N

N
N

HAL

open science

Moving from Event-B to Probabilistic Event-B
Mohamed Amine Aouadhi, Benoit Delahaye, Arnaud Lanoix

» To cite this version:

Mohamed Amine Aouadhi, Benoit Delahaye, Arnaud Lanoix. Moving from Event-B to Probabilistic
Event-B. 32nd ACM SIGAPP Symposium On Applied Computing, Apr 2017, Marrakech, Morocco.

10.1145/3019612.3019823 . hal-01590903

HAL Id: hal-01590903
https://hal.science/hal-01590903
Submitted on 20 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01590903
https://hal.archives-ouvertes.fr

Moving from Event-B to Probabilistic Event-B"

Mohamed Amine
Aouadhi
University of Nantes
LINA UMR CNRS 6241
mohamed-amine.aouadhi @univ-
nantes.fr

ABSTRACT

We propose a fully probabilistic extension of Event-B where all
the non-deterministic choices are replaced with probabilities. We
present the syntax and the semantics of this extension and introduce
novel and adapted proof obligations for proving the correctness
of probabilistic Event-B models. As a preliminary step towards
handling refinement of probabilistic Event-B models, we propose
sufficient conditions for the almost-certain convergence of a set of
events and express them in terms of proof obligations. We illustrate
our work by presenting a case study specified in both standard and
probabilistic Event-B.

CCS Concepts

eMathematics of computing — Markov processes; eSoftware
and its engineering — Formal software verification; eTheory
of computation — Proof theory;

Keywords

Event-B; Probabilistic systems; Markov Chains

1. INTRODUCTION

As systems become more and more complex, with randomised al-
gorithms [19]], probabilistic protocols [3] or failing components, it
is necessary to add new modelling features in order to take into
account complex system properties such as reliability [24], respon-
siveness [|8 23], continuous evolution, energy consumption etc.

In this way, several research works have focused on the extension
of Event-B to allow the expression of probabilistic information in
Event-B models. Event-B [1]] is a formal method used for discrete
systems modelling. It is equipped with Rodin |2]], an open toolset
for modelling and proving systems. The development process in

*This work is partially supported by the ANR national research
program PACS (ANR-14-CE28-0002).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. .. $15.00
http://dx.doi.org/10.1145/3019612.3019823

Benoit Delahaye
University of Nantes
LINA UMR CNRS 6241

benoit.delahaye @univ-nantes.fr

Arnaud Lanoix
University of Nantes
LINA UMR CNRS 6241

arnaud.lanoix @univ-nantes.fr

Event-B is based on refinement: systems are typically developed
progressively using an ordered sequence of models, where each
model contains more details than its predecessor.

In [[17]], Morgan et al. have summarised the difficulties of em-
bedding probabilities into Event-B. This seminal paper suggests
that probabilities need to be introduced as a refinement of non-
determinism. In Event-B, non-determinism occurs in several places
such as the choice between enabled events in a given state, the
choice of the parameter values in a given event, and the choice
of the value given to a variable through some non-deterministic
assignments. The ideal probabilistic extension of Event-B should
therefore allow using probabilities in all these places. To the best
of our knowledge, the existing works on extending Event-B with
probabilities have mostly focused on refining non-deterministic as-
signments into probabilistic assignments. In [9], Hallerstede and
Hoang propose to focus on a qualitative aspect of probability. They
propose to refine non-deterministic assignments into qualitative prob-
abilistic assignments where the actual probability values are not
specified, and adapt the Event-B semantics and proof obligations
to this new setting. In [25]], Yilmaz study the refinement of qualita-
tive probabilistic Event-B models and propose a tool support inside
Rodin. Other works [20l22}21] have extended this approach by re-
fining non-deterministic assignments into quantitative probabilistic
assignments where, unlike in [9]], the actual probability values are
specified. This new proposition is then exploited in order to assess
several system properties such as reliability and responsiveness.

Unfortunately, other sources of non-determinism than assignments
have been left untouched in these works. In [17]], the authors ar-
gue that probabilistic choice between events or parameter values
can be achieved by transformations of the models that embed these
choices inside probabilistic assignments. While this is unarguably
true, such transformations are not trivial and greatly impede the un-
derstanding of Event-B models. Moreover, these transformations
would need to be included in the refinement chain when designers
need it, which would certainly be counter-intuitive to engineers.

Instead, we propose a different approach in which probabilistic
choices can be introduced as a refinement of any potential non-
deterministic choice, be it between enabled events, parameter val-
ues or assignments. Our long-term goal is to produce a probabilistic
extension of Event-B where probabilistic events/parameters/assign-
ments can be introduced natively either as standalone modelling
artifacts or as a refinement of their non-deterministic counterparts.
This long-term goal is clearly ambitious and will require several
years of study to be achieved.

As a first step towards this long-term objective, we consider a slight-

http://dx.doi.org/10.1145/3019612.3019823

ly simplified modelling process where the engineer introduces prob-
abilities in the last refinement step of a model, when the system is
already sufficiently detailed. For now, we also restrict ourselves to
purely probabilistic systems: when probabilities are introduced in
the model, they replace all non-deterministic choices. We therefore
propose a fully probabilistic extension of Event-B where all non-
deterministic choices are replaced with probabilistic ones. As for
standard Event-B models, the consistency of probabilistic Event-B
models is expressed in terms of proof obligations. We therefore in-
troduce new proof obligations dedicated to the consistency of prob-
abilistic Event-B models and explain how standard Event-B proof
obligations can be adapted to the probabilistic setting. In order to
prove the correctness of our approach, we show that the seman-
tics of a probabilistic Event-B model is a (potentially infinite-state)
discrete time Markov chain.

As explained in [17], ensuring the refinement of Event-B models
where probabilistic choice is not reduced to assignments is a dif-
ficult problem. While we do not solve this problem in its entirety,
we take a preliminary step towards this goal by providing sufficient
conditions, expressed in terms of proof obligations, for the almost-
certain convergence of a set of events. Convergence is a required
property in standard Event-B for proving refinement steps as soon
as new events are introduced in the model. Almost-certain con-
vergence has already been studied in [9]] and [12], in the context
of non-deterministic models with probabilistic assignments, but we
show that the proof obligations developed in this context are not
sufficient for models where probabilistic choice also appears in the
choice of events and parameter valuations.

Finally, we illustrate our work on a classical case study: the emer-
gency brake system. In particular, we show that some of the re-
quirements provided in this case study cannot be taken into account
using standard Event-B while their specification using probabilistic
Event-B is intuitive, in particular when probabilities can be taken
into account for the choice between enabled events.

All the results we present in this paper are being implemented in a
prototype plugin for Rodin, which we briefly present at the end of
the paper.

Related work. As said above, [17] is a seminal paper that iden-
tifies the challenges when considering a probablistic extension for
Event-B: introducing probabilities in the three places where non-
determinism appears in standard Event-B (between enabled events,
on the parameter values choice and on non-deterministic assign-
ments) is the major dificulty to preserve the practicality of Event-B,
and in particular the refinement development framework.

Existing works such as the book of Morgan and Mclver [18] par-
tially answer these challenges. In particular, [18] introduces a prob-
abilistic refinement calculus where the refinement of probabilis-
tic guarded commands (= assignements) is worked out. The PhD
work of Hoang [16} |14, |11]] adapts these results to the classical B-
Method and the underlying guarded substitution language. Follow-
ing these works, Hallerstede and Hoang [9] have proposed a first
probabilistic extension of Event-B, where probabilities are intro-
duced as a refinement of non-determinism in non-deterministic as-
signments. In this first extension, Hallerstede and Hoang focus on
a qualitative aspect of probabilities and adapt the Event-B seman-
tics and proof obligations to this new setting. Quantitative prob-
abilistic assignments are then introduced in [20} 22| [21]]. Almost-
certain convergence of a set of events is studied in [9]] and [[12] in
this context of non-deterministic models with probabilistic assign-

ments. Event-B refinement of such models is studied in [25]]. We
show in Section [f] that the proof obligations dedicated to almost-
certain convergence for non-deterministic systems with probabilis-
tic assignments cannot be adapted to our setting and that addition-
nal proof obligations are required. The inherent complexity of in-
troducing probabilistic choice between events and for parameter
valuations is such that the introduction of a functionnal refinement
procedure in our setting is still out of our reach, although we are
making progress as Section [6]shows.

Outline. The paper is structured as follows. Section 2] presents an
overview of the Event-B method and of our running case study. In
Section [3] we introduce the syntax of fully probabilistic Event-B
and illustrate our approach on the running case study. Section [4]
presents new and modified proof obligations for the consistency of
probabilistic Event-B models. The semantics of a fully probabilis-
tic Event-B model is described in Section [3] and Section [@] treats
the almost-certain convergence of fully probabilistic Event-B mod-
els. Finally, Section[7]concludes and presents hints for future work.
For space reasons, the full proofs of our results as well as additional
material and examples are presented in a separate appendix, to be
consulted at the discretion of the reviewers. cd

2. EVENT-B

We first present the basic elements of the Event-B method and then
introduce our running case study.

2.1 Preliminaries

Event-B [1] is a formal method used for the development of com-
plex systems. Systems are described in Event-B by means of mod-
els. For the sake of simplicity, we assume in the rest of the paper
that an Event-B model is expressed by a tuple M = (v,1(v),V (¥),
Evts, Init) where V= {v] ...v,} is a set of variables, /(¥) is an in-
variant, V() is an (optional) variant used for proving the conver-
gence of the model, Evts is a set of events and Init € Evts is an
initialisation event. The invariant /(v) is a conjunction of pred-
icates over the variables of the system specifying properties that
must always hold.

Events. An event has the following form:

| event e; = any 7 where G;(7,7) then S;(7,7) end

where e; is the name of the event, 7 = {t; ...t,} represents the set
of parameters of the event, G;(7,v) is the guard of the event and
S;(f,7V) is the action of the event. An event is enabled in a given
valuation of the variables (also called a configuration) if and only
if there exists a parameter valuation such that its guard G;(f,7) is
satisfied in this context. Parameters and guards are optional. The
action S;(7,v) of an event may contain several assignments that are
executed in parallel. Assignments can be written in several forms in
standard Event-B, but they can always be reduced to what we call
Predicate assignments in the following. In order to simplify the
writing of (Probabilistic) Event-B programs, we only distinguish
the following three forms of assignments:

e Deterministic assignment: x:= E(f, V) means that the expres-
sion E(7,7) is assigned to the variable x.

e Predicate assignment: x :| Qu(f,7,x’) means that the variable
x is assigned a new value x’ such that the predicate Q. (#,v,x’)
is satisfied.

o Enumerated assignment: x :€ {E|(7,7) ... E,(7,7)} means
that the variable x is assigned a new value taken from the set
{E1(T.7) ... Eaf.9)}.

Before-after predicate. The formal semantics of an assignment is
described by means of a before-after predicate (BAP) Q.(f,7,x’),
which describes the relationship between the values of the variable
before (x) and after (x’) the execution of an assignment.

e The BAP of a deterministic assignment is x’= E(7, 7).
e The BAP of a predicate assignment is Qx(f,V,x’).

e The BAP of an enumerated assignmentis x’ €{E (7,¥) ... Ex(7,

v)}.

Recall that the action S;(7,7v) of a given event may contain several
assignments that are executed in parallel. Assume that vy ... v; are
the variables assigned in S;(f,7) — variables v ... v, are thus not
modified —and let Q,, (£,7,v'1) ... Q,,(f,,v’;) be their corresponding
BAP. Then the BAP S;(7,7,7’) of the event action S;(7,V) is:

SIT.7.7) = QuETV1) Ao AQuETV) A Vi =Vis) Ao A (Va=va) |

Proof obligations. The consistency of a standard Event-B model is
characterised by proof obligations (POs) which must be discharged.
These POs allow to prove that the model is sound with respect to
some behavioural semantics. Formal definitions of all the standard
Event-B POs are given in [1]]. In the following, we only recall
the most important of them: (event/INV) for invariant preservation,
which states that the invariant still holds after the execution of each
event in the Event-B model M. Given an event e; with guard G;(f, V)
and action S;(7,7), this PO is expressed as follows:

| 1(7) A Gilf,7) ASil,5,7) F 1(7) (event/INV)|

2.2 The Emergency Brake System

‘We now introduce our running example, based on a simplified sce-
nario of the emergency brake system in charge of manoeuvring the
brake of a vehicle.

Specification. To command the brake, a pedal is provided to the
driver: when the pedal is switched to “down”, the brake must be
applied; when the pedal is switched to “up”, the brake must be
released. Some requirements constrain the model:

R1. Pedal failure: when the driver tries to switch “down” the
pedal, it may stay in the same position;

R2. Risk of pedal failure: the risk of pedal failure is set to 10%;

R3. Brake failure: the brake may not be applied although the
pedal has been switched down;

R4. Maximum brake wear: the brake cannot be applied more than
a fixed number of times;

R5. Brake wear: due to brake wear, the risk of brake failure in-
creases each time the brake is applied.

model PushPedal = ApplyBrakeFailure =
StdEmergencyBrake when when
constants pedal=up pedal=down
MAX_WEAR then A brake=released
axioms pedal:€{down, up} then
MAX_WEAReN end brake:=released
MAX_WEAR>1 end
variables ReleasePedal =
pedal when ReleaseBrake =
brake pedal=down when
wear then pedal=up
invariant pedal:=up A brake=applied
pedale{up,down} end then
brake€ {applied,released} brake:=released
weareN ApplyBrake = end
wear<MAX_WEAR when
events pedal=down A
Init = brake=released
then A wear<MAX_WEAR|
pedal:=up then
brake:=released brake:=applied
wear:=0 wear:=wear+1
end end

Figure 1: Event-B model of the emergency brake system

Event-B model. The model StdEmergencyBrake given in Fig. [1]
presents an Event-B specification of the emergency brake system.
The state of the system is described by means of three variables:
pedal models the driver command, brake represents the state of the
emergency brake (applied or released) and wear counts the number
of times the brake is applied. The constant MAX_WEAR represents
the maximum number of times the brake can be applied.

The event PushPedal models the driver command, i.e, switching
the pedal to down. For taking into account the possible pedal fail-
ure mentioned in R1, we use an enumerated non-deterministic as-
signment pedal :€ {down,up} to express that the pedal is switched
to down (the attempted behaviour) or remains in the up position
(failure). Using standard Event-B, we cannot take into account the
quantitative risk of failure expressed in R2. The event ApplyBrake
models the brake application, i.e. the variable brake is assigned
the value applied (and the variable wear is increased). The event
ApplyBrakeFailure models failure during the brake application: the
value of variable brake remains released. When wear<MAX_WEAR,
the events ApplyBrake and ApplyBrakeFailure are enabled at the
same time (when pedal=down A brake=released), the subsequent
non-determinism between these two events reflects requirement R3.
On the other hand, when wear=MAX_WEAR, ApplyBrakeFailure
is enabled while the guard of ApplyBrake is not satisfied. There-
fore, the brake necessarilly fails as soon as wear=MAX_WEAR,
which means that the brake event cannot be triggered more than
MAX_WEAR times (the maximum brake wear) as expressed by R4.
Requirement R5 cannot be modelled in standard Event-B.

3. PROBABILISTIC EVENT-B

The typical way of defining a probabilistic Event-B model from a
classical Event-B model M is to go through M and replace all occur-
rences of non-deterministic choices with probabilistic choices. In
Event-B, non-determinism can appear in three places: the choice of
the enabled event to be executed, the choice of the parameter value
to be taken and the choice of the value to be assigned to a given
variable in a non-deterministic assignment. In the following, we go
through these three sources of non-determinism and explain how to
turn them into probabilistic choices.

3.1 Introducing probabilistic choices
In standard Event-B, when several events are enabled in a given

configuration, the event to be executed is chosen non-deterministi-
cally. In order to resolve this non-deterministic choice, we propose
to equip each probabilistic event with a weight. In configurations
where several probabilistic events are enabled, the probability of
choosing one of them will therefore be computed as the ratio of its
weight against the total value of the weights of all enabled events in
this state. Using weights instead of actual probability values is con-
venient as the set of enabled events evolves with the configuration
of the system. Moreover, for the sake of expressivity, we propose
to express the weight W;(¥) of a probabilistic event e; as an expres-
sion over the variables v of the probabilistic Event-B model. The
probability of executing a given event can therefore evolve as the
system progresses. A probabilistic event is therefore allowed to be
executed only if i) its guards is fulfilled and ii) its weight is strictly
positive.

In standard Event-B, events can be equipped with parameters. In
each configuration where this is possible, a valuation of the param-
eters is chosen such that the guard G;(7,v) of the event is satisfied.
When there are several such parameter valuations, one of them is
selected non-deterministically. We therefore propose to replace this
non-deterministic choice by a uniform choice over all parameter
valuations ensuring that the guard of the event is satisfied. The uni-
form distribution is a default choice but our results can be extended
to any other discrete distribution.

Recall that non-deterministic assignments in Event-B are expressed
in two forms: predicate non-deterministic assignments and enumer-
ated non-deterministic assignments. We propose to replace predi-
cate non-deterministic assignments by predicate probabilistic as-
signments written
X1 Qu(f,V,x)

Instead of choosing non-deterministically among the values of x’
such that the predicate Q.(f,7,x’) is true as in standard predicate
non-deterministic assignments, we propose to choose this new value
using an uniform distribution. For simplicity reasons, we enforce
that this uniform distribution must be discrete, and therefore that
the set of values x” such that Qu(7,7,x’) is true must always be finite.

As above, the uniform distribution we propose by default could be
replaced by any other discrete distribution.

We propose to replace enumerated non-deterministic assignments
by enumerated probabilistic assignments written

x:=E|({,7)@), &...®E,(f,7)@,,

In this structure, the variable x is assigned the expression E; with
probability p;. In order to define a correct probability distribution,
each p; must be strictly positive and smaller or equal to 1, and they
must sum up to 1. Although rational numbers are not natively han-
dled in Event-B, we assume that an adequate context is present.
That can be done by defining a "Rational" theory in Rodin using
the theory plug-in providing capabilities to define and use mathe-
matical extensions to the Event-B language and the proving infras-
tructure [7]].

Remark that standard deterministic assignments are conserved, but
can also be considered as enumerated probabilistic assignments
where m = 1.

3.2 Syntax

Turning all non-deterministic choices into probabilistic choices has
side effects on the syntax of events and models. In probabilistic

model PushPedal = ApplyBrakeFailure =
ProbaEmergencyBrake weight weight
MAX_WEAR wear
constants when when
MAX_WEAR pedal=up pedal=down
then A brake=released
axioms pedal:= down @9/10 then
MAX_WEAReN @ up @1/10 brake:=released
MAX_WEAR>1 end end
variables ReleasePedal = ReleaseBrake =
pedal weight weight
brake MAX_WEAR MAX_WEAR — wear
wear when when
pedal=down pedal=up
invariant then A brake=applied
pedale{up,down} pedal:=up then
brake€ {applied,released} end brake:=released
weareN end
wear < MAXWEAR ApplyBrake =
weight
MAX_WEAR — wear
events when
pedal=down A
Init = brake=released
then A wear < MAXWEAR
pedal:=up then
brake:=released brake:=applied
wear:=0 wear:=wear+1
end end

Figure 2: Probabilistic model of the emergency brake system

Event-B, we therefore propose to use the following syntax for a
probabilistic event e; :

| e; = weight W;(v) any 7 where G;(7,7) then S;(7,v) end

where W;(V) is the weight of the event, G;(7,V) is the guard of the
event and S;(7,V) is a probabilistic action, i.e. an action consist-
ing only of deterministic and probabilistic assignments which are
executed in parallel.

For simplicity reasons we impose, as in standard Event-B, that the
initialisation event must be deterministic. The results we present in
the rest of the paper can nevertheless easily be extended to proba-
bilistic initialisation events.

Definition 1 (Probabilistic Event-B Model). A probabilistic Ev-
ent-B model is a tuple M = (v,1(V), PEvts, Init) where ¥ is a set of
variables, /() is the invariant, PEvts is a set of probabilistic events
and Init is the initialisation event.

3.3 Running Example

A probabilistic version of the emergency brake system from Sec-
tion[2.7]is given in Fig.[2] This model has the same variables pedal,
brake and wear, the same invariants and the same events as the
Event-B model StdEmergencyBrake from Fig.[I] Remark that, un-
like in standard Event-B, requirements R2 and R5 can be taken into
account in this probabilistic version. R2 is specified in the proba-
bilistic event PushPedal by using an enumerated probabilistic as-
signment instead of a non-deterministic assignment: the variable
pedal is assigned the value down with a probability 9/10 (attempted
behaviour) and the value up with a probability 1/10 (failure), hence
resulting in a risk of pedal failure of 10%. Requirement R5 is taken
into account by annotating probabilistic event ApplyBrake with a
weight MAX_WEAR—wear and probabilistic event ApplyBrakeFai-
lure with a weight wear. As the probabilistic event ApplyBrake in-
creases the variable wear when it is executed, the weight of the
probabilistic event ApplyBrake decreases each time it is executed
whereas the weight of the probabilistic event ApplyBrakeFailure in-

creases. The failure of the brake is modelled by means of a prob-
abilistic choice between ApplyBrake and ApplyBrakeFailure instead
of a non-deterministic choice as in the standard version, which im-
plies that the more ApplyBrake is executed, the higher the prob-
ability that ApplyBrakeFailure occurs instead. In this version, all
requirements are therefore taken into account.

4. CONSISTENCY

As in standard Event-B, the consistency of a probabilistic Event-
B model is defined by means of proof obligations (POs). In this
section, we therefore introduce new POs specific to probabilistic
Event-B and explain how we adapt standard Event-B POs in order
to prove the consistency of probabilistic Event-B models.

4.1 Specific POs for Probabilistic Event-B

Numeric weight. For simplicity reasons, we impose that the ex-
pression W; (V) representing the weight of a given probabilistic event
must evaluate to natural numbers.

I(7) AGi(F,7) F W;(7) € NAT (evem/WGHT/NAT)|

Parameter values finiteness. In order to be able to use a discrete
uniform distribution over the set of parameter valuations ensuring
that the guard of a probabilistic event is satisfied, we impose that
this set must be finite.

I(5) & finite ({7 | Gi(7.7)}) (eventjparam/pWD)|

Enumerated probabilistic assignments well-definedness and fea-
sibility. In all enumerated probabilistic assignments, it is necessary
to ensure that the discrete probability values pj ...p, define a cor-
rect probability distribution. Formally, this leads to two POs:

1. Probability values p; in enumerated probabilistic assignments
are strictly positive and smaller or equal to 1.

| FOo<pi <1 (event/assign/pWD1) |

2. The sum of the probability values p; ...p, in enumerated
probabilistic assignments must be equal to 1.

Fpr+...+pp=1 (event/assign/pWD2) |

Feasability of enumerated probabilistic assignments is trivial: as
soon as at least one expression E;(7,7) is present and well-defined,
it always returns a value.

Predicate probabilistic assignment well-definedness and feasi-
bility. To define a discrete uniform distribution over the set of
values of a variable x making the predicate Q.(f,7,x’) of the cor-
responding assignment satisfied, this set must be finite.

| 1(7) A Gi(f,7) AW;(»)>0 F finite ({X’' | Qu(f,7,x") }) (event/assign/pWD3)

Feasibility of predicate probabilistic assignments is ensured by the
standard feasibility PO [[1] inherited from Event-B. It ensures that
the set {x’ | Qu(7,v,x’) } is not empty.

4.2 Modifications to Standard POs

‘Where standard Event-B POs are concerned, the main difference in
probabilistic Event-B is the condition for a probabilistic event to be

enabled. Indeed, while it suffices to show that the guard of an event
is satisfied for this event to be enabled in standard Event-B, we
also have to show in probabilistic Event-B that its weight is strictly
positive. We therefore modify standard Event-B POs as follows.

Invariant preservation. The invariant must be preserved by all
enabled probabilistic events.

(D) AGilf.5) AWi®) > 0AS;(F,5,5) F 1(7) (event/pINV)

Deadlock freedom. In all acceptable configurations, there must
exist at least one enabled probabilistic event.

1(P) F (GLET) AW > 0) V...V (Gulf.7) A Wu(P) >0) (model/pDLF)

For the sake of understanding, we hereby insist on the separation
between the guard of an event, which reflects the classical notion of
enabledness, and the fact that its weight must be strictly positive.
Obviously, one could also automatically re-write the guard of all
probabilistic events in order to include the condition on its weight.
This solution would allow conserving most of the standard Event-B
consistency POs without modifications in the probabilistic setting.

S. SEMANTICS

Semantics of standard Event-B models can be expressed in terms
of Labelled Transition Systems [6]]. Informally, given an Event-
B model M = (v,1(¥), Evts, Init), its semantics is the LTS M =
(S,50,AP,L,Acts, T) where S is a set of states, Acts is the set of
actions (event names), so € S is the initial state obtained by exe-
cuting the Init event, AP is the set of valuations of the variables
in ¥ that satisfy the invariant /(v), L: S — AP is a labelling func-
tion that provides the valuations of the variables in a given state,
and 7' C § x Acts x S is the transition relation corresponding to the
actions of the events. In the following, we extend this work by pre-
senting the semantics of probabilistic Event-B models in terms of
Discrete Time Markov Chains (DTMC).

5.1 Notations

Let M = (¥,1(¥), PEvts, Init) be a probabilistic Event-B model and
G be a valuation its variables. Given a variable x € v, we write []x
for the value of x in 6. Given an expression E(v) over variables
in v, we write [6]E(¥) (or [0]E when clear from the context) for
the evaluation of E(V) in the context of 6. Given a probabilistic
event e¢; with a set of parameters 7 and a valuation ¢ of the vari-
ables, we write Ts' for the set of parameter valuations 8 such that
the guard of e; evaluates to true in the context of 6 and 6. Formally,
Ts' = {0 | [0,0]G;(f,7) = true}. Recall that parameter valuations
are chosen uniformly on this set. We write PT;I' for the uniform
distribution on the set Ts'. Given a valuation ¢ of the variables and
a probabilistic event e;, we say that e; is enabled in ¢ iff (a) the
weight of e; evaluates to a strictly positive value in ¢ and (b) either
e; has no parameter and its guard evaluates to true in G or there
exists at least one parameter valuation 0 such that the guard of e;
evaluates to true in the context of ¢ and 0, i.e. Ty’ # 0. Given a
probabilistic event e;, we write Var(e;) for the set of variables in ¥
that are modified by the action of ¢;, i.e. the variables that appear
on the left side of an assignment in S;(7, 7). Recall that a variable
x € Var(e;) must be on the left side of either a predicate probabilis-
tic assignment or a enumerated probabilistic assignment. In both
cases, given an original valuation ¢ of the variables, a valuation 0
of the parameters of ¢; and a target valuation ¢’ of the variables, we

write Pé’; o(x,0") for the probability that x is assigned the new value

[0']x when executing e; from the valuation ¢ and with parameter
valuation 0. If ¢; is not equipped with parameters, this is written
Pg (x,0"). In the following, we use the more general notation and
assume that it is replaced with the specific one when necessary. The
formal definition of Péi o(x,0") is given in [5].

5.2 DTMC semantics

Informally, the semantics of a probabilistic Event-B model M =
(v,1(v), PEvts, Init) is a Probabilistic LTS [M] = (S, s0,AP,L,Acts,
P) where the states, labels, actions, atomic propositions and initial
state are similarly obtained as for the standard LTS semantics of
Event-B. The only difference with the standard LTS semantics is
that the transitions are equipped with probabilities, which we ex-
plain below. In the following, we identify the states with the valu-
ations of the variables defined in their labels.

Intuitively, the transition probabilities are obtained as follows: Let
e; € PEvts be a probabilistic event, x € ¥ be a variable and s,s’ be
two states of [M]] such that (s,e;,s") is a transition in the standard
LTS semantics, i.e. where e; is enabled in s and there exists a pa-
rameter valuation 6 € 7', if any, such that the action of e; may
take the system from s to s’. The probability assigned to transi-
tion (s,e;,s') is then equal to the product of (1) the probability that
the event e; is chosen from the set of enabled events in state s, (2)
the probability of choosing each parameter valuation 6, and (3) the
overall probability that each modified variable is assigned the value
given in s’ under parameter valuation 6.

Definition 2 (Probabilistic Event-B Semantics). The semantics
of a probabilistic Event-B model M = (v,1(V), PEvts, Init) is a PLTS
[M] = (S,s0,AP,L,Acts, P) where S is a set of states where each
state is uniquely identified by its label, sy € S is the initial state
obtained after the execution of the Init event, AP represents the
valuations of all variables that satisfy the invariant of the model:
AP = {o | [0]I(¥) = true}, L: S — AP is the labelling function
that assigns to each state the corresponding valuation of the vari-
ables, Acts is the alphabet of actions (event names), and P : S X
Acts x S — [0,1] is the transition probability function such that
for a given state s, for all e;,s" € Acts x S, we have P(s,e;,s') =0
if e; ¢ Acts(s) or 3x € X\{Var(e;)} st [s]x # [s']x and otherwise

[s]Wi(¥) e (o
= = X Prei (0) x P (x, s
ZejeActs(s) ij (‘7) SEX:T\-E’ (i,(_)/ xe‘!a—r[(e,) 5.9())
———— ’) | —
[¢3) 3)

P(s,e;,s)

In the following proposition, we show that the semantics of a prob-
abilistic Event-B model as defined above is indeed a DTMC. For
space reasons, the proof of this proposition is given in [5].

Proposition 1. The semantics of a probabilistic Event-B model M
satisfying the POs given in Section[f.I]is a DTMC.

For space reasons, the DTMC of the probabilistic emergency brake
system is given in [5]].

6. CONVERGENCE

The development process in Event-B is inherently based on refine-
ment. As said earlier, systems are typically developed progres-
sively using an ordered sequence of models, where each model

contains more details than its predecessor. One key aspect of re-
finement is the addition, in one refinement step, of new variables
and new events that characterize the evolution of those variables.
In order to preserve certain properties, it is then necessary to show
that the introduction of these new events in a refined model can-
not prevent the system from behaving as specified in the abstract
model. In particular, it is necessary to show that such new events
are “convergent”, in the sense that they cannot keep control indef-
initely: at some point the system has to stop executing new events
in order to follow the behaviour specified in its abstract model.

Although this paper does not adress refinement in probabilistic Event-
B, we propose a solution in order to prove that a given set of events
almost-certainly converges in a probabilistic Event-B model, which
is a necessary step for adressing refinement in the future. We there-
fore start this section with a brief recall of how events can be proven
convergent in standard Event-B and then propose a set of sufficient
conditions, expressed as POs, that allow proving that a set of events
is almost-certainly convergent in probabilistic Event-B.

Convergence in Standard Event-B. In order to prove that a set of
events is convergent in Event-B, one has to show that it is not pos-
sible to keep executing convergent events infinitely, and therefore
that a non-convergent event is eventually performed from any state.
The classical solution is therefore to introduce a natural number ex-
pression V(¥), called a variant, and show that all convergent events
strictly decrease the value of this variant. As a consequence, when
the variant hits zero, it is guaranteed that no convergent event can
be performed. In practice, this is expressed using two POs:

1. Numeric variant. Under the guard G;(7,7) of each conver-
gent event e;, the variant V() is greater than 0.

1(V) A Gi(f,v) = V(V)ENAT (event/var/NAT)

2. Convergence. The action S;(7,V) of each convergent event
e; must always decrease the variant V().

1(9) AGiF,9) F V. Silf,7,7)=V(@)<V(D) (event/VAR)

Almost-certain Convergence in the litterature. In the context of
probabilistic Event-B, instead of proving that a given set of events
necessarilly converges as in standard Event-B, we are interested in
showing that a given set of events almost-certainly converges. In
other words, we are interested in showing that, in all states of the
system where convergent events can be executed, the probability of
eventually taking a non-convergent event or reaching a deadlock is
1 (the probability of infinitely executing convergent events is 0).

This property has already been investigated in [9]] and [12], in the
context of events having probabilistic actions but where non-deter-
minism is still present between events. In this context, Hallerstede
and Hoang propose in [9]] sufficient conditions for a set of events
to almost-certainly converge. These conditions can be summarized
as follows: As in standard Event-B, one needs to exhibit a natural
number expression V(?) called a variant, but unlike in the standard
setting, only one resulting valuation of the execution of each con-
vergent event needs to decrease this variant. Indeed, in this case,
the probability of decreasing the variant is strictly positive. Unfor-
tunately, using such a permissive condition is not sufficient: there
might also be a strictly positive probability of increasing the vari-
ant. Therefore, Hallerstede and Hoang require the introduction of

another natural number expression U(7) which must maximise the
variant V() and never increase. The proposition from [9] is refined
in [[12]], where Hoang requires in addition that the probabilities con-
sidered in probabilistic assignments are bounded away from 0. This
is ensured by requiring that the set of values that can be returned
by a probabilistic assignment is finite.

Adaptation to fully probabilistic Event-B. We now show how to
adapt the results proposed in [9] and [12] to our fully probabilistic
Event-B setting. Since there are no non-deterministic choices be-
tween enabled events, it is not anymore necessary to require that
all enabled events in a given configuration may decrease the vari-
ant. We therefore start by relaxing the condition proposed in [9]]:
we only require that, in all configurations where a convergent event
is enabled, there is at least one convergent event for which at least
one resulting valuation decreases the variant.

1. Almost-certain convergence. In all configurations where at
least one convergent event is enabled, there must exist at least
one valuation 7’ obtained after the execution of one of these
enabled events which decreases the variant.

1(B) A (GLED) AWLE) > 0)V...V(Gi(F.7) A W;(F) > 0)) F
37" G17) AW ()>0A S1(F5,7) AV(F)<V(D) V.
(FV'. Gi(f,7) AWi(D)>0A S;(F,7,7) A V()< V(”))

(model/pVar)

As in [9]], we also require that convergent events can only be en-
abled when the variant is positive and that the variant is bounded
above. In order to simplify the reasoning, we propose to use a con-
stant bound U, as in [[12]].

2. Numeric variant. Convergent events can only be enabled
when the variant is greater or equal to 0.

1(V) A Gi(f,7) A W;(#)>0 = V(V)ENAT (event/var/pNAT)|

3. Bounded variant. Convergent events can only be enabled
when the variant is less or equal to U.

| 1(7) A Giff,7) A Wi(®)>0 F V(7)< U (event/pBOUND)|

Finally, the finiteness of the set of values that can be returned by a
probabilistic assignment is already ensured by the syntax for enu-
merated probabilistic assignments and by PO (event/assign/pWD3)
for predicate probabilistic assignments and their non-emptyness is
ensured by the standard feasability POs.

Inadequacy of adapted POs. Unfortunately, as we deal with po-
tentially infinite-state systems, POs 1-3 presented above are not
anymore sufficient for proving that the probability of eventually
executing a non-convergent event or reaching a deadlock state is
1. Indeed, although the probability of decreasing the variant is al-
ways strictly positive because of PO (model/pvar) and although the
number of values that can be returned by a given probabilistic as-
signment is always finite, the combination of event weights and pa-
rameter choice can make this value infinitely small in some cases.
In this case, it is well known that almost-certain reachability/con-
vergence is not ensured. This problem is a direct consequence of
the unboundedness of the weights of convergent events, which, by
getting arbitrarily big, cause the probability of decreasing the vari-
ant to get arbitrarily small. Examples illustrating this fact are given
in [5]].

Additional Proof Obligations. We therefore adapt classical re-
sults from infinite-state DTMC to our setting and propose sufficient
conditions in terms of proof obligations to prove the almost-certain
convergence of a given set of events. Informally, the following
POs ensure that the probability of decreasing the variant cannot get
infinitely small by requiring that both the weights of convergent
events and the number of potential values given to parameters in
convergent events are bounded.

4. Bounded weight. The weight of all convergent events must
be bounded above by a constant upper bound BW.

(%) AGilf,7) F W;(P) < BW (event/wght/BOUND)

5. Bounded parameters. The number of potential values for
parameters in convergent events must be bounded above by
a constant upper bound BP.

(V) F card({7 | Gi(7,v)}) <BP (event/param/BOUND)

‘We now formally prove that the conditions presented above are suf-
ficient for guaranteeing the almost-certain convergence of a given
set of events in a probabilistic Event-B model.

Theorem 1. Let M = (v,1(v),V (¥), PEvts, Init) be a probabilistic
Event-B model and PEvts, C PEvts a set of convergent events.
If M satisfies the above POs (1-5), then the set PEvts. almost-
certainly converges.

Proof-sketch. We consider the DTMC semantics [M] of the prob-
abilistic Event-B model M and use the global coarseness property
of infinite-state DTMC [|15]] to show that, from all states of [M]), the
probability of eventually taking a non-convergent event or reaching
a deadlock is 1. The full proof is presented in [5|]. O

7. CONCLUSION

As suggested by Morgan et al. in [[17], the ideal probabilistic ex-
tension of Event-B should allow using probabilities as a refinement
of non-deterministic choices in all places where such choices ex-
ist. In Event-B, non-determinism occurs in several places and, to
the best of our knowledge, existing works on extending Event-B
with probabilities have only focused on refining non-deterministic
assignments into probabilistic assignments [9} 20l [22] while leav-
ing other sources of non-determinism such as the choice between
enabled events or the choice between admissible parameter values
untouched.

In this paper, we have proposed a fully probabilistic extension of
Event-B where probabilistic choices are introduced as replacement
of all non-deterministic choices, be it between enabled events, pa-
rameter values or assignments as suggested by Morgan et al. in
their seminal work. Our long term goal is to produce a probabilistic
extension of Event-B where the developer can choose at his conve-
nience where to refine non-deterministic choices with probabilities
and where to keep non-deterministic choices intact. However, this
long-term goal is clearly ambitious and will require several years
of study to be achieved. In this paper, we have therefore focused on
a more reasonable objective, restricting ourselves to purely prob-
abilistic systems where probabilities appear in the last step of re-
finement. Although the long-term goal presented above is not yet
achieved, this is clearly a first step in the right direction.

In particular, we have introduced new notations and semantics,
along with novel and adapted POs dedicated to the consistency of
probabilistic Event-B models. We have shown that, when these
POs are satisfied, the semantics of a probabilistic Event-B model is
a discrete time Markov chain. Finally, we have provided sufficient
conditions, expressed in terms of POs, to show that a probabilistic
Event-B model satisfies the almost-certain convergence of a given
set of events, which is a necessary step for adressing refinement in
the future.

In parallel, we have started the development of a prototype plugin
for the Rodin Platform. This plugin currently allows the specifica-
tion of fully probabilistic Event-B models and the semi-automatic
generation of a probabilistic Event-B model from a standard Event-
B model. It also supports the generation of several consistency
proof obligations on probabilistic Event-B models.

Future work. As the development in Event-B is intrinsically based
on a refinement process, we plan on studying the refinement of
probabilistic Event-B models, including (but not restricting to) the
"probabilisation” of non-deterministic models, the introduction of
new probabilistic events, and, the merge and the split of probabilis-
tic events. We also plan to study how to handle Event-B models
combining non-deterministic and probabilistic events as well as the
(probabilistic) refinement of such models.

Most of the properties of interest that are verified in standard Event-
B are safety-related. They are most of the time expressed by means
of invariants and discharged as POs. We therefore plan to con-
sider probabilistic invariants, i.e. invariants related to probabilistic
distributions [[13]]. In addition, critical systems must also satisfy
some liveness properties. In this paper, we have studied the almost-
certain convergence of a given set of events, but other probabilistic
liveness properties could be considered. Indeed, the verification
of other liveness properties on standard Event-B models using re-
finement and proof obligations have been considered in [[10} 4f]. We
will pursue these works and extend them to the verification of prob-
abilistic liveness properties on probabilistic Event-B models.

8. REFERENCES

[1] J.-R. Abrial. Modeling in Event-B: system and software
engineering. Cambridge University Press, 2010.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang,

F. Mehta, and L. Voisin. Rodin: an open toolset for
modelling and reasoning in event-b. International journal on
software tools for technology transfer, 12(6):447-466, 2010.

[3] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically
proved and incremental development of ieee 1394 tree
identify protocol. Formal aspects of computing,
14(3):215-227, 2003.

[4] J.-R. Abrial, D. Cansell, and D. Méry. Refinement and
reachability in event-b. In ZB 2005: Formal Specification
and Development in Z and B, volume 3455 of LNCS, pages
222-241. Springer, 2005.

[5S] M. A. Aouadhi, B. Delahaye, and A. Lanoix. Moving from
Event-B to Probabilistic Event-B. Research Report
hal-01316610, LINA-University of Nantes, 2016.

[6] D. Bert and E. Cave. Construction of finite labelled transition
systems from b abstract systems. In Integrated Formal
Methods, volume 1945 of LNCS, pages 235-254. Springer,
2000.

[7] M. Butler and I. Maamria. Practical theory extension in
event-b. In Theories of Programming and Formal Methods,
volume 8051 of LNCS, pages 67-81. 2013.

[8] W. W. Chu and C.-M. Sit. Estimating task response time with

contentions for real-time distributed systems. In Real-Time

Systems Symposium, 1988., Proceedings., pages 272-281.

IEEE, 1988.

S. Hallerstede and T. S. Hoang. Qualitative probabilistic

modelling in event-b. In Integrated Formal Methods, pages

293-312. Springer, 2007.

[10] T. Hoang and J.-R. Abrial. Reasoning about liveness
properties in event-b. In Formal Methods and Software
Engineering, volume 6991 of LNCS, pages 456-471.
Springer, 2011.

[11] T. S. Hoang. The development of a probabilistic B-method
and a supporting toolkit. PhD thesis, The University of New
South Wales, 2005.

[12] T. S. Hoang. Reasoning about almost-certain convergence
properties using event-b. Sci. Comput. Program.,
81:108-121, 2014.

[13] T. S. Hoang, Z. Jin, K. Robinson, A. Mclver, and C. Morgan.
Probabilistic invariants for probabilistic machines. In ZB
2003: Formal Specification and Development in Z and B,
pages 240-259. Springer, 2003.

[14] T. S. Hoang, Z. Jin, K. Robinson, A. Mclver, and C. Morgan.
Development via refinement in probabilistic b - foundation
and case study. In International Conference of B and Z
Users, pages 355-373. Springer, 2005.

[15] R. Mayr, N. B. Henda, and P. A. Abdulla. Decisive markov
chains. Logical Methods in Computer Science, 3, 2007.

[16] A. Mclver, C. Morgan, and T. S. Hoang. Probabilistic
termination in b. In International Conference of B and Z
Users, pages 216-239. Springer, 2003.

[17] C. Morgan, T. S. Hoang, and J.-R. Abrial. The challenge of
probabilistic event b—extended abstract—. In ZB 2005:
Formal Specification and Development in Z and B, pages
162-171. Springer, 2005.

[18] C. Morgan and A. Mclver. Abstraction, refinement and proof
for probabilistic systems. Monographs in Computer Science.
Springer, 2005.

[19] R. Motwani and P. Raghavan. Randomized algorithms.
Chapman & Hall/CRC, 2010.

[20] A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Reliability
assessment in event-b development. NODES 09, page 11,
20009.

[21] A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Towards
probabilistic modelling in event-b. In Integrated Formal
Methods, pages 275-289. Springer, 2010.

[22] A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Integrating
stochastic reasoning into event-b development. Formal
Aspects of Computing, 27(1):53-77, 2015.

[23] K. S. Trivedi, S. Ramani, and R. Fricks. Recent advances in
modeling response-time distributions in real-time systems.
Proceedings of the IEEE, 91(7):1023-1037, 2003.

[24] A. Villemeur. Reliability, Availability, Maintainability and
Safety Assessment, Assessment, Hardware, Software and
Human Factors, volume 2. Wiley, 1992.

[25] E. Yilmaz. Tool support for qualitative reasoning in Event-B.
PhD thesis, Master Thesis ETH Ziirich, 2010, 2010.

[9

—

	1 Introduction
	2 Event-B
	2.1 Preliminaries
	2.2 The Emergency Brake System

	3 Probabilistic Event-B
	3.1 Introducing probabilistic choices
	3.2 Syntax
	3.3 Running Example

	4 Consistency
	4.1 Specific POs for Probabilistic Event-B
	4.2 Modifications to Standard POs

	5 Semantics
	5.1 Notations
	5.2 DTMC semantics

	6 Convergence
	7 Conclusion
	8 References

