologies may be very problematic 6 .

In this paper, we investigated the query rewriting problem in the setting of ALN (O v ), a language that is suitable for our application context. However, the main results presented here can be extended to ALN (O) adopting, in this case, a non-standard semantics for individuals in order to avoid intractactability of subsumption [START_REF] Küsters | What's in an Attribute? Consequences for the Least Common Subsumer[END_REF]. Finally, up to our knowledge, it is the first time an hybrid framework that combines knowledge representation and reasoning with KDD techniques is used to solve such problems. A prototype implementing the presented approach is currently under development.

  ), ∀R c . c are translated into c , while descriptions of the form C c are translated into C, where c stands for top concept of ALN (O v ) descriptions. Roughly speaking, the normal form of a concept description C is obtained by first recursively applying on C the rules (1) to (10) of table 1 until no rule can be more applied. Then, the rule (11) is recursively applied on the obtained description. With regard to this normal form, any concept description in ALN (O v ) can be transformed into an equivalent description that is a (nonempty) conjunction of descriptions of the form ∀R 1 . . . . ∀R m .P for m ≥ 0, where R 1 , . . . , R m are (not necessarily distinct) roles. The description ∀R 1 . . . . ∀R m .P is abbreviated by ∀R 1 . . . R m .P , where R 1 . . . R m is considered as a word w over R c ∪ R v 4

In the LAV approach, sources are defined as views over the mediated schema[START_REF] Beeri | Rewriting Queries Using Views in Description Logics[END_REF][START_REF] Alon | Answering queries using views: A survey[END_REF].
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Note that {o 1 , . . . , o n } is not an ALN (O v ) description while ∀R v .{o 1 , . . . , o n } is.

For example, using such an approach in our application context requires adding more than 900 millions of new axioms in our terminology.