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1 École Centrale de Nantes, IRCCyN – UMR CNRS 6597 (France)
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Abstract. We introduce a new model for the design of concurrent sto-
chastic real-time systems. Probabilistic time Petri nets (PTPN) are an
extension of time Petri nets in which the output of tokens is randomised.
Such a design allows us to elegantly solve the hard problem of combining
probabilities and concurrency. This model further benefits from the con-
cision and expressive power of Petri nets. Furthermore, the usual tools for
the analysis of time Petri nets can easily be adapted to our probabilistic
setting. More precisely, we show how a Markov decision process (MDP)
can be derived from the classic atomic state class graph construction.
We then establish that the schedulers of the PTPN and the adversaries
of the MDP induce the same Markov chains. As a result, this construc-
tion notably preserves the lower and upper bounds on the probability of
reaching a given target marking. We also prove that the simpler original
state class graph construction cannot be adapted in a similar manner for
this purpose.

Keywords: Time Petri nets, probabilistic systems, state classes, Markov
decision processes

1 Introduction

Many highly critical applications, like autonomous vehicles, require the use of
modelling tools that integrate concurrency, real-time constraints and probabil-
ities. Designing such models is challenging for they require the development
of new algorithms that combine both real-time and probabilistic verification
techniques. Continuous-time Markov chains [1], continuous-time Markov deci-
sion processes [2], probabilistic timed automata [3], Markov automata [4] and
stochastic timed automata [5] are but a few examples of models that were intro-
duced with the intention of formally verifying probabilistic real-time systems.
In particular, the product of probabilistic timed automata [6,7] provides the
medium for concurrency in a real-time constrained environment. Yet, none of
the aforementioned formalisms are adapted to the modelling of systems that
exhibit variables whose bounds cannot be inferred. In contrast, the blending of
concurrency and of such dynamical bounds is inherent to Petri net models.
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Petri nets were enhanced through the use of stochastic temporal parameters
and exponential distributions of firing times in [8,9] for the modelling of concur-
rent probabilistic real-time systems. The time Petri net model was extended by
adding a probability density-function to the static firing interval of each non-
deterministic transition [10]. These stochastic time Petri nets generalise time
Petri nets [11] and involve the extension of the state class graph of [12] in order
to account for stochastic information in each state class.

While stochastic time Petri nets are a powerful formalism in terms of expres-
sivity and conciseness, we argue that the randomisation of transition rates is not
necessarily required, while a randomisation of tokens in subsequent places might
be needed. For example, a component failure in a gracefully degrading system
can be linked to the firing of a transition whose rate is not necessarily subject
to some random phenomenon, but whose outcome needs to be specified in terms
of token generation. The extended stochastic Petri nets introduced in [13] allow
firing times to belong to an arbitrary distribution and output places to be ran-
domised, but they still require stringent restrictions, including the randomisation
of transition rates.

In this paper, we introduce probabilistic time Petri nets (PTPN) as a new
modelling formalism. By enhancing the forward incidence mapping of a classic
time Petri net in such a way that transitions are mapped to a set of distributions
of markings, we are able to extend the class of time Petri nets to a wider class
of nets. The output arcs of a transition are effectively replaced with stacks of
probabilistic hyperarcs. Each hyperarc contributes to the generation of tokens
in output places of the transition. When a transition is fired in a PTPN, one
hyperarc is chosen in each stack according to some probability distribution. A
resulting marking emerges from this combination of choices. In fact, a time Petri
net is a probabilistic time Petri net if the firing of any given transition almost
surely leads to a certain marking.

The tools that are used for the analysis of time Petri nets can easily be
adapted to our probabilistic setting. Here, we conform the classic atomic state
class graph construction [14] to our class of nets in order to isolate the properties
of a PTPN into a finite Markov decision process (MDP). We prove that this
MDP induces the same Markov chains as the semantics of the PTPN, up to
isomorphism. As a result, this construction preserves the lower and upper bounds
on the probability of reaching a given marking. This allows us to make use of the
extensive set of tools that are used for the study of MDPs in order to thoroughly
study the probabilistic real-time reachability problem in the context of PTPNs.
The construction we put forward is quite complex, for it is based on the atomic
state class graph. Unfortunately, we prove that the simpler original state class
graph construction cannot be adapted to our setting as it does not preserve these
lower and upper probability bounds.

Outline. We introduce the syntax and the semantics of probabilistic time Petri
nets in section 2 and consider the verification of PTPNs against reachability
properties in section 3. We conclude the present work in section 4 and suggest
directions for future research.
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2 Probabilistic Time Petri Nets

2.1 Preliminaries

We denote the set of natural numbers by N, the set of rational numbers by Q
and the set of real numbers by R. We consider 0 to be an element of N and let
N∗ = N \ {0}. For n ∈ N, we let J0, nK denote the set {i ∈ N | i ≤ n}. The set of
real intervals that have rational or infinite endpoints is denoted I(Q+). A clock
valuation over a set T is a mapping v : T → R+, where R+ denotes the set of
non-negative real numbers. We let 0T denote the clock valuation that assigns 0
to every clock in T . For d ∈ R+, we let v+d be the clock valuation that satisfies
(v + d)(t) = v(t) + d for every clock t in the domain of v.

For a given set X, let P(X) denote the power set of X. The characteristic
(or indicator) function of A ∈P(X), denoted χA : X → {0, 1}, is defined as

χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Given two arbitrary sets E and F , let FE denote the set of functions from E
to F . When F is an ordered set, we define a partial order � on FE by f � g if
f(x) ≤ g(x) for all x ∈ E.

A discrete probability distribution over a countable set X is a function µ :
X → [0, 1] such that

∑
x∈X µ(x) = 1. The support of a discrete probability

distribution µ, denoted Supp(µ), is the preimage of the interval ]0, 1] under µ.
For an arbitrary set X, we define DistX to be the set of functions µ : X → [0, 1]
such that Supp(µ) is a countable set and µ restricted to Supp(µ) is a discrete
probability distribution. For x0 ∈ X, let the discrete probability distribution
denoted δx0 be the Dirac measure which assigns probability 1 to x0:

δx0
(x) = χ{x0}(x) =

{
1 if x = x0,

0 if x 6= x0.

2.2 Probabilistic time Petri nets

This section introduces the syntax and the semantics of probabilistic time Petri
nets. Intuitively, a probabilistic time Petri net is a time Petri net in which every
non-deterministic choice involves the resolution of a probabilistic experiment.
Such experiments are described explicitly by means of discrete probability dis-
tributions. In a typical time Petri net, these probability distributions are Dirac
measures. In other words, any given state of a time Petri net has a successor
that is uniquely determined by a chosen course of action. This is generally not
the case for probabilistic time Petri nets, which extend the class of time Petri
nets as a result.
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Syntax of a probabilistic time Petri net.

Definition 1 (Probabilistic time Petri net (PTPN)). A probabilistic time
Petri net is a quintuple N = (P, T, Pre, Post, I) where

– P is a finite, non-empty set of places,
– T is a finite set of transitions such that T ∩ P = Ø,
– Pre : T → NP is the backward incidence mapping,
– Post : T →P(DistNP ) is the forward incidence mapping, and
– I : T → I(Q+) is a function assigning a firing interval to each transition.

An element of NP is called a marking of the net. A marking denotes a distri-
bution of tokens in the places of the net. The forward incidence mapping Post
specifies a finite set of probability distributions of markings for every transition
of the net. For a given transition t, we assume that the probability distributions
in Post(t) are associated with independent random variables. These random
variables each contribute to the production of tokens in subsequent places when
that transition is fired. Moreover, we assume that the support of each discrete
probability distribution in Post(t) is finite.

A distribution in Post(t) is represented graphically by a stack of hyperarcs.
A hyperarc is labelled with a probability before it is split into a set of arcs that
lead to a set of output places. These arcs contain information about the number
of tokens that are generated in each one of these places when that hyperarc is
selected.

Definition 2 (Marked probabilistic time Petri net). A marked probabilis-
tic time Petri net is a sextuple N = (P, T, Pre, Post, I, ρN) where

– (P, T, Pre, Post, I) is a probabilistic time Petri net, and
– ρN ∈ DistNP is the distribution of initial markings of the net.

The experiment that yields the initial marking of the net is only conducted
once. Any marking belonging to the support of ρN is an initial marking of the
net. The value ρN(M) specifies the probability that the initial marking of the
net is indeed M .

Example 1. In order to grasp the intuition behind the proposed model, let us
consider the probabilistic time Petri net depicted in Fig. 1. Transition T2 of the
net displays two probability distributions. The first distribution either generates
one token in P1, three tokens in P3 and one token in P4 with probability a,
or two tokens in P4, one token in P5 and one token in P6 with probability b.
No token is generated with probability c = 1 − a − b. The second distribution
generates one or two tokens in P6 with probability p and 1−p respectively. Since
these distributions are associated with independent random variables, it follows
that the firing of T2 leads to the consumption of one token in P1 and two tokens
in P2, and the generation of two tokens in P4, one token in P5 and three tokens
in P6 with probability b(1− p).
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P1 P2

P3

P4

P5

P6

P7

P8

P9

T1 [1 ; 3[

1− r r

5

T2 [0 ; 4]

2

a

b

c
p

1− p

3

2
2

T3 [1 ; ∞[

1− q q

7

2

T4 ]0 ; 1[

s

1− s

2

T5 [2 ; 2]
2

Fig. 1. A marked probabilistic time Petri net in its initial state, given by ρN =
δ(1,2,3,1,0,2,1,1,1)

The following paragraph introduces the terminology of probabilistic time
Petri nets as well as important notations that are used throughout this paper.
Let N = (P, T, Pre, Post, I) be a probabilistic time Petri net. A state of the net
N is described by an ordered pair (M, v) in NP × RT+, where M is a marking
of N and v is a clock valuation over the set of transitions T . In practice, clock
valuations are only defined for transitions that are enabled.

– A transition t ∈ T is said to be enabled by a given marking M ∈ NP if M
supplies t with at least as many tokens as required by the backward incidence
mapping Pre. We define the set E(M) of transitions that are enabled by the
marking M as

E(M) = {t ∈ T |M � Pre(t)}.

– A transition t ∈ T is said to be firable from a given state (M,v) if the
transition t is enabled by M and if its clock is assigned a value that lies
within its firing interval. We define the set F(M,v) of transitions that are
firable from the state (M, v) as

F(M, v) = {t ∈ E(M) | v(t) ∈ I(t)}.
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– A time delay d ∈ R+ is said to be compliant with a given state (M, v) if
every transition that is firable from (M, v+d′) for some time delay d′ ∈ [0, d]
stays firable until (M,v + d). We define the set C(M, v) of time delays that
are compliant with the state (M,v) as

C(M,v) = {d ∈ R+ | ∀t ∈ T, t /∈ F(M, v+d)⇒ ∀d′ ∈ [0, d], t /∈ F(M,v+d′)}.

– An action (d, t) ∈ R+ × T is said to be feasible from a given state (M,v) if
the time delay d leads the net to a state from which t is firable. We define
the set Φ(M,v) of actions that are feasible from the state (M,v) as

Φ(M,v) = {(d, t) ∈ R+ × T | d ∈ C(M, v) and t ∈ F(M, v + d)}.

When adopting a purely semantical standpoint, an element of the set T is
best referred to as a trial, through the medium of an underlying probability
distribution µt. Informally, a trial t induces the production of tokens in the net
each time it is conducted, by providing alternatives that lead to one marking or
another.

– Let t ∈ T be a transition of N . The discrete probability distributions in
Post(t) are associated with random variables that can take one of many
values. By definition, these values are endowed with a non-zero probability.
An alternative is a function f that chooses a value for each one of these
random variables. Formally, we define the set A(t) of alternatives provided
by the transition t as follows:

A(t) =
{
f : Post(t)→ NP | ∀µ ∈ Post(t), f(µ) ∈ Supp(µ)

}
.

– An outcome of a given trial t is a marking ω of N which results from the
choices of some alternative in A(t). This marking ω accounts for the tokens
that are to be generated in each output place of t. We define the set Ω(t) of
outcomes of the trial t as

Ω(t) =

ω ∈ NP | ∃f ∈ A(t), ω =
∑

µ∈Post(t)

f(µ)

 .

– For a given outcome ω ∈ Ω(t), we define the non-empty set Aω(t) ⊆ A(t) of
alternatives that lead to it as

Aω(t) =

f ∈ A(t) | ω =
∑

µ∈Post(t)

f(µ)

 .

Let us now provide the formal definition of the probability distribution µt
that governs a trial t ∈ T . Intuitively, the probability of reaching a given outcome
ω ∈ Ω(t) is the sum of the probabilities of all the alternatives leading to ω.
Since the probability distributions in Post(t) are assumed to be independent,
the probability that an alternative is chosen is the product of the probabilities
of all the independent choices it makes. Formally, µt is defined as follows:
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Definition 3. Let (P, T, Pre, Post, I) be a probabilistic time Petri net. The dis-
crete probability distribution that governs a trial t ∈ T is a function µt : Ω(t)→
[0, 1] that assigns probabilities to the outcomes of t as follows:

µt : ω →
∑

f∈Aω(t)

 ∏
µ∈Post(t)

µ
(
f(µ)

).
Lemma 1. Let (P, T, Pre, Post, I) be a probabilistic time Petri net. For a given
trial t ∈ T , the function µt is a discrete probability distribution over Ω(t).

The probabilistic time Petri nets depicted in Fig. 2 have different structures.
Yet they are equivalent from a semantical standpoint, since the discrete prob-
ability distribution µT1

is the same in both nets. In fact, every probabilistic
time Petri net can be canonicalised into a probabilistic time Petri net such that
Post(t) is a singleton for every transition t.

P1 P2

P3

P4

P5

T1 [0 ; 2]

2

1− p
p q

1− q

P1 P2

P3

P4

P5

T1 [0 ; 2]

2

p(1− q) + q(1− p)
pq

2

2

2

(1− p)(1− q)

Fig. 2. Two syntactically different probabilistic time Petri nets that are equivalent
from a semantical standpoint

It is worth noting that a probabilistic time Petri net is equivalent to a time
Petri net if Supp(µt) is a singleton for all trials t. A time Petri net can therefore
be interpreted as a probabilistic time Petri net whose transitions yield a single
combination of hyperarcs, or similarly, whose trials each lead to a single outcome.

Semantics of a probabilistic time Petri net. A probabilistic time Petri
net N has the following operational behaviour. The distribution ρN yields the
initial marking M0 of the net N and subsequently, the initial state (M0, 0T )
of N . When in a given state, the net can either fire an enabled transition or
let time flow. Doing so changes the state of the net. An enabled transition is
firable if and only if its clock value lies within its firing interval. Furthermore, a
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time delay must always be compliant with the current state of the net. In other
words, time can flow as long as otherwise enabled transitions are not disabled
in the process. This behaviour is typical in the context of strong time semantics
and conveys the notion of urgency. As such, the behaviour of a probabilistic
time Petri net is similar to that of a classic time Petri net. Once a choice has
been made, however, the next state is selected in a probabilistic manner. The
difference therefore lies in the way the subsequent state of the net is computed
once the non-determinism has been resolved.

– If the net chooses to let a certain amount of time d to elapse, then the
marking remains the same while the clock values of the enabled transitions
are increased by that particular amount.

– If the net chooses to fire a certain transition t, tokens are removed from the
current marking according to the mapping Pre(t) while the outcome of the
trial t generates additional ones. Moreover, the clocks associated with the
transition t and with any transition that has been disabled by the removal
of the

∑
p∈P Pre(t)(p) tokens are reset and disabled. Finally, the clocks

associated with newly enabled transitions are activated. This includes those
that were previously disabled.

The semantics of a probabilistic time Petri net is defined as a probabilistic timed
transition system. Probabilistic timed transition systems can be considered an
extension of Markov decision processes that account for the flow of time, leading
to a potentially uncountable set of states. Formally:

Definition 4 (Probabilistic timed transition system (PTTS)). A prob-
abilistic timed transition system is a quadruple (Q, ρ, T,W ) where

– Q is a set of states,
– ρ ∈ DistQ is the distribution of initial states,
– T is a set of trials, and
– W : Q× (T ∪ R+)→ DistQ is a (partial) probabilistic transition function.

We now formally introduce the semantics of marked probabilistic time Petri
nets in terms of probabilistic timed transition systems.

Definition 5 (Semantics of a marked probabilistic time Petri net). The
semantics of a marked probabilistic time Petri net N = (P, T, Pre, Post, I, ρN)
is a probabilistic timed transition system SN = (Q, ρSN

, T,W ) where

– Q ⊆ NP × RT+ is the set of states of the net N,
– ρSN

: Q → [0, 1] is the distribution of initial states, defined for (M,v) ∈ Q
by

ρSN
(M,v) = ρN(M)× χ{0T }(v) , and

– W : Q× (T ∪R+)→ DistQ is the (partial) piecewise probabilistic transition
function that defines continuous time transition relations over Q× R+ and
discrete transition relations over Q× T .



Probabilistic Time Petri Nets 9

1. W is defined for ((M, v), d) ∈ Q × R+ if and only if the delay d is
compliant with the state (M, v). In that case, let W ((M,v), d) be the
Dirac measure δ(M,v′), where the clock valuation v′ is defined for all
transitions t′ enabled by the marking M by

v′(t′) = v(t′) + d.

2. W is defined for ((M, v), t) ∈ Q × T if and only if the transition t is
firable from the state (M,v). In that case, let W ((M, v), t) = µ̃t, where
µ̃t ∈ DistQ is defined as follows:

• Let (M ′, v′) ∈ Q. The state (M ′, v′) lies in Supp(µ̃t) if and only if
the two following conditions are met:
∗ there exists an outcome ωM ′ ∈ Ω(t) such that

M ′ = (M − Pre(t)) + ωM ′ (1)

∗ the clock valuation v′ is defined for all transitions t′ enabled by
the marking M ′ by

v′(t′) = v(t′)× (1− χt(t′))× χE(M−Pre(t))(t
′) (2)

• Suppose that (M ′, v′) ∈ Supp(µ̃t). We define the image of (M ′, v′)
by the formula

µ̃t(M
′, v′) = µt(ωM ′).

Figure 3 depicts a probabilistic time Petri net and a fragment of its semantics.
Clock valuations are not represented.

P1 P2

P3

P4

P5

T1 [0 ; 2]

2

1− p
p q

1− q

2

2,1,0,0,0

0,0,0,3,1

0,0,0,1,0

1,0,1,3,1

1,0,1,1,0

µ̃
T1

pq

p(1− q)

(1− p)q

(1− p)(1− q)

Fig. 3. Correspondence between the transitions of a probabilistic time Petri net and
the trials of its semantics
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3 The Probabilistic Real-Time Reachability Problem

A state is said to be reachable if there exists a sequence of transition relations
that leads a probabilistic time Petri net from one of its initial states to that
particular one. When considering a given system, one might want to express the
fact that certain unwanted events are unlikely to happen when it operates. If
that system is modelled as a probabilistic time Petri net, those unwanted events
are formally represented by a certain set of states. Proving whether a given
set of states can be reached with a certain probability or not is at the core of
the probabilistic real-time reachability problem for probabilistic time Petri nets.
Quantitative reachability properties enable us to assert that the probability of
reaching certain unwanted states is sufficiently small and that the probability of
achieving a certain desired system behaviour is above a given threshold.

We artificially introduce (dN , tN) as an action that the probabilistic time
Petri net N performs when it decides that it will never fire a transition again.
We let dN be a real number that is strictly greater than the greatest real endpoint
of any firing interval in {I(t) | t ∈ T} and let tN be a fictitious trial that does
not belong to the set T . Intuitively, we want (dN , tN) to be a feasible action
whenever the firing intervals of the transitions enabled in the current state of
the net have no upper bound.

Subsequently, we define the extended set Φ̃(M,v) of actions that are feasi-
ble from a given state (M,v) by setting Φ̃(M,v) = Φ(M,v) ∪ {(dN , tN)} if
C(M,v) = R+, and Φ̃(M,v) = Φ(M, v) otherwise. We let T̃ = T ∪ {tN} de-
note the extended set of trials and extend the domain of the partial piecewise
probabilistic transition function W to take (dN , tN) into account as follows:

W ((M,v + dN), tN) = δ(M,v+dN ).

3.1 Paths and schedulers

The possible evolution of a probabilistic time Petri net is described formally by
a path. Reasoning about probabilities of sets of paths relies on the resolution
of non-determinism, which is performed by a scheduler. The paths describe the
potential computations that are obtained by resolving both the non-deterministic
and probabilistic choices in the underlying probabilistic timed transition system.
In other words, a path is a sequence of trials that are performed at certain dates.
These trials carry the net over a set of states.

Definition 6 (Path in a probabilistic timed transition system). Let
SN = (Q, ρSN

, T,W ) be the semantics of a marked probabilistic time Petri net
N = (P, T, Pre, Post, I, ρN).

– A finite path in the probabilistic timed transition system SN is a finite se-
quence

q0
d1,t1−−−→ q1

d2,t2−−−→ . . .
dn,tn−−−→ qn
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where q0 ∈ Supp(ρSN
), n ∈ N and for all i ∈ J0, n− 1K,

qi = (Mi, vi) ∈ Q,
(di+1, ti+1) ∈ Φ̃(Mi, vi),

qi+1 ∈ Supp(W ((Mi, vi + di+1), ti+1)).

The integer n is called the length of the path. A finite path in SN is an
element of Supp(ρSN

) × ((R+ × T )×Q)
∗
. We denote by Path∗(SN ) the set

of finite paths in the probabilistic timed transition system SN .
– An infinite path in the probabilistic timed transition system SN is an infinite

sequence

q0
d1,t1−−−→ q1

d2,t2−−−→ q2
d3,t3−−−→ . . .

such that q0
d1,t1−−−→ q1

d2,t2−−−→ . . .
dn,tn−−−→ qn ∈ Path∗(SN ) for all n ∈ N.

An infinite path in SN is an element of (Q× (R+ × T ))
∞

. We denote by
Path∞(SN ) the set of infinite paths in the probabilistic timed transition system
SN .

The resolution of all non-deterministic choices in a probabilistic time Petri
net is described formally by a scheduler. A scheduler chooses a feasible action
Φ̃(M, v) in any state (M, v) of the net, but does not have any influence on the
probability that one marking or another will be reached once that action has
been chosen.

Definition 7 (Scheduler for a probabilistic timed transition system).
Let SN = (Q, ρSN

, T,W ) be the semantics of a marked probabilistic timed tran-
sition system N = (P, T, Pre, Post, I, ρN).

For a given finite path π = q0
d1,t1−−−→ q1

d2,t2−−−→ . . .
dn,tn−−−→ qn in SN , let last(π)

denote the state qn.

– A scheduler for the probabilistic timed transition system SN is a (total) func-
tion S : Path∗(SN ) → (R+ × T ) ∪

{
(dN , tN)

}
such that for all finite paths π

in SN {
C(last(π)) 6= R+ ⇒ S(π) ∈ Φ(last(π)),

C(last(π)) = R+ ⇒ S(π) ∈ Φ̃(last(π)).

A finite or infinite path π = q0
d1,t1−−−→ q1

d2,t2−−−→ . . . of SN is called a S-path
if S(π|i) = (di+1, ti+1) for all prefixes π|i (the path π|i denotes the finite prefix
of π of length i). We let Path∗S denote the (countable) set of finite S-paths.

The behaviour of a probabilistic time Petri net that is subject to a scheduler
S can be formalised by a Markov chain [15]. Intuitively, this Markov chain
unfolds the net into as many trees as there are elements in Supp(ρN).

Definition 8 (Markov chain of a PTPN induced by a scheduler). Let
SN = (Q, ρSN

, T,W ) be the semantics of a marked probabilistic time Petri net
N = (P, T, Pre, Post, I, ρN).

A scheduler S of SN induces a Markov chain MS = (Path∗S, ρS,PS) where
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– ρS ∈ DistPath∗S is the distribution of initial paths of the chain. Its support
is equal to the finite paths in SN of length 0 that are also initial states of the
probabilistic timed transition system SN .
For all (M0, 0T ) ∈ Supp(ρS), ρS((M0, 0T )) = ρSN

(M0, 0T ) = ρN(M0).
– PS : Path∗S → DistPath∗S is the (total) probabilistic transition function of

MS. For λ ∈ Path∗S, the support of PS(λ) is the set of S-paths of the form

π
S(d,t)−−−−→ q. For (π, q) ∈ Path∗S ×Q,

PS(π)(π
S(d,t)−−−−→ q) = µ̃t(q).

Example 2. Let us consider the marked probabilistic time Petri net depicted in
Fig. 4, whose initial marking is given by ρN = δ(1,0,0,1,0,0,0). Since the enabled
transition T4 is not firable before date 2, all paths in N1 start with the resolution
of the trial T1, which either generates a token in P2 or in P3. Every scheduler
must first choose when to fire that transition. Depending on the outcome of
the trial T1, a scheduler is not presented with the same opportunities. Let us
consider a scheduler S1 that chooses to fire T1 immediately. If a token ends up
in P2, then S1 is constrained by the deterministic trial T3 which ends up being
performed at date 1. If a token ends up in P3, then S1 must let time flow before
performing either T2 or T4.

P1

P2

P3

P4

P5

P6

P7

T1 [0 ; 1] p

1− p

T2 [2 ; 2]

T3 [1 ; 1]

T4 [2 ; 2] T5 [0 ; 0]

T6 [0 ; 0]

T7 [0 ; 0]

Fig. 4. The probabilistic time Petri net N1

Suppose that we are interested in reaching the place P7. Our target set con-
sists of every marking M for which M(P7) > 0. Figure 5 depicts the choices
scheduler S1 makes as it resolves all non-determinism before reaching P7 with
probability p. While scheduler S1 does exhibit a path leading to a target mark-
ing, we would like to thoroughly study the likelihood of reaching those particular
markings.
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1,0,0,1,0,0
0

0,1,0,1,0,0
0

0,0,0,0,0,0
0

0,0,1,1,0,0
0

0,0,0,1,1,0
0

0,0,0,0,1,1
0

0,0,0,0,0,0
1

µ̃
(0,T1)

1− p

p

(1,T3)

(2,T2) (0,T4) (0,T6)

(dN , tN)

(dN , tN)

Fig. 5. Abridged representation of the scheduler S1

Intuitively, the deterministic trials T3 and T5 must be avoided at all costs if
P7 is to be reached. This stems from the fact that these trials eliminate the to-
kens that are needed to fire T6 or T7. To avoid T3, the trial T1 must necessarily
be resolved at date 1 and no sooner than that. To avoid T5, the trial T1 must
necessarily be resolved at date 0, without delay. Schedulers that do not fire T1

at date 0 or at date 1 never reach P7. Therefore, the minimum probability of
reaching P7 is 0. Since a scheduler has no influence over the outcome of T1, it
has no way of knowing if firing T1 at date 0 or at date 1 is best. As a result, the
probability of reaching P7 can be no greater than max(p, 1− p).

The probabilistic real-time reachability problem consists in the establishment
of these lower and upper probability bounds. The whole set of schedulers of a
probabilistic time Petri net is considered in order to compute these bounds, as
they cover every possible resolution of non-determinism. This corresponds to a
worst-case analysis.

3.2 Markov decision processes

Since a probabilistic time Petri net evolves in a dense-time environment, there
are usually infinitely many schedulers as soon as a single firing interval is a
proper interval. To compute the lower and upper probability bounds by ranging
over all schedulers, we proceed to a natural grouping of states that leads to the
formation of state classes. This enables us to capture the information we need
in a finite graph, called a state class graph, which can then be used to apply
formal verification techniques. The state space of the net thus takes the form of
a Markov decision process. Formally:

Definition 9 (Markov decision process (MDP)). A Markov decision pro-
cess is a quadruple (C, ρ,A,P) where

– C is the (countable) set of states of the process,
– ρ ∈ DistC is the distribution of initial states of the process,
– A is the set of actions of the process, and
– P : C ×A→ DistC is the (partial) probabilistic transition function.
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For a given state c of a Markov decision process, we define the set Σ(c) of actions
that are enabled in the state c as

Σ(c) = {α ∈ A | P(c, α) is defined}.

The assumption that Σ(c) 6= Ø for all c ∈ C is a conventional requirement in
the literature that is not specific to our setting [15].

As for probabilistic time Petri nets, the paths in a Markov decision process
resolve both probabilistic and non-deterministic choices.

Definition 10 (Path in a Markov decision process). Let M = (C, ρ,A,P)
be a Markov decision process.

– A finite path in the Markov decision process M is a finite sequence

c0
α1−→ c1

α2−→ . . .
αn−−→ cn

where for all i ∈ J0, n− 1K,
ci ∈ C,
αi+1 ∈ Σ(ci),

ci+1 ∈ Supp(P(ci, αi+1)).

The integer n is called the length of the path. A finite path in M is an ele-
ment of Supp(ρ) × (A× C)

∗
. We denote by Path∗(M) the set of finite paths

in the Markov decision process M.

– An infinite path in the Markov decision process M is an infinite sequence

c0
α1−→ c1

α2−→ c2
α3−→ . . .

where c0
α1−→ c1

α2−→ . . .
αn−−→ cn ∈ Path∗(M) for all n ∈ N.

An infinite path in M is an element of (C ×A)
∞

. We denote by Path∞(M)

the set of infinite paths in the Markov decision process M.

An adversary of a Markov decision process fulfils the same function a sched-
uler does for a probabilistic time Petri net.

Definition 11 (Adversary of a Markov decision process). Let M = (C, ρ,
A,P) be a Markov decision process.

For a given finite path σ = c0
α1−→ c1

α2−→ . . .
αn−−→ cn in M, let last(σ) denote

the state cn.

– An adversary of the Markov decision process M is a (total) function Λ :

Path∗(M) → A such that for all finite paths σ = c0
α1−→ c1

α2−→ . . .
αn−−→ cn in

Path∗(M)

Λ(σ) ∈ Σ(last(σ)).

A finite or infinite path σ = c0
α1−→ c1

α2−→ . . .
αn−−→ cn of M is called a Λ-path

if Λ(σ|i) = αi+1 for all prefixes σ|i of σ (the path σ|i denotes the finite prefix
of σ of length i). We let Path∗Λ denote the (countable) set of finite Λ-paths.
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– An adversary Λ of the Markov decision process M induces a Markov chain
MΛ = (Path∗Λ, ρΛ,PΛ) where
• ρΛ is the distribution of initial paths of the chain. Its support is equal to

the finite paths in M of length 0 that are also initial states of the process.
For all c ∈ Supp(ρΛ), ρΛ(c) = ρ(c).

• PΛ : Path∗Λ → DistPath∗Λ is the (total) probabilistic transition function
of MΛ. For σ ∈ Path∗Λ, the support of PΛ(σ) is the set of Λ-paths of the

form σ
Λ(σ)−−−→ c. For (σ, c) ∈ Path∗Λ × C,

PΛ(σ)(σ
Λ(σ)−−−→ c) = P(last(σ), Λ(σ))(c).

3.3 The probabilistic strong state class graph

Time Petri nets typically generate an infinite state space. The linear state class
graph was introduced in [11] and [12] in order to capture linear time temporal
properties of time Petri nets in a finite graph. Intuitively, each class is an ele-
ment of NP ×P(RT ) which captures all the states that are reachable from an
initial state class by firing schedules of a given support. Since there are gen-
erally infinitely many supports, state classes are then considered modulo some
equivalence relation. The graph thus becomes finite if the net is bounded.

The probabilistic strong state class graph extends the construction methods
that are proposed in the literature to account for the probabilistic nature of
PTPNs. The following definition introduces strong state classes for probabilistic
time Petri nets and details how the successor of a class is obtained when firing
a given transition.

Definition 12 (Strong state classes). Let SN = (Q, ρSN
, T,W ) be the se-

mantics of a marked probabilistic time Petri net N = (P, T, Pre, Post, I, ρN).
The set of strong state classes is defined as follows:

1. For a given transition t of the net N, we define the set ∆(t) of decoupled
trials of t as ∆(t) =

{
tω ∈ DistNP | ∃ω ∈ Supp(µt), tω = δω

}
and denote by

T∆ =
⋃
t∈T

∆(t) the set of decoupled trials in SN .

2. For a given initial state q0 ∈ Supp(ρSN
), we define a cover Cq0 =

⋃
τ∈T∗∆

cτ
of Q inductively by cε = {q0} and

cτtω =


(M ′, v′) ∈ NP × RT+ | ∃(M,v) ∈ cτ ,∃(d, t) ∈ Φ(M, v), tω ∈ ∆(t)

and ∀t′ ∈ T, v′(t′) = (v(t′) + d)× (1− χt(t′))× χE(M−Pre(t))(t
′)

and M ′ = (M − Pre(t)) + ω


The classes cτtω are the successors of the state class cτ .

3. The cover Cq0 denotes the set of nodes of the tree that is generated by q0.
We must account for all the trees that are generated by an initial state of the
net and thus let

C =
⋃

q0∈Supp(ρSN )

Cq0 .
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Let c ∈ C be a state class in which the shared marking is M . We say that a
transition t ∈ E(M) is firable from the state class c if there exists a state q ∈ c
such that t is firable from q. The probabilistic strong state class graph (which
remains finite if the net is bounded) is defined as follows:

Definition 13 (Probabilistic strong state class graph). Let SN = (Q, ρSN
,

T,W ) be the semantics of a marked probabilistic time Petri net N = (P, T, Pre,
Post, I, ρN). The probabilistic strong state class graph of the net N is a Markov
decision process M = (C, ρ, T̃ ,P) where

– C is the set of strong state classes,
– ρ : C → [0, 1] is the distribution of initial classes of the graph. The support

of ρ is equal to the set of singletons {q0}, where q0 ∈ Supp(ρSN
). For all

(M0, 0T ) ∈ Supp(ρSN
),

ρ
({

(M0, 0T )
})

= ρSN
(M0, 0T ) = ρN(M0).

– P : C × T̃ → DistC is the (partial) transition probability function.
1. P is defined for (c, t) ∈ C × T if and only if the transition t is firable

from the state class c. In that case, let P(c, t) = µ̂t, where µ̂t ∈ DistC is
defined as follows:
• Let c′ ∈ C. The class c′ lies in Supp(µ̂t) if and only if c′ is the

successor of c for some decoupled transition tω ∈ ∆(t).
• Suppose that c′ ∈ Supp(µ̂t). We define the image of c′ by the formula

µ̂t(c
′) = µt(ω).

2. P is defined for (c, t) ∈ C × {tN} if and only if C(q) = R+ for some
q ∈ c. In that case, C(q) = R+ for all q ∈ c since all the states in c have
the same marking. We define the image of (c, tN) by the formula

P(c, tN) = δc.

The probabilistic strong state class graph of the probabilistic time Petri net
N1 is represented in Fig. 6. Each class is represented by a node, which is labelled
with the marking that all states share in that particular class. Here, strong state
classes are considered modulo an equivalence relation ≡ that asserts that two
classes are equivalent if they denote the same set of states. For the sake of clarity,
time domains are not represented.

Let us now consider the adversary Λ1 of the probabilistic state class graph
of N1, depicted in Fig. 7. Depending on the outcome of the trial T1, it either
performs the untimed sequence of actions T1 → T4 → T7 or the untimed se-
quence T1 → T2 → T4 → T6 before reaching a target state. However, there is
no scheduler for N1 that can perform both of these paths since the path T1 →
T4 → T7 can only be performed when T1 is fired at date 1 while the path T1 →
T2 → T4 → T6 can only be performed when T1 is fired at date 0. As a result,
the probabilistic strong state class graph potentially generates duplicitous ad-
versaries, which display a probability of reaching target states greater than that
of any scheduler.
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1,0,0,1,0,0
0

0,1,0,1,0,0
0

0,0,1,1,0,0
0

0,1,0,0,0,1
0

0,0,1,0,0,1
0

0,0,0,1,1,0
0

0,0,0,0,1,1
0

0,0,1,0,0,0
0

0,0,0,0,0,0
0

0,1,0,0,0,0
0

0,0,0,0,1,0
0

0,0,0,0,0,0
1

µ̂
T1

1− p

p

T3

T4

T4

T2

T5

T7

T5

T2

T4

T5

T6

T2

TN TN

TN

TN

Fig. 6. The probabilistic strong state class graph of the probabilistic time Petri net N1

1,0,0,1,0,0
0

0,1,0,1,0,0
0

0,1,0,0,0,1
0

0,0,0,0,0,0
1

0,0,1,1,0,0
0

0,0,0,1,1,0
0

0,0,0,0,1,1
0

0,0,0,0,0,0
1

µ̂
T1

1− p

p

T4 T7

T2 T4 T6

TN

TN

Fig. 7. Abridged representation of the duplicitous adversary Λ1

3.4 The probabilistic atomic state class graph

The reason why the probabilistic strong state class graph fails to produce proper
adversaries lies in the way time and probabilities are intertwined in probabilistic
time Petri nets. A graph that better captures the effect the firing date of prob-
abilistic trials has on future actions is needed in order to solve the probabilistic
real-time reachability problem.

Berthomieu and Vernadat introduced the atomic state class graph for time
Petri nets in order to preserve their branching time temporal properties in a
finite graph [14]. The construction of this graph can be adapted for probabilistic
time Petri nets to preserve the adversaries we need. Let us consider the following
properties of interest for state class graphs:

– (EE) For all classes c, c′ ∈ NP ×P(RT ) and for all t ∈ Σ(c),

c
t−→ c′ ∈ Path∗(M) ⇐⇒ ∃q ∈ c,∃q′ ∈ c′,∃d ∈ R+,

{
(d, t) ∈ Φ(q)

q
(d,t)−−−→ q′ ∈ Path∗(SN )
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– (AE) For all classes c, c′ ∈ NP ×P(RT ) and for all t ∈ Σ(c),

c
t−→ c′ ∈ Path∗(M) =⇒ ∀q ∈ c,∃q′ ∈ c′,∃d ∈ R+,

{
(d, t) ∈ Φ(q)

q
(d,t)−−−→ q′ ∈ Path∗(SN )

State class graphs typically satisfy property (EE) and so does the proba-
bilistic strong state class graph. The probabilistic atomic state class graph we
introduce in this section is built from the probabilistic strong state class graph,
by refining its classes into atomic ones. An atomic class is a state class in which
each state has a successor in each of the successors of that class. Intuitively, each
atomic class captures all the states that are reachable from an initial state by
firing schedules of a given support during certain time windows.

The algorithm that details how to split strong state classes into atomic ones
can be found in [14]. Splitting a class c replaces it with a pair of classes which
both inherit the predecessors of c and the successors of c that they can still reach.
This technically causes multiple hyperarcs leaving the predecessors of c to have
the same label. However, each one of these hyperarcs is implicitly augmented
with a time interval. This time window corresponds to the set of delays that
enforce property (EE) in each one of the states it leads to. Since no time delay
is shared among those hyperarcs, any ambiguity is lifted.

This stable refinement enforces property (AE) in the probabilistic atomic
state class graph, which once again takes the form of a Markov decision process
MA = (CA, ρA, T̃ ,PA). However, this graph is usually significantly bigger than
the probabilistic state class graph from which is it built. The probabilistic atomic
state class graph of the probabilistic time Petri net N1 is represented in Fig. 8.

The proof of the following theorem is omitted due to lack of space.

Theorem 1. Let N = (P, T, Pre, Post, I, ρN) be a bounded marked probabilis-
tic time Petri net, let SN = (Q, ρSN

, T,W ) be its semantics and let MA =

(CA, ρA, T̃ ,PA) be the probabilistic atomic state class graph of N.

1. Let Λ be an adversary of the Markov decision process MA. There exists a
scheduler for the probabilistic timed transition system SN that induces the
same Markov chain as Λ up to isomorphism.

2. Conversely, let S be a scheduler for the probabilistic timed transition sys-
tem SN . There exists an adversary of the Markov decision process MA that
induces the same Markov chain as S up to isomorphism.

As a result of theorem 1, the probabilistic real-time reachability problem
can be solved by computing the probability of reaching a target state for every
adversary of the probabilistic atomic state class graph (with the tools commonly
used for Markov decision processes). For example, it can easily be shown that
the sought probability bounds for reaching P7 in the net N1 (Fig. 4) are indeed
0 and max(p, 1−p), by considering all the adversaries of its probabilistic atomic
state class graph (Fig. 8). In fact, an array of algorithms can now be used to
prove that the net verifies the following properties:
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Fig. 8. The probabilistic atomic state class graph of the PTPN N1

– reachability: the net N1 can reach P7 with probability (at least) 0.5,

– inevitability: the net N1 inevitably leaves P1 with probability 1,

– time bounded reachability: the net N1 can reach P7 within two time
units with probability 0.5,

– bounded response: the net N1 inevitably reaches P5 or P7 within two time
units with probability 1 after reaching the marking (0, 0, 1, 1, 0, 0, 0).

4 Conclusion

We have introduced a new formalism for the modelling of concurrent probabilis-
tic real-time systems. This new model extends time Petri nets by enhancing the
forward incidence mapping with sets of probability distributions. Probabilistic
time Petri nets natively integrate time, concurrency and probabilities. In the
spirit of probabilistic timed automata [16], we have restricted all random phe-
nomena to the discrete behaviour of a time Petri net. Time and concurrency
are still resolved in a non-deterministic manner. We have shown how the atomic
state class graph construction of TPNs can be adapted to our model and how this
enables us to recover a Markov decision process that induces the same Markov
chains as the semantics of the PTPN. Therefore, the use of a wide range of tools
for the analysis of PTPN is made available to us. We have also proved that the
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simpler non-atomic state class graph construction cannot be adapted in a similar
manner.

Future work includes the addition of timing and probability parameters in
probabilistic time Petri nets, the implementation of the proposed method in our
tool Roméo and the application of this model to the automotive industry.
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A Appendix

Lemma 1. Let N = (P, T, Pre, Post, I) be a probabilistic time Petri net. For a
given trial t ∈ T , the function µt is a discrete probability distribution over Ω(t).

Proof. Let us consider a trial t of N .

– For each f ∈ A(t) and each µ ∈ Post(t), the marking f(µ) lies in Supp(µ),
hence µ(f(µ)) ∈ [0, 1] and µt(ω) > 0 for all ω ∈ Ω(t).

– Let us now show that ∑
ω∈Ω(t)

µt(ω) = 1.

• The family of subsets {Aω(t)}ω∈Ω(t) of A(t) defines a partition of the
set A(t). Therefore,

∑
ω∈Ω(t)

 ∑
f∈Aω(t)

 ∏
µ∈Post(t)

µ
(
f(µ)

) =
∑

f∈A(t)

 ∏
µ∈Post(t)

µ
(
f(µ)

).
• An element of A(t) is characterised by its graph, which consists of
|Post(t)| independent choices. Each one of these choices corresponds to
a probabilistic experiment by means of the discrete probability distribu-
tions that make up Post(t). Consequently, the function

µ× : A(t) −→ [0, 1]

f 7−→
∏

µ∈Post(t)

µ
(
f(µ)

)
is a discrete probability distribution over A(t) and∑

ω∈Ω(t)

µt(ω) =
∑

f∈A(t)

µ×(f) = 1

ut

Theorem 1. Let N = (P, T, Pre, Post, I, ρN) be a bounded marked probabilis-
tic time Petri net, let SN = (Q, ρSN

, T,W ) be its semantics and let MA =

(CA, ρA, T̃ ,PA) be the probabilistic atomic state class graph of N.

1. Let Λ be an adversary of the Markov decision process MA. There exists a
scheduler for the probabilistic timed transition system SN that induces the
same Markov chain as Λ up to isomorphism.

2. Conversely, let S be a scheduler for the probabilistic timed transition sys-
tem SN . There exists an adversary of the Markov decision process MA that
induces the same Markov chain as S up to isomorphism.

Proof. 1. For a given adversary Λ of the Markov decision process MA, let us
define a scheduler S : Path∗(SN ) → (R+×T )∪{(dN , tN)} for the probabilistic
timed transition system SN as follows:
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– Let π = q0
d1,t1−−−→ . . .

dn,tn−−−→ qn ∈ Path∗(SN ) be a finite path in the
probabilistic timed transition system SN . According to property (EE),

there exists a path σ = c0
t1−→ . . .

tn−→ cn ∈ Path∗(MA) in the probabilistic
atomic state class graph MA such that qi ∈ ci for all i ∈ J0, nK. Let
qn = (Mn, vn).
• If Λ(σ) = tN , then tN ∈ Σ(cn). It follows that C(q) = R+ for all
q ∈ cn. In particular, C(qn) = R+. We can thus set

S(π) = (dN , tN).

• If Λ(σ) 6= tN , then property (AE) guarantees the existence of a delay
dn+1 ∈ C(Mn, vn) such that Λ(σ) ∈ F(Mn, vn+dn+1). In that case,
(dn+1, Λ(σ)) ∈ Φ(qn). We can thus set

S(π) = (dn+1, Λ(σ)).

– We will now demonstrate that the Markov chain MS = (Path∗S, ρS,PS)
induced by S and the Markov chain MΛ = (Path∗Λ, ρΛ,PΛ) induced by
Λ are the same, up to isomorphism. To do so, we will introduce a bijection
ζ that maps the nodes of the chain MS to the nodes of the chain MΛ.
We will then show that this mapping is a graph isomorphism by proving
that it preserves the structure of MS, as defined by the distribution
of initial paths ρS and the probabilistic transition function PS, in the
chain MΛ.

(a) Let us define the canonical bijection ζ between the S-paths of Path∗S
and the Λ-paths of Path∗Λ as follows:

Let π = q0
d1,t1−−−→ . . .

dn,tn−−−→ qn be a S-path. According to property

EE, there exists a path σ = c0
t1−→ . . .

tn−→ cn ∈ Path∗(MA) in the
probabilistic atomic state class graph MA that verifies qi ∈ ci for
all i ∈ J0, nK. Since every prefix π|i of π is a S-path, it follows that
Λ(σ|i) = ti+1 for all prefixes σ|i of σ, by definition of the scheduler
S. This implies that σ is a Λ-path and that such a path is unique
for any given π. Let

ζ : Path∗S → Path∗Λ

be the function that maps each finite S-path π to its correponding
Λ-path σ.

• Let us prove that ζ is injective. Let π = q0
d1,t1−−−→ . . .

dn,tn−−−→ qn

and π′ = q′0
d′1,t
′
1−−−→ . . .

d′n,t
′
n−−−→ q′n be two Λ-paths, such that ζ(π) =

ζ(π′). Let ζ(π) = c0
t1−→ . . .

tn−→ cn. Since π′ is a S-path and
q′i ∈ ci for all i ∈ J0, nK, it follows that (d′i+1, t

′
i+1) = S(π|i) =

(di+1, ti+1) for all i ∈ J0, n − 1K and qi = q′i for all i ∈ J0, nK.
Consequently, the equality π = π′ holds. This proves that the
function ζ is injective.
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• Let us prove that ζ is surjective. Let σ = c0
t1−→ . . .

tn−→ cn be a

Λ-path. The only S-path π = q0
d1,t1−−−→ . . .

dn,tn−−−→ qn that verifies
qi ∈ ci for all i ∈ J0, nK also verifies ζ(π) = σ. Consequently, the
function ζ is surjective.

(b) For every q0 = (M0, 0T ) ∈ Supp(ρS), ζ(q0) = {q0} ∈ Supp(ρΛ).
• The distribution of initial paths ρS of the Markov chain induced

by the scheduler S is defined (Def. 8) from the distribution of
initial markings ρSN

of the probabilistic timed transition system
SN (Def. 5) as follows:

ρS(q0) = ρSN
(q0) = ρN(M0).

• The distribution of initial markings ρΛ of the Markov chain in-
duced by the adversary Λ is defined (Def. 11) from the distribu-
tion of initial classes ρA of the atomic state class graph, which is
the same as the distribution of initial classes of the strong state
class graph (Def. 13):

ρΛ({q0}) = ρA({q0}) = ρN(M0).

Therefore,

ρS(q0) = ρΛ(ζ(q0)).

(c) Let π be a Λ-path and σ = ζ(π) be the S-path that is canonically
associated with π. Let q = (M,v) ∈ NP × RT+ be a state of N such

that π
S(π)−−−→ q is a S-path and let σ

Λ(σ)−−−→ c = ζ(π
S(π)−−−→ q).

• By definition of the partial probabilistic transition function PS

(Def. 8) of the scheduler S and by definition of the probability
distribution of states µ̃t (Def. 5),

PS(π)(π
S(π)−−−→ q) = µ̃t(q)

= µt(ωM ).

• By definition of the partial probabilistic transition functions PΛ

of the adversary Λ and PA of the atomic state class graph (Def. 11)
and by definition of the probability distribution of classes µ̂t
(Def. 13),

PΛ(σ)(σ
Λ(σ)−−−→ c) = PA(last(σ), Λ(σ))(c)

= µ̂t(c)

= µt(ωM ).

Therefore,

PS(π)(π
S(π)−−−→ q) = PΛ(ζ(π))(ζ(π

S(π)−−−→ q)).
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This proves that ζ is edge-preserving from a probabilistic standpoint.
It follows that ζ is a Markov chain isomorphism. The forest of trees
generated by the Markov chains MS and MΛ are therefore identical up
to isomorphism.

2. Conversely, let S be a scheduler for SN . Let us define an adversary Λ :
Path∗(MA) → T̃ of the probabilistic atomic state class graph as follows:

– Let σ = c0
t1−→ c1

t2−→ . . .
tn−→ cn ∈ Path∗(MA) be a finite path in the

probabilistic atomic state class graph MA. According to property (EE),

there exists a path π = q0
d1,t1−−−→ q1

d2,t2−−−→ . . .
dn,tn−−−→ qn ∈ Path∗(SN ) in

the probabilistic timed transition system SN such that qi ∈ ci for all
i ∈ J0, nK.
• If S(π) = (dN , tN), then C(qn) = R+. Therefore PA is defined for

(cn, tN) and tN ∈ Σ(cn) as a result. We can thus set

Λ(σ) = tN .

• If S(π) = (dn+1, tn+1) ∈ Φ(qn), then the sequence σ.tn+1 is the
support of a path of Path∗(SN ). The transition tn+1 ∈ T is therefore
firable from the state class cn and PA is defined for (cn, tn+1). In
that case, tn+1 ∈ Σ(cn). Let

Λ(σ) = tn+1.

Choosing tn+1 in Σ(cn) can be ambiguous since there is potentially
more than one output hyperarc of cn that is labelled with tn+1 as a
result of the splitting process. However, since each one of these hy-
perarcs is implicitly augmented with a time window that correponds
to the set of delays that are allowed before the firing of tn+1, the
chosen arc can only be the one that allows a time delay of dn+1.

– The graph isomorphism introduced in 1. can be used to prove that the
Markov chain MS = (Path∗S, ρS,PS) induced by S and the Markov
chain MΛ = (Path∗Λ, ρΛ,PΛ) induced by Λ are the same, up to isomor-
phism.

ut


