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Initial-boundary value problem for distributed

order time-fractional diffusion equations

Zhiyuan LI∗, Yavar KIAN† and Eric SOCCORSI†

Abstract

We examine initial-boundary value problems for diffusion equations with distributed
order time-fractional derivatives. We prove existence and uniqueness results for the weak
solution to these systems, together with its continuous dependency on initial value and
source term. Moreover, under suitable assumption on the source term, we establish that
the solution is analytic in time.

1 Introduction

The time-fractional diffusion model of constant order (CO) α, ∂αt u−∆u = f , has received great
attention within the last few decades from numerous applied scientists, see e.g. [1, 2, 6, 14], due
to its relevance for modeling anomalous diffusion processes whose mean square displacement
(MSD) scales like tα as the time variable t goes to infinity. But, more recently, it was noticed
in [3, 22, 26] and the references therein that several application areas such as polymer physics
or kinetics of particles moving in quenched random force fields, exhibit ultraslow diffusion
phenomena whose MSD is of logarithmic growth. There are several approaches for modeling
such processes. One of them uses time-fractional diffusion equations of distributed order (DO),
see e.g. [13, 20, 24], but we also mention that a diffusion model with variable fractional order
time-derivative was proposed in [27] to depict ultraslow diffusion processes. In this paper, we
are concerned with the DO fractional diffusion model. More precisely, we consider the following
initial-boundary value problem (IBVP),

D(µ)
t u+Au = F in Q := Ω× (0, T ),

u(0, ·) = u0 in Ω,

u = 0 on Σ := ∂Ω× (0, T ),

(1)

where Ω is an open bounded domain in Rd, d ≥ 2, with C1,1 boundary ∂Ω, and A is the following
symmetric and uniformly elliptic operator

Aϕ(x) := −
d∑

i,j=1

∂xi(aij(x)∂xjϕ(x)) + q(x)ϕ(x),

associated with a suitable real-valued electric potential q and symmetric coefficients aij = aji,
1 ≤ i, j ≤ d, fulfilling the uniform ellipticity condition

d∑
i,j=1

aij(x)ξiξj ≥ ca|ξ|2, x ∈ Ω, ξ = (ξ1, · · · , ξd) ∈ Rd, (2)
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for some positive constant ca. Here, D(µ)
t denotes the distributed order fractional derivative

D(µ)
t ϕ(t) :=

∫ 1

0

∂αt ϕ(t)µ(α)dα,

induced by the non-negative weight function µ ∈ L∞(0, 1), and ∂αt is the Caputo derivative of
order α, defined by:

∂αt ϕ(t) :=


ϕ(t) if α = 0,

1

Γ(1− α)

∫ t

0

ϕ′(τ)

(t− τ)α
dτ if α ∈ (0, 1),

ϕ′(t) if α = 1,

the sysmbol Γ denoting the usual Gamma function.
From a mathematical viewpoint, the forward problem associated with these equations was

investigated in [13, 18, 19, 21]. Namely, the fundamental solution to the Cauchy problem for
both ordinary and partial distributed order fractional differential equations with continuous
weight function was derived and investigated in detail in [13]. A uniqueness result for the
solution to diffusion equations of DO was derived in [19] with the aid of an appropriate maximum
principle and a formal solution was constructed by means of the Fourier method of variables
separation. Unfortunately, there is no proof available in [19] of the convergence of the series
describing this formal solution. Further, explicit strong solutions (and stochastic analogues)
to DO time-fractional diffusion equations with Dirichlet boundary conditions were built in [21]
for C1-weight functions. For the asymptotic behavior we refer to [18], where logarithmic decay
of the solution to DO diffusion equations was established for t→∞, while this solution scales
at best like (t| log t|)−1 as t → 0. These results are in sharp contrast with the ones derived
for single- and multi-term time-fractional diffusion equations, see e.g. [8, 15, 25], which seem
unable to capture the time asymptotic trends of ultraslow diffusion processes.

Formally, single- or multi-term time-fractional diffusion equations can be seen as DO time-
fractional diffusion equations associated with a density function of the form µ =

∑`
j=1 qjδ(· −

αj), where δ is the Dirac-delta function. The definition of a weak solution for single- or multi-
term time-fractional diffusion equations was recently introduced in [5, 7] by taking advantage of
the fact that the domain of the L2(0, T )-realization of the operator ∂αt , α ∈ (0, 1), is embedded
in the fractional Sobolev space of order α, Hα(0, T ). However, as it is still unclear whether the

domain of D(µ)
t can be described by fractional Sobolev spaces, the scheme developed in [5, 7]

does not seem to be relevant for DO time-fractional diffusion equations. Another approach,
initiated by [28] and recently applied to DO time-fractional diffusion equations in [9], is to
consider (1) as an abstract evolutionary integro-differential equation. This strategy is suitable
for both autonomous and non-autonomous equations but there is a serious inconvenience to
this method, arising from the dependency of the functional space of the solution on the kernel
function of the corresponding integro-differential operator, which causes numerous technical
difficulties in performing computations based on this model.

In this paper, since the system under study is autonomous (the coefficients appearing in
(1) are all space-dependent only), we rather follow the idea of [12] and characterize the weak
solution to (1) as the original of the solution to the Laplace transform of (1) with respect
to the time variable. With reference to the analysis carried out in [15] for multi term CO
time-fractional diffusion equations, we aim to study the existence, uniqueness and regularity
properties, and the stability with respect to the diffusion coefficients and the weight function
µ, of a weak solution to (1).
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1.1 Settings

In this paper, we assume that q ∈ Lκ(Ω) for some κ ∈ (d,+∞), is non-negative, i.e.

q(x) ≥ 0, x ∈ Ω, (3)

and that the coefficients ai,j = aj,i ∈ C1(Ω,R), 1 ≤ i, j ≤ d, satisfy the ellipticity condition (2).
We denote by A the operator generated in L2(Ω) by the quadratic form

u 7→
d∑

i,j=1

∫
Ω

ai,j(x)∂xiu(x)∂xju(x)dx+

∫
Ω

q(x)|u(x)|2dx, u ∈ H1
0 (Ω).

Due to (2), A is selfadjoint in L2(Ω) and acts as the operator A on its domain D(A) :=
H1

0 (Ω) ∩H2(Ω), in virtue of [11, Section 2.1].
Moreover, since H1

0 (Ω) is compactly embedded in L2(Ω), the resolvent of A is compact
in L2(Ω), hence the spectrum of A is purely discrete. We denote by {λn, n ∈ N}, where
N := {1, 2, . . .}, the sequence of the eigenvalues of A arranged in non-decreasing order and
repeated according to their multiplicity. In light of (2)-(3), we have

λn ≥ ca > 0, n ∈ N. (4)

For further use, we introduce an orthonormal basis {ϕn, n ∈ N} of eigenfunctions of A in
L2(Ω), such that

Aϕn = λnϕn, ϕn ∈ D(A), n ∈ N.

1.2 Weak solution

As already mentioned in the introduction, the usual definition given in [5] of a weak solu-
tion to CO time-fractional diffusion equations, is not suitable for DO time-fractional diffusion
equations. Hence we rather follow the strategy implemented in [11] (which is by means of the
Laplace transform of tempered distributions), that is recalled below.

Let S ′(R, L2(Ω)) := B(S(R, L2(Ω)),R) be the space dual to S(R;L2(Ω)), put R+ := [0,+∞),
and denote by S ′(R+, L

2(Ω)) := {v ∈ S ′(R, L2(Ω)); supp v ⊂ R+ × Ω} the set of distributions
in S ′(R, L2(Ω)) that are supported in R+ × Ω. Otherwise stated, v ∈ S ′(R, L2(Ω)) lies in
S ′(R+, L

2(Ω)) if and only if 〈v, ϕ〉S′(R,L2(Ω)),S(R,L2(Ω)) = 0 whenever ϕ ∈ S(R, L2(Ω)) vanishes

in R+ × Ω. As a consequence we have

〈v(·, x), ϕ〉S′(R),S(R) = 〈v(·, x), ψ〉S′(R),S(R), ϕ, ψ ∈ S(R),

provided ϕ = ψ in R+. Further, we say that ϕ ∈ S(R+) if ϕ is the restriction to R+ of a
function ϕ̃ ∈ S(R). Then, for a.e. x ∈ Ω, we set

〈v(·, x), ϕ〉S′(R+),S(R+) := x 7→ 〈v(·, x), ϕ̃〉S′(R),S(R), v ∈ S ′(R+, L
2(Ω)).

Notice that ϕ̃ may be any function in S(R) such that ϕ̃(t) = ϕ(t) for all t ∈ R+.
For all p ∈ C+ := {z ∈ C; Re z ∈ (0,+∞)}, where Re z denotes the real part of z, we put

ep(t) := exp(−pt), t ∈ R+.

Evidently, ep lies in S(R+) so we can define the Laplace transform L[v] of v ∈ S ′(R+, L
2(Ω)),

with respect to t, as the family of mappings

L[v](p) : x ∈ Ω 7→ 〈v(·, x), ep〉S′(R+),S(R+), p ∈ C+.

Notice that p 7→ L[v](p) ∈ C∞(C+, L
2(Ω)).

Inspired by [11, Definition 2.2] we may now introduce the weak solution to (1) as follows.
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Definition 1.1. Let µ ∈ L∞(0, 1;R+), let a ∈ L2(Ω) and, depending on whether T ∈ (0,+∞)
or T = +∞, let F ∈ L∞(0, T ;L2(Ω)) or let t 7→ (1 + t)−mF (t, ·) ∈ L∞(R+, L

2(Ω)) for some
m ∈ N0 := N ∪ {0}. We say that u is a weak solution to the IBVP (1) if u is the restriction to
Q of a distribution v ∈ S ′(R+, L

2(Ω)), i.e. u = v|Q, whose Laplace transform v̂ := L[v] fulfills

(A+ sw(s))v̂(s) = w(s)u0 + F̂ (s), s ∈ C+, (5)

with w(s) :=
∫ 1

0
sα−1µ(α)dα and F̂ (s) := L[F1(0,T )](s) =

∫ T
0

e−stF (t, ·)dt. Here 1(0,T ) stands
for the characteristic function of (0, T ).

We stress out that Equation (5) imposes that v̂(s) ∈ D(A) for all s ∈ C+.
In the coming section we state several existence and uniqueness results for the weak solution

to (1).

1.3 Main results

We first address the case where the initial state u0 ∈ L2(Ω). The corresponding result is as
follows.

Theorem 1.1. Let µ ∈ L∞(0, 1) be non-negative and fulfill the following condition:

∃α0 ∈ (0, 1), ∃δ ∈ (0, α0), ∀α ∈ (α0 − δ, α0), µ(α) ≥ µ(α0)

2
> 0. (6)

Depending on whether T ∈ (0,+∞) or T = +∞, we assume either that F ∈ L∞(0, T ;L2(Ω))
or that t 7→ (1 + t)−mF (t, ·) ∈ L∞(R+, L

2(Ω)) for some natural number m ∈ N0.
Then, for all u0 ∈ L2(Ω) and all F ∈ L∞(0, T ;L2(Ω)), there exists a unique weak solution

u ∈ C((0, T ], L2(Ω)) to (1). Moreover, we have u ∈ C([0, T ], L2(Ω)) provided u0 = 0.

Here and in the remaining part of this text, the notation (0, T ] (resp., [0, T ]) stands for
(0,+∞) (resp., [0,+∞)) in the particular case where T = +∞. For a finite final time T , we
have the following improved regularity result.

Theorem 1.2. Fix T ∈ (0,+∞) and let µ be the same as in Theorem 1.1.

(a) Pick u0 ∈ D(Aγ) for γ ∈ (0, 1], and let F = 0. Then, the unique weak solution u to (1) lies
in C([0, T ], L2(Ω)) ∩ C((0, T ], H1

0 (Ω) ∩H2(Ω)) and satisfies the two following estimates

‖u(t)‖H2(Ω) ≤ CeT ‖u0‖D(Aγ)t
γ−1, t ∈ (0, T ], (7)

and
‖∂tu(t)‖L2(Ω) ≤ CeT ‖u0‖D(Aγ)t

−β , β ∈ (1− α0γ, 1) , t ∈ (0, T ], (8)

where C is a positive constant which is independent of T , t and u0.

(b) Assume that u0 = 0 and F ∈ L∞(0, T ;L2(Ω)). Then, for all κ ∈ [0, 1) and all p ∈[
1, 1

1−α0(1−κ)

)
, the unique weak solution u to (1) lies in Lp(0, T ;H2κ(Ω)). Moreover, there

exists a positive constant C, independent of T and F , such that we have

‖u‖Lp(0,T ;H2κ(Ω)) ≤ CeCT ‖F‖L1(0,T ;L2(Ω)). (9)

Notice that the second claim of Theorem 1.1 states that u ∈ Lp(0, T ;D(Aκ)) for suitable
values of p, provided u0 = 0 and F ∈ L∞(0, T ;L2(Ω)). Here κ can be arbitrarily close to 1
without actually becoming 1, except for the special case treated by the following result, where
the density function µ vanishes in a neighborhood of the endpoint of the interval (0, 1).
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Theorem 1.3. Let µ ∈ C([0, 1],R+) satisfy (6). Assume moreover that there exists α1 ∈ (α0, 1),
where α0 is the same as in (6), such that

µ(α) = 0, α ∈ (α1, 1). (10)

Then, for u0 = 0 and F ∈ L∞(0, T ;L2(Ω)), there exists a unique solution u ∈ L2(0, T ;H2(Ω))
to the IBVP (1), satisfying

‖u‖L2(0,T ;H2(Ω)) ≤ C‖F‖L2(Q),

for some positive constant C, which is independent of F .

It turns out that the statement of Theorem 1.3 remains valid without the technical assump-
tion (10), but this is at the price of greater difficulties in the derivation of the corresponding
result. Hence, in order to avoid the inadequate expense of the size of this article, we shall go
no further into this direction.

The following result claims that the solution to (1) is analytic in time, provided the source
term can be holomorphically extended to a neighborhood of the positive real axis. This state-
ment is of great interest in the analysis of inverse coefficient problems associated with time-
fractional diffusion equations, see e.g. [10, 11, 17].

Theorem 1.4. Let the conditions of Theorem 1.1 be satisfied with T = +∞. Assume moreover
that there exists ρ ∈ (0,+∞) such that the source term t 7→ F (t, ·) is extendable to a holomorphic
function of the half-strip Sρ := {z ∈ C; Re z ∈ (−ρ,+∞), Im z ∈ (−ρ, ρ)} into L2(Ω), where
we recall that Re z (resp., Im s) stands for the real (resp., imaginary) part of z. Then, the
weak-solution t 7→ u(t, ·) to (1), given by Theorem 1.1, can be extended to an analytic function
of (0,+∞) into L2(Ω).

The last result of this paper is similar to [15, Theorem 2.3], which was established in the
framework of multi-terms time-fractional diffusion equations with positive constant coefficients.
It is useful for the optimization approach to the inverse problem of determining the weight
function µ together with the diffusion matrix a := (ai,j)1≤i,j≤d and the electric potential q,
appearing in the definition of the operator A, by extra data of the solution to (1). Namely,
we claim for all a priori fixed M ∈ (0,+∞) that the weak solution to the IBVP (1) associated
with F = 0, depends Lipschitz continuously on (µ, a, q) in W × D(M) × Q(M), where W :=
{µ ∈ L∞(0, 1;R+) satistying (6)} is the set of admissible weight functions,

D(M) := {a = aT = (ai,j)1≤i,j≤d ∈ C1(Ω,Rd
2

) fulfilling (2) and ‖a‖C1(Ω) ≤M},

with aT the transpose matrix of a, denotes the set of admissible diffusion matrices and

Q(M) := {q ∈ C0(Ω) obeying (3) and ‖q‖C0(Ω) ≤M},

is the set of admissible electric potentials.

Theorem 1.5. Let T ∈ (0,+∞), fix M ∈ (0,+∞) and pick (µ, a, q) and (µ̃, ã, q̃) in W ×
D(M) × Q(M). For u0 ∈ D(Aγ), where γ ∈ (0, 1] is fixed, let u (resp., ũ) denote the weak
solution to the IBVP (1) (resp., the IBVP (1) where (µ̃, ã, q̃) is substituted for (µ, a, q)) with
uniformly zero source term, given by Statement (a) in Theorem 1.2.

Then, for all κ ∈ (0, 1) and all p ∈
[
1, 1

1−α0(1−κ)

)
, there exists a constant C ∈ (0,+∞),

depending only on T , M , µ, γ, κ, p and ca, such that we have

‖u− ũ‖Lp(0,T ;H2κ(Ω)) ≤ C
(
‖µ− µ̃‖L∞(0,1) + ‖a− ã‖C1(Ω) + ‖q − q̃‖C0(Ω)

)
. (11)
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1.4 Generalization of the results

In Theorems 1.1, 1.2 and 1.3, the function F is assumed to be bounded in time over (0, T )
but it turns out that in many applications the relevant source term appearing in (1) lies in
L1(0, T ;L2(Ω)). In such a case the Definition 1.1 of a weak solution to the IBVP (1) is no
longer valid but it can be easily adapted to the framework of F ∈ L1(0, T ;L2(Ω)) with a
density argument we make precise below.

Let us start by introducing the following notation: for all ϕ ∈ L∞(0, T ;L2(Ω)) we denote
by u(ϕ) the L1(0, T ;H1

0 (Ω))-solution to the system (1) associated with u0 = 0 and F = ϕ,
which is given by Statement (b) in Theorem 1.2 with p = 1 and κ = 1

2 . Then, for T ∈ (0,+∞),
u0 = 0 and F ∈ L1(0, T ;L2(Ω)), we say that u ∈ L1(0, T ;H1

0 (Ω)) is a weak solution to (1) if u
is the L1(0, T ;H1(Ω))-limit of {u(Fn), n ∈ N}, where {Fn, n ∈ N} ∈ L∞(0, T ;L2(Ω))N is an
approximation sequence of F in L1(0, T ;L2(Ω)), i.e.

lim
n→∞

‖u− u(Fn)‖L1(0,T ;H1(Ω)) = 0, (12)

where Fn ∈ L∞(0, T ;L2(Ω)) for all n ∈ N and limn→∞ ‖F − Fn‖L1(0,T ;L2(Ω)) = 0.
Notice that the above definition is meaningful in the sense that, firstly, there exists a unique

function u ∈ L1(0, T ;H1
0 (Ω)) obeying (12), and secondly, u depends only on F and not on

the choice of the converging sequence {Fn, n ∈ N}. Indeed, the first claim follows from
the fact that {u(Fn), n ∈ N} is a Cauchy sequence in L1(0, T ;H1

0 (Ω)). This can be seen from
the estimate ‖u(Fn+k)− u(Fn)‖L1(0,T ;H1(Ω)) ≤ CeCT ‖u(Fn+k)− u(Fn)‖L1(0,T ;L2(Ω)) arising for

all n and k in N by applying (9) with p = 1 and κ = 1
2 to the L1(0, T ;H1

0 (Ω))-solution
u(Fn+k) − u(Fn) of the system (1) associated with u0 = 0 and F = Fn+k − Fn. Moreover, if
{F̃n, n ∈ N} is another L∞(0, T ;L2(Ω))-sequence fulfilling limn→∞ F̃n = F in L1(0, T ;L2(Ω)),

then we have
∥∥∥u(Fn)− u(F̃n)

∥∥∥
L1(0,T ;H1(Ω))

≤ CeCT
∥∥∥Fn − F̃n∥∥∥

L1(0,T ;L2(Ω))
from (9) with p = 1

and κ = 1
2 , since u(Fn) − u(F̃n) is a solution to the IBVP (1) associated with u0 = 0 and

F = Fn − F̃n. As a consequence Theorem 1.1 with T ∈ (0,+∞) and Theorem 1.2 remain valid
with F ∈ L1(0, T ;L2(Ω)). In particular, we infer from (9) that the solution u to (1) associated
with u0 = 0 and F ∈ L1(0, T ;L2(Ω)), fulfills

‖u‖Lp(0,T ;H2κ(Ω)) ≤ CeCT ‖F‖L1(0,T ;L2(Ω)), κ ∈ [0, 1), p ∈
[
1,

1

1− α0(1− κ)

)
. (13)

Similarly, it is apparent that the statement of Theorem 1.3 still holds for T ∈ (0,+∞) and
F ∈ L2(Q).

1.5 Brief comments and outline

To our best knowledge, the only mathematical paper besides this one, dealing with the existence
and uniqueness issues for solutions to DO fractional diffusion equations, is [9]. But the analysis
carried out in [9] is different from the one of the present paper in many aspects. As already
mentioned in Section 1, the approach of [9] is variational whereas we study the original function
of the solution to the Laplace transform of (1). This allows us to show existence of a unique weak
solution to (1) within the class C((0, T ], L2(Ω)) (and even C([0, T ], L2(Ω)) if u0 = 0), whereas the
solution exhibited in [9] lies in L2(Q). Similarly, it is unclear whether the improved regularity
estimates (7)-(9) or the time analyticity of the weak solution can be derived from the scheme of
[9]. This being said, we stress out once more that the approach of [9] applies to non-autonomous
systems, which is not the case of the analysis presented in this text.

Finally, we point out that Definition 1.1 of a weak solution to (1) (as the original function
of the solution to the Laplace transform with respect to the time variable of this system) is
inspired by the analysis carried out in [11], which is concerned with space dependent variable
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order (VO) time-fractional diffusion equations. It is well known that the weak solution to CO
time-fractional diffusion equations can be expressed in terms of Mittag-Leffler functions, see
e.g. [4, 12]. Nevertheless, such an explicit representation formula is no longer valid for DO or
space-dependent VO time-fractional diffusion equations, as the inversion method of the Laplace
transform is technically more involved in these two cases. This specific difficulty arising from
the non-constancy of the order of DO or VO time-fractional equations is the main difference
with the analysis of their CO counterpart.

The article is organized as follows. In Section 2 we prove Theorem 1.1 by showing existence
of a unique weak solution to the IBVP (1), enjoying a Duhamel-like representation formula.
Section 3 contains the proof of Theorems 1.2 and 1.3, based on careful analysis of the above
mentioned representation of the solution. In Section 4 we establish the time analytic property
of the solution to (1), claimed in Theorem 1.4 . Next, in Section 5, we prove Theorem 1.5
stating that the weak solution to (1) depends continuously on the distributed order weight
function, the diffusion coefficients and the electric potential. Finally, in the appendix presented
in Section 6, we collect the proof of an auxiliary result used in the derivation of Theorem 1.3.

2 Representation of the solution: proof of Theorem 1.1

The proof of Theorem 1.1 is based on an effective representation of the solution to the IBVP
(1), that is derived in Section 2.2 and presented in Proposition 2.1. As a preamble, several

useful properties of the function s 7→ w(s) =
∫ 1

0
sα−1µ(α)dα, that are needed by the proofs of

Proposition 2.1 and Theorems 1.1 and 1.3, are collected in the coming section.

2.1 Three auxiliary results on w

We start by lower bounding |sw(s) + λ| with respect to λ, uniformly in s ∈ C \ R− and λ ∈
(0,+∞), where R− := (−∞, 0].

Lemma 2.1. Let µ ∈ L∞(0, 1) be non-negative. Then, for all λ ∈ (0,+∞) and all s = re±iβ,
where r ∈ (0,+∞) and β ∈ [0, π), we have

|sw(s) + λ| ≥ Cβλ with Cβ :=

{
1 if β ∈

[
0, π2

]
,

sin β
2 if β ∈

(
π
2 , π

)
.

(14)

Moreover, if β ∈
(
π
2 , π

)
, then we have in addition:

λν |sw(s)|1−ν

|sw(s) + λ|
≤ 2

sinβ
, ν ∈ [0, 1]. (15)

Proof. We start with (14). The case of β ∈
[
0, π2

]
is easily treated, as we have

Re (sw(s)) =

∫ 1

0

rα cos(αβ)µ(α)dα ≥ 0,

since µ is non-negative, and consequently Re (sw(s) + λ) ≥ λ. In order to examine the case
where β ∈

(
π
2 , π

)
, we put

f(s) :=

∫ π
2β

0

rα cos(αβ)µ(α)dα and g(s) :=

∫ 1

π
2β

rα| cos(αβ)|µ(α)dα, (16)

in such a way that we have
Re (sw(s)) = f(s)− g(s), (17)
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with

f(s) ≥ 0 and 0 ≤ g(s) ≤ Im (sw(s))

sinβ
. (18)

In the last inequality of (18), we used the fact that sin(αβ) ≥ sinβ > 0 for all α ∈
[
π
2β , 1

]
in

order to write g(s) ≤
∫ 1
π
2β
rαµ(α)dα ≤

∫ 1
π
2β

rα sin(αβ)µ(α)dα

sin β . Therefore, if Im (sw(s)) ≤ λ sin β
2

then we get from (17)-(18) that Re (sw(s) + λ) ≥ λ
2 , which yields (14).

We turn now to proving (15). To this end, we infer from (17)-(18) that

λν ( Im (sw(s)))
1−ν

|sw(s) + λ|
≤
(

2

sinβ

)ν
, ν ∈ [0, 1]. (19)

Indeed, we have already noticed that for Im (sw(s)) ≤ λ sin β
2 we have Re (sw(s) + λ) ≥ λ

2 ,
whence

|sw(s) + λ| ≥

√(
λ

2

)2

+ ( Im (sw(s)))2 ≥
(
λ

2

)ν
( Im (sw(s)))

1−ν
, ν ∈ [0, 1].

On the other hand, if Im (sw(s)) > λ sin β
2 then it holds true that

|sw(s) + λ| ≥ Im (sw(s)) ≥
(
λ sinβ

2

)ν
( Im (sw(s)))

1−ν
, ν ∈ [0, 1].

Having established (19), we are now in position to prove (15). To do that, we refer once more
to (17)-(18) and examine the two cases f(s) ≥ g(s) and f(s) < g(s) separately. We start with
f(s) ≥ g(s), involving Re (sw(s)) ≥ 0 in virtue of (17). Thus we get

|sw(s) + λ| ≥
√
λ2 + |sw(s)|2 ≥ λν |sw(s)|1−ν , ν ∈ [0, 1],

since λ ∈ (0,+∞), which entails (15). On the other hand, if f(s) < g(s) then it holds true that

|Re (sw(s))| = g(s)− f(s) ≤ g(s) ≤ Im (sw(s))

sinβ
,

from (17)-(18). As a consequence we have |sw(s)| ≤
√

1 +
(

1
sin β

)2

Im (sw(s)), which, combined

with (19), yields (15).

The second result provides for all s ∈ C \ R− and all λ ∈ (0,+∞), a suitable lower bound
on |sw(s) + λ|, expressed in terms of |s|.

Lemma 2.2. Let µ ∈ L∞(0, 1;R+) fulfill (6). Then, there exists a constant C, depending only
on δ, α0 and µ, such that we have

|sw(s) + λ| ≥ C min(|s|α0−δ, |s|α0), s ∈ C \ R−, λ ∈ (0,+∞). (20)

Proof. Let us first consider the case where s = reiβ with r ∈ (0,+∞) and β ∈
[
−π2 ,

π
2

]
. Since

cos(αβ) ≥ 0 for every α ∈ [0, 1], then we have

|sw(s) + λ| ≥
∫ 1

0

rα cos(αβ)µ(α)dα+ λ ≥
∫ α0

α0−δ
rα cos(αβ)µ(α)dα,
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in virtue of (6), so we obtain (20) with C := δµ(α0)
2 cos

(
α0π

2

)
. Similarly, if |β| ∈

(
π
2 , π

)
we infer

from (6) that

|sw(s) + λ| ≥
∫ 1

0

rα|sin(αβ)|µ(α)dα ≥
∫ α0

α0−δ
rα|sin(αβ)|µ(α)dα,

which yields (20) with C := δµ(α0)
2 min

(
sin
(

(α0−δ)π
2

)
, sin(α0π)

)
.

Finally, we estimate from above the mapping s 7→ |w(s)| (resp., s 7→ |sw(s)|) by a suitable
continuous monotically decreasing (resp., increasing) function of |s|.

Lemma 2.3. Assume that µ ∈ L∞(0, 1) is non-negative. Then, for all s ∈ C \ R−, we have

|sw(s)| ≤ ‖µ‖L∞(0,1)ζ(|s|) and |w(s)| ≤ ‖µ‖L∞(0,1)ϑ(|s|), (21)

where:

(a) The mapping

ζ : r 7→
{ r−1

log r if r ∈ (0, 1) ∪ (1,+∞),

1 if r = 1,

is continuous and monotonically increasing on (0,+∞);

(b) The function ϑ(r) = ζ(r)
r is continuous and monotonically decreasing on (0,+∞).

Proof. Since |sw(s)| ≤
∫ 1

0
|s|αµ(α)dα ≤ ‖µ‖L∞(0,1)

∫ 1

0
|s|αdα from the very definition of w, we

get (21). Next, for all r ∈ (0, 1) ∪ (1,+∞), it holds true that ζ ′(r) = h(r)
r(log r)2 with h(r) :=

r log r − r + 1. Further, since h′(r) = log r, we have h(r) ≥ h(1) = 0 for all r ∈ (0, 1), giving
ζ ′(r) ≥ 0 and hence Statement (a). Finally, Statement (b) follows from the identity ϑ(r) = ζ

(
1
r

)
for all r ∈ (0,+∞).

Armed with the three above lemmas, we may now turn to showing that the IBVP (1) admits
a unique solution enjoying a Duhamel representation formula.

2.2 A representation formula

For ε ∈ (0,+∞) and θ ∈
(
π
2 , π

)
, we introduce the following contour in C,

γ(ε, θ) := γ−(ε, θ) ∪ γc(ε, θ) ∪ γ+(ε, θ), (22)

where

γ±(ε, θ) := {s ∈ C, arg s = ±θ, |s| ≥ ε} and γc(ε, θ) := {s ∈ C, |arg s| ≤ θ, |s| = ε}. (23)

It will prove to be useful for describing the weak solution to the IBVP (1), which is the purpose
of the following result.

Proposition 2.1. Let µ, T , u0 and F be the same as in Theorem 1.1. Then, there exists a
unique weak solution

u(t) = S0(t)u0 +

∫ t

0

S1(t− τ)F (τ)dτ, t ∈ [0, T ], (24)

to the IBVP (1), where we have set

S0(t)ψ :=
1

2πi

+∞∑
n=1

(∫
γ(ε,θ)

w(s)

sw(s) + λn
estds

)
〈ψ,ϕn〉L2(Ω)ϕn, (25)
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and

S1(t)ψ :=
1

2πi

+∞∑
n=1

(∫
γ(ε,θ)

1

sw(s) + λn
estds

)
〈ψ,ϕn〉L2(Ω)ϕn, (26)

for all ψ ∈ L2(Ω), the two above integrals being independent of the choice of ε ∈ (0,+∞) and
θ ∈

(
π
2 , π

)
.

Proof. The proof is divided into two steps, the first one being concerned with the case of a uni-
formly vanishing source term F , whereas the second one deals with an identically zero initial
state u0.

1) Step 1: F = 0. In order to characterize S0 we assume that F = 0 and put

Y (s)u0 :=

∞∑
n=1

w(s)

s2(sw(s) + λn)
〈u0, ϕn〉L2(Ω)ϕn, s ∈ C \ R−. (27)

For all r ∈ [2,+∞) and η ∈ R, it is clear from (14) and the estimate |w(r + iη)| ≤ ‖µ‖L∞(0,1)

log r ,

arising from the second inequality of (21) and Statement (b) in Lemma 2.3, that the inequality

∣∣〈Y (r + iη)u0, ϕn〉L2(Ω)

∣∣ ≤ c ∣∣〈u0, ϕn〉L2(Ω)

∣∣
λn(r2 + η2)

≤ c
∣∣〈u0, ϕn〉L2(Ω)

∣∣
λn(4 + η2)

, n ∈ N, (28)

holds with c :=
‖µ‖L∞(0,1)

log 2 . Therefore we have

sup
r∈[2,+∞)

‖Y (r + i·)u0‖Lk(R,L2(Ω)) < +∞, k = 1, 2. (29)

From (29) with k = 1, it then follows that the function

ỹ(t) :=
1

2πi

∫ +i∞

−i∞
etsY (s+ 2)u0dp =

1

2π

∫ +∞

−∞
eitηY (2 + iη)u0dη,

is well defined for each t ∈ R. Moreover, since the mapping s 7→ etsY (s+ 2)u0 is holomorphic
in C \ (−∞,−2], we have

ỹ(t) =
1

2πi

∫ ρ+i∞

ρ−i∞
etsY (s+ 2)u0ds, ρ ∈ (0,+∞). (30)

Indeed, for all R ∈ (1,+∞) and all ρ ∈ (0,+∞), the Cauchy formula yields∫ iR

−iR

etsY (s+ 2)u0ds =

∫ ρ+iR

ρ−iR

etsY (s+ 2)u0ds−
∫
I+
R,ρ∪I

−
R,ρ

etsY (s+ 2)u0ds, (31)

with I+
R,ρ := [iR, iR+ ρ] and I−R,ρ := [−iR+ ρ,−iR], and we know from (28) that∥∥∥∥∥

∫
I±R,ρ

etsY (s+ 2)u0ds

∥∥∥∥∥
L2(Ω)

≤
∥∥∥∥∫ ρ

0

et(τ±iR)Y (τ + 2± iR)u0dτ

∥∥∥∥
L2(Ω)

≤ Cρeρt|2±iR|−2‖u0‖L2(Ω),

so we find (30) by sending R to infinity in (31).
Further, with reference to (29) with k = 1, we infer from (30) that

‖ỹ(t)‖L2(Ω) =
1

2π

∥∥∥∥∫ +∞

−∞
et(ρ+iη)Y (ρ+ 2 + iη)u0dη

∥∥∥∥
L2(Ω)

≤ eρt

2π
sup

r∈[2,+∞)

‖Y (r + i·)u0‖L1(R,L2(Ω)),
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uniformly in t ∈ R and ρ ∈ (0,+∞). Then, depending on whether t ∈ (−∞, 0) or t ∈ [0,+∞),
we send ρ to either infinity or to zero in the right hand side of the above estimate, and get:

‖ỹ‖L∞(R,L2(Ω)) ≤
1

2π
sup

r∈[2,+∞)

‖Y (r + i·)u0‖L1(R,L2(Ω)) and ỹ(t) = 0 for all t ∈ (−∞, 0). (32)

As a consequence we have ỹ ∈ L∞(R, L2(Ω)) ∩ S ′(R+, L
2(Ω)).

Moreover, in light of (29), we infer from [23, Theorem 19.2 and the following remark] and
the holomorphicity of s 7→ Y (s+ 2) in C+, that L[ỹ](s) = Y (s+ 2) for all s ∈ C+. Therefore,
putting

y(t) := e2tỹ(t) =
e2t

2πi

∫ +i∞

−i∞
etpY (s+ 2)u0ds =

1

2πi

∫ 2+i∞

2−i∞
estY (s)u0ds, t ∈ R,

we find that
L[y](s) = L[ỹ](s− 2) = Y (s), s ∈ {z ∈ C; Re z ∈ (2,+∞)}. (33)

Further, since the mapping s 7→ etsY (s)a is holomorphic in C \R−, the Cauchy formula yields

y(t) =
1

2πi

∫
γ(ε,θ)

etsY (s)u0ds, t ∈ R+, (34)

for all θ ∈
(
π
2 , π

)
and all ε ∈ (0, 1), the contour γ(ε, θ) being defined by (22)-(23). Here, we

used the fact that

lim
η→+∞

∫ 2±iη

η((tan θ)−1±i)

etsY (s)u0ds = 0 in L2(Ω), t ∈ R+.

This can be easily deduced from the following basic estimate, arising from Lemma 2.1, the
second inequality of (21) and the second statement of Lemma 2.3,∥∥∥∥∥

∫ 2±iη

η((tan θ)−1±i)

etsY (s)u0ds

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥
∫ 2

η(tan θ)−1

et(2±iη)Y (r ± iη)u0dr

∥∥∥∥∥
L2(Ω)

≤ Ce2t(2− η(tan θ)−1)η−2‖u0‖L2(Ω), η ∈ (1,+∞),

where C is positive constant depending only on θ and µ. We turn now to examining the right
hand side of (34). To this purpose, we write for all t ∈ R+,

y(t) =
∑

`∈{c,±}

y`(t) with y`(t) :=
1

2πi

∫
γ`(ε,θ)

etsY (s)u0ds for ` ∈ {c,±},

and we infer from (14), the second inequality of (21) and Statement (b) in Lemma 2.3, that

‖y±(t)‖L2(Ω) ≤
‖µ‖L∞(0,1)

πλ1 sin θ
‖u0‖L2(Ω)ϑ(ε)

∫ +∞

ε

r−2er(cos θ)tdr (35)

and

‖yc(t)‖L2(Ω) ≤
‖µ‖L∞(0,1)(2θ)

1
2

πλ1 sin θ
‖u0‖L2(Ω)ε

− 3
2ϑ(ε)eεt. (36)

For t ∈ [0, e], we take ε = e−1 in (35)-(36) and get ‖y±(t)‖L2(Ω)+‖yc(t)‖L2(Ω) ≤ c(θ, µ)‖u0‖L2(Ω),

where c(θ, µ) denotes a generic positive constant depending only on θ and µ. Similarly, for
t ∈ (e,+∞), we choose ε = t−1, take into account that ϑ(t−1) ≤ t, and obtain ‖y±(t)‖L2(Ω) +

‖yc(t)‖L2(Ω) ≤ c(θ, µ)‖u0‖L2(Ω)t
5
2 . Thus, setting 〈t〉 := (1 + t2)

1
2 , we find that

‖y(t)‖L2(Ω) ≤ c(θ, µ)‖u0‖L2(Ω)〈t〉
5
2 , t ∈ R+,
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which entails t 7→ 〈t〉− 5
2 y(t) ∈ L∞(R+, L

2(Ω)) and hence y ∈ S ′(R+, L
2(Ω)), by (32).

Next, as both functions s 7→ L[y](s) and s 7→ Y (s) are holomorphic in C+, (33) yields
L[y](s) = Y (s) for all s ∈ C+, by unique continuation. As a consequence the Laplace transform
of u := ∂2

t y ∈ S ′(R+, L
2(Ω)) reads

L[u](s) = s2Y (s) =

∞∑
n=1

w(s)

sw(s) + λn
〈u0, ϕn〉L2(Ω)ϕn, s ∈ C+,

which establishes for each s ∈ C+ that L[u](s) is a solution to (5) with F = 0. Moreover, since
the operator A is positive and sw(s) ∈ [0,+∞) for all s ∈ (0,+∞), then A+sw(s) is boundedly
invertible in L2(Ω). Therefore, L[u](s) = (A + sw(s))−1w(s)u0 is uniquely defined by (5) and
the same is true for u, by injectivity of the Laplace transform.

It remains to prove that u is expressed by (24) with F = 0. This can be done by noticing
for all s ∈ γ(ε, θ) that the function t 7→ Y (s)estu0 is twice continuously differentiable in R+

and for all t ∈ (0,+∞) that s 7→ skY (s)estu0 ∈ L1(γ(ε, θ)) with k = 1, 2. As a matter of fact,
we have∥∥skY (s)estu0

∥∥
L2(Ω)

≤
2‖µ‖L∞(0,1)

λ1 sin θ
ϑ(ε)|s|k−2e|s|(cos θ)t‖u0‖L2(Ω), k = 1, 2, s ∈ γ±(ε, θ), t ∈ R+,

from the definition (27) of Y , Lemma 2.1 and Statement (b) in Lemma 2.3, whence r 7→
rkY (re±iθ)er(cos θ)t ∈ L1(ε,+∞). Therefore, with reference to (25) we deduce from (34) that
u(t) = S0(t)u0 for all t ∈ (0,+∞). This yields u ∈ C((0, T ], L2(Ω)) and completes the proof of
the result when F = 0. We turn now to examining the case where u0 = 0.

2) Step 2: u0 = 0. For s ∈ C \ R−, we introduce the family of bounded operators in L2(Ω),

Φ(s)ψ :=

∞∑
n=1

1

s(sw(s) + λn)
〈ψ,ϕn〉L2(Ω)ϕn, ψ ∈ L2(Ω), (37)

and we recall from (20) that

‖Φ(s)‖B(L2(Ω)) ≤ C max(|s|−1−α0 , |s|−1−α0+δ
), s ∈ z ∈ C \ R−, (38)

for some positive constant C, depending only on µ, in such a way that we have

sup
r∈[1,+∞)

‖Φ(r + i·)‖Lk(R,B(L2(Ω))) < +∞, k = 1, 2. (39)

Thus, by arguing in the same way as in Step 1, we infer from (38)-(39) that

φ(t) :=
1

2πi

∫ 1+i∞

1−i∞
etsΦ(s)ds =

{
0 if t ∈ (−∞, 0),

1
2πi

∫
γ(ε,θ)

etsΦ(s)ds if t ∈ [0,+∞),
(40)

for arbitrary ε ∈ (0, 1) and θ ∈
(
π
2 , π

)
, the contour γ(ε, θ) being still defined by (22)-(23).

Moreover, using (38), we find that

t 7→ 〈t〉−m0φ(t) ∈ L∞(R,B(L2(Ω))) with m0 := 1 + α0. (41)

As a consequence we have φ ∈ S ′(R+,B(L2(Ω))) and

L[φψ](s) = Φ(s)ψ, s ∈ C+, ψ ∈ L2(Ω). (42)

Let us denote by F̃ the function t 7→ F (t, ·) extended by zero in R \ (0, T ), and put

(φ ∗ F̃ )(t) :=

∫ t

0

φ(t− τ)F̃ (τ)dτ, t ∈ R. (43)
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Evidently, φ ∗ F̃ ∈ S ′(R+, L
2(Ω)) when T ∈ (0,+∞), whereas for T = +∞, the assumption

t 7→ 〈t〉−mF (t, ·) ∈ L∞(R+, L
2(Ω)) yields∥∥∥(φ ∗ F̃ )(t)

∥∥∥
L2(Ω)

≤
∥∥〈t〉−m0φ

∥∥
L∞(R+,B(L2(Ω)))

∥∥〈t〉−mF∥∥
L∞(R+,L2(Ω))

〈t〉1+m+m0 , t ∈ (0,+∞),

(44)

and hence φ ∗ F̃ ∈ S ′(R+, L
2(Ω)) as well. Further, as we have inf{ε ∈ (0,+∞); t 7→ e−εtφ(t) ∈

L1(0,+∞;B(L2(Ω)))} = 0 by (41) and inf{ε ∈ (0,+∞); t 7→ e−εtF̃ (t) ∈ L1(0,+∞;L2(Ω))} = 0
from the assumption t 7→ 〈t〉−mF (t, ·) ∈ L∞(R+, L

2(Ω)), then it holds true for all s ∈ C+ that

L[φ](s) =
∫ +∞

0
φ(t)e−stdt and F̂ (s) := L[F̃ ](s) =

∫ +∞
0

F̃ (t)e−stdt. From this and (44) it then

follows that L[φ ∗ F̃ ](s) = L[φ](s)L[F̃ ](s). As a consequence the function v := ∂t(φ ∗ F̃ ) ∈
S ′(R+, L

2(Ω)) fulfills

L[v](s) = sL[φ ∗ F̃ ](s) =

+∞∑
n=1

1

sw(s) + λn
〈F̂ (s), ϕn〉L2(Ω)ϕn, s ∈ C+,

in virtue of (42), showing that L[v](s) is a solution to (5) for all s ∈ (0,+∞).
It remains to show that

v(t) =

∫ t

0

S1(t− τ)F̃ (τ)dτ, t ∈ (0,+∞). (45)

To do that, we refer to (40) and (43), apply Fubini’s theorem, and obtain

(φ ∗ F̃ )(t) =
1

2πi

∫
γ(ε,θ)

p(s, t)ds with p(s, t) :=

∫ t

0

e(t−τ)sΦ(s)F̃ (τ)dτ, t ∈ (0,+∞).

Therefore, we have ∂tp(s, t) = Φ(s)F̃ (t) + s
∫ t

0
e(t−τ)sΦ(s)F̃ (τ)dτ for all s ∈ γ(ε, θ) and t ∈

(0,+∞), and consequently

‖∂tp(s, t)‖L2(Ω) ≤ ‖Φ(s)‖B(L2(Ω))

(∥∥∥F̃ (t)
∥∥∥
L2(Ω)

+

∣∣∣∣s∫ t

0

eτsdτ

∣∣∣∣∥∥∥F̃∥∥∥
L∞(0,t+1;L2(Ω))

)
≤

(
1 + |s|

∫ t

0

eτ Re sdτ

)
‖Φ(s)‖B(L2(Ω))

∥∥∥F̃∥∥∥
L∞(0,t+1;L2(Ω))

.

Putting this with (38), we get that ‖∂tp(s, t)‖L2(Ω) ≤ Cq(s, t)
∥∥∥F̃∥∥∥

L∞(0,t+1;L2(Ω))
for some pos-

itive constant C depending only on µ, and

q(s, t) :=

{
max(|s|−1−α0+δ

, |s|−1−α0)|cos θ|−1
if s ∈ γ±(ε, θ),

max(ε−1−α0+δ, ε−1−α0)(1 + etε) if s ∈ γc(ε, θ).

As s 7→ q(s, t) ∈ L1(γ(ε, θ)) for each t ∈ (0,+∞), then we have

v(t) = ∂t(φ ∗ F̃ )(t) =
1

2πi

∫
γ(ε,θ)

∂tp(s, t)ds

=
1

2πi

∫
γ(ε,θ)

∫ t

0

e(t−τ)ssΦ(s)F̃ (τ)dτds+ r(ε, θ)F̃ (t), (46)

with r(ε, θ) := 1
2πi

∫
γ(ε,θ)

Φ(s)ds. The next step is to prove that r(ε, θ) = 0. For R ∈ (1,+∞),

put CR(θ) := {Reiβ , β ∈ [−θ, θ]} and γR(ε, θ) := {s ∈ γ(ε, θ), |s| ≤ R}. In light of Lemma
2.2, we have for all n ∈ N,∫

γR(ε,θ)

1

s(sw(s) + λn)
ds−

∫
CR(θ)

1

s(sw(s) + λn)
ds = 0, (47)
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by the Cauchy theorem, with
∣∣∣∫CR(θ)

1
s(sw(s)+λn)ds

∣∣∣ ≤ 2CθR−α0+δ, the constant C being inde-

pendent of R and n. Thus, sending R to infinity in (47), we get that
∫
γ(ε,θ)

1
s(sw(s)+λn)ds = 0

for every n ∈ N, whence
∫
γ(ε,θ)

Φ(s)ds = 0. From this and (46) we get (45) upon applying the

Fubini theorem. Hence u := v|Q is a weak solution to (5) with u0 = 0, expressed by (24), which
establishes that u ∈ C((0, T ], L2(Ω)).

Finally, since a weak solution to (5) is necessarily unique in virtue of Definition 1.1 then the
desired result follows readily from Step 1 and Step 2 by invoking the superposition principle.

Theorem 1.1 being a straightforward byproduct of Proposition 2.1, we may now turn to
proving Theorems 1.2 and 1.3.

3 Improved regularity: proof of Theorems 1.2 and 1.3

The proof of Theorems 1.2 and 1.3 is by means of suitable time-decay estimates for the operators
Sj , j = 1, 2, introduced in Proposition 2.1, that are established in the coming section.

3.1 Time-decay estimates

We start with S0.

Lemma 3.1. Let the weight function µ ∈ L∞(0, 1) be non-negative. Then, for all γ and τ in
(0, 1], with γ ≤ τ , there exists a positive constant C, depending only on θ, µ, λ1, τ and γ, such
that the estimate

‖AτS0(t)ψ‖L2(Ω) ≤ CeT ‖ψ‖D(Aγ)t
γ−τ

holds uniformly in t ∈ (0, T ] and ψ ∈ D(Aγ).

Proof. In light of (25), it is enough to estimate

En(t) :=
1

2πi

∫
γ(ε,θ)

w(s)

sw(s) + λn
estds, (48)

for all t ∈ (0, T ) and n ∈ N. With reference to (22)-(23), we have

En(t) =
∑

j∈{c,±}

En,j(t) where En,j(t) :=
1

2πi

∫
γj(ε,θ)

w(s)

sw(s) + λn
estds for j ∈ {c,±}. (49)

We shall treat each of the three terms En,j(t), j ∈ {c,±}, separately.
We start with En,c(t). As a preamble, we choose ε ∈ (0, 1) so small that

ε < min
(
ηλ1, ζ

−1(ηλ1)
)
, (50)

where η := 1
2‖µ‖L∞(0,1)

and ζ−1 denotes the function inverse to ζ on (0,+∞), whose ex-

istence is guaranteed by Statement (a) in Lemma 2.3. As a matter of fact we may take
ε := 1

2 min
(
1, ηλ1, ζ

−1(ηλ1)
)

in such a way that ε is entirely determined by λ1 and ‖µ‖L∞(0,1).

In light of (21) and (50), we have |sw(s) + λn| ≥ λn
2 for all s ∈ γc(ε, θ), and consequently

|En,c(t)| ≤
eTλ1

λn
, t ∈ [0, T ], n ∈ N. (51)

We turn now to estimating En,±(t). Bearing in mind that γ±(θ, ε) = {re±iθ, r ∈ (ε,+∞)},
we decompose En,± into the sum

En,±(t) =
∑
k=1,2

En,±,k(t), (52)
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where En,±,k(t) := 1
2πi

∫
In,k

e±iθw(re±iθ)
re±iθw(re±iθ)+λn

erte
±iθ

dr for k = 1, 2, In,1 := (ε, ηλn) and In,2 :=

(ηλn,+∞). Notice from (50) that ε ∈ (0, ηλn) and hence that the interval In,1 is non-empty.
Next, for all r ∈ In,1, it is clear from (14) that

∣∣re±iθw(re±iθ) + λn
∣∣ ≥ λn sin θ

2 , and from the
second inequality of (21) combined with Lemma 2.3, that∣∣w(re±iθ)

∣∣ ≤ ‖µ‖L∞(0,1)ϑ(r) ≤ ‖µ‖L∞(0,1)ϑ(ε) ≤ ‖µ‖L∞(0,1)
ζ(ε)

ε
≤ ‖µ‖L∞(0,1)

ηλ1

ε
≤ λ1

2ε
.

As a consequence we have

|En,±,1(t)| ≤ 1

2π

∫ ηλn

ε

|e±iθw(re±iθ)|
|re±iθw(re±iθ) + λn|

e−rt|cos θ|dr ≤ λ1

2πελn sin θ

∫ ηλn

ε

e−rt|cos θ|dr

whence

|En,±,1(t)| ≤ C

λntτ−γ

∫ ηλn

ε

dr

rτ−γ
≤ C

λτ−γn tτ−γ
. (53)

Here and in the remaining part of this proof, C denotes a positive constant depending only
on θ, ‖µ‖L∞(0,1), λ1, τ and γ, that may change from line to line. Further, applying (15) with
ν = 0, we get that

|En,±,2(t)| ≤ 1

2π

∫ +∞

ηλn

|re±iθw(re±iθ)|
|re±iθw(re±iθ) + λn|

e−rt| cos θ| dr

r
≤ 1

π sin θ

∫ +∞

ηλn

e−rt|cos θ| dr

r
,

which entails

|En,±,2(t)| ≤ C

tτ−γ

∫ +∞

ηλn

dr

r1+τ−γ ≤
C

λτ−γn tτ−γ
. (54)

Now, putting (49) and (51)–(54) together, we find that

λτn|En(t)| ≤ CeTλγnt
γ−τ , t ∈ (0, T ],

Therefore, for all ψ ∈ D(Aγ) and all t ∈ (0, T ], we have

‖AτS0(t)ψ‖2L2(Ω) =

∞∑
n=1

λ2τ
n |En(t)|2

∣∣〈ψ,ϕn〉L2(Ω)

∣∣2 ≤ C2e2T t2(γ−τ)
∞∑
n=1

λ2γ
n

∣∣〈ψ,ϕn〉L2(Ω)

∣∣2,
which yields the desired result.

We turn now to examining the time-evolution of the operator S1.

Lemma 3.2. Assume that µ ∈ L∞(0, 1) is non-negative and satisfies (6). Then, for all κ ∈
[0, 1) and all β ∈ (1−α0(1−κ), 1), there exists a positive constant C, depending only on θ, λ1,
µ, κ and β, such that the estimate

‖AκS1(t)ψ‖L2(Ω) ≤ CeT ‖ψ‖L2(Ω)t
−β ,

holds uniformly in t ∈ (0, T ] and ψ ∈ L2(Ω).

Proof. We proceed as in the proof of Lemma 3.1, the main novelty being that the function
t ∈ (0, T ] 7→ En(t), defined by (48) for all n ∈ N, is replaced by

Gn(t) :=
1

2πi

∫
γ(ε,θ)

1

sw(s) + λn
estds. (55)

With reference to (22)-(23), we write

Gn(t) =
∑

j∈{c,±}

Gn,j(t) with Gn,j(t) :=
1

2πi

∫
γj(ε,θ)

1

sw(s) + λn
estds for j ∈ {c,±}, ε ∈ (0, 1),

(56)
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and set ε = 1
2 min

(
1, ηλ1, ζ

−1(ηλ1)
)
, where η = 1

2‖µ‖L∞(0,1)
, as in the proof of Lemma 3.1.

Thus, using (21) and (50), we find upon arguing as in the derivation of (51), that

|Gn,c(t)| ≤
2eT

λn
, t ∈ (0, T ], n ∈ N. (57)

The rest of the proof is to estimate Gn,±(t). Firstly, we split Gn,±(t) into the sum

Gn,±(t) =
∑
k=1,2

Gn,±,k(t), (58)

where Gn,±,k(t) := 1
2πi

∫
In,k

e±iθ

re±iθw(re±iθ)+λn
ere
±iθtdr for k = 1, 2, In,1 = (ε, ηλn) and In,2 =

(ηλn,+∞). By mimicking the proof of (53), we obtain for all t ∈ (0, T ] and all n ∈ N, that

|Gn,±,1(t)| ≤ 1

πλn sin θ

∫ ηλn

ε

e−r| cos θ|tdr ≤ C

λκnt
κ
, (59)

where C is a positive constant depending only on θ, ‖µ‖L∞(0,1) and κ. Next, we estimate
Gn,±,2(t) by applying (15) with ν = κ,

|Gn,±,2(t)| ≤ 1

2πλκn

∫ +∞

ηλn

λκn|re±iθw(re±iθ)|1−κ

|re±iθw(re±iθe±iθ) + λn|
e−r| cos θ|t

|re±iθw(re±iθ)|1−κ
dr

≤ 1

λκn sin θ

∫ +∞

ηλn

e−r| cos θ|t

|re±iθw(re±iθ)|1−κ
dr, (60)

and bounding from below with the aid of (6) the denominator of the integrand in the last

integral. Indeed, we have
∣∣re±iθw(re±iθ)

∣∣ ≥ | Im (re±iθw(re±iθ))| ≥
∫ 1

0
rα sin(αθ)µ(α)dα for all

r ∈ (ηλn,+∞), hence
∣∣re±iθw(re±iθ)

∣∣ ≥ min(sin((α0 − δ)θ), sin(α0θ))
µ(α0)

2

∫ α0

α0−δ r
αdα. Conse-

quently there exists a positive constant c0, depending only on θ, µ and ρ, such that∣∣re±iθw(re±iθ)
∣∣ ≥ c0rρ, ρ ∈ (α0 − δ, α0). (61)

Next, applying (61) with ρ ∈
(

max
(
α0 − δ, 1−β

1−κ

)
, α0

)
for some fixed β ∈ (1 − α0(1 − κ), 1),

we infer from (60) that

|Gn,±,2(t)| ≤ C

λκnt
β

∫ +∞

ηλn

dr

rβ+ρ(1−κ)
≤ C

λκnt
β
, (62)

where C is a positive constant depending only on θ, λ1, µ, κ and β. Now, putting (56)–(59)
and (62) together, we obtain that

|Gn(t)| ≤ CeT

λκnt
β
, t ∈ (0, T ], n ∈ N. (63)

Finally, recalling (26), (55) and (63), we end up getting for all ψ ∈ L2(Ω) that

‖AκS1(t)ψ‖2L2(Ω) =

∞∑
n=1

λ2κ
n |Gn(t)|2

∣∣〈ψ,ϕn〉L2(Ω)

∣∣2 ≤ C2e2T t−2β
∞∑
n=1

∣∣〈ψ,ϕn〉L2(Ω)

∣∣2,
and the desired result follows from this and the Parseval identity.

Having established Lemmas 3.1 and 3.2, we may now prove Theorem 1.2.
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3.2 Proof of Theorem 1.2

We examine the two cases F = 0 and u0 = 0 separately.

a) We first assume that a ∈ D(Aγ) for some γ ∈ (0, 1], and that F = 0. Then, by applying
Lemma 3.1 with τ = 1, we get that

‖AS0(t)u0‖L2(Ω) ≤ CeT ‖Aγu0‖L2(Ω)t
γ−1, t ∈ (0, T ].

This and (24) yield (7) in virtue of the equivalence of the norms in H2(Ω) and in D(A).
Let us now prove (8). We stick with the notations used in the proof of Lemmas 3.1 and 3.2

and establish for every β ∈ (1− α0γ, 1) that∣∣∣∣dEn(t)

dt

∣∣∣∣ ≤ CeTλγnt
−β , t ∈ (0, T ], n ∈ N, (64)

where C is the constant appearing in (63). This can be done with the aid of (48), (55) and the
Cauchy theorem, involving

dEn(t)

dt
=

1

2πi

∫
γ(ε,θ)

sw(s)

sw(s) + λn
estds = − 1

2πi

∫
γ(ε,θ)

λn
sw(s) + λn

estds = −λnGn(t),

upon applying the estimate (63) with κ = 1− γ. In light of (24)-(25) and (64), we find that

‖∂tu(t)‖2L2(Ω) =

∞∑
n=1

∣∣∣∣dEn(t)

dt

∣∣∣∣2∣∣〈u0, ϕn〉L2(Ω)

∣∣2 ≤ C2e2T t−2β
∞∑
n=1

λ2γ
n

∣∣〈u0, ϕn〉L2(Ω)

∣∣2,
which leads to (8).

b) Suppose that F ∈ L1(0, T ;L2(Ω)) and u0 = 0. We recall for all κ ∈ [0, 1) and β ∈ (1 −
α0(1− κ), 1) from Lemma 3.2, that the estimate

‖AκS1(t− τ)F (τ)‖L2(Ω) ≤ CeT (t− τ)−β‖F (τ)‖L2(Ω), t ∈ (0, T ], τ ∈ [0, t),

holds for some constant C ∈ (0,+∞), independent of T , t and τ . Therefore we have

‖Aκu(t)‖L2(Ω) ≤ CeT
(
τ−β ∗ ‖F (τ)‖L2(Ω)

)
(t), t ∈ (0, T ],

by (24), where ∗ stands for the convolution operator. An application of Young’s inequality then
yields (∫ T

0

‖u(t)‖pD(Aκ)dt

) 1
p

≤ CeT

(∫ T

0

t−βpdt

) 1
p ∫ T

0

‖F (t)‖L2(Ω)dt, p ∈
[
1,

1

β

]
,

and (9) follows from this and the equivalence of the norms in H2κ(Ω) and in D(Aκ).

3.3 Proof of Theorem 1.3

The derivation of Theorem 1.3 essentially relies on the following technical result, whose proof
is postponed to the appendix.

Lemma 3.3. Assume that µ ∈ C([0, 1],R+) fulfills the condition (6) and let Gn, for n ∈ N, be
defined by (55). Then, we have

Gn(t) = − 1

π

∫ +∞

0

Φn(r)e−rtdr, t ∈ (0, T ), (65)
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with

Φn(r) :=

∫ 1

0
rα sin(πα)µ(α)dα(∫ 1

0
rα cos(πα)µ(α)dα+ λn

)2

+
(∫ 1

0
rα sin(πα)µ(α)dα

)2 . (66)

Moreover, there exists a positive constant C, such that we have∫ +∞

0

Φn(r)

r
dr ≤ C

λn
, n ∈ N. (67)

As a matter of fact we know from (24) that

‖u(t)‖2D(A) =

∥∥∥∥∫ t

0

AS1(t− τ)F (τ)dτ

∥∥∥∥2

L2(Ω)

=

∞∑
n=1

λ2
n

∣∣∣∣∫ t

0

Gn(t− τ)〈F (τ), ϕn〉L2(Ω)dτ

∣∣∣∣2, t ∈ (0, T ),

and for each n ∈ N we have∫ T

0

∣∣∣∣∫ t

0

Gn(t− τ)〈F (τ), ϕn〉L2(Ω)dτ

∣∣∣∣2dt =
∥∥Gn ∗ 〈F (·), ϕn〉L2(Ω)

∥∥2

L2(0,T )

≤ ‖Gn‖2L1(0,T )

∥∥〈F (·), ϕn〉L2(Ω)

∥∥2

L2(0,T )
,

by Young’s inequality, whence

‖u‖2L2(0,T ;D(A)) ≤
∞∑
n=1

λ2
n‖Gn‖

2
L1(0,T )

∥∥〈F (·), ϕn〉L2(Ω)

∥∥2

L2(0,T )
. (68)

Thus, we are left with the task of estimating ‖Gn‖L1(0,T ). This can be done by combining
Lemma 3.3 with Fubini’s theorem, in the same way as in the derivation of [18, Theorem 2.1].
We get for every n ∈ N that

‖Gn‖L1(0,T ) =
1

π

∫ +∞

0

Φn(r)

(∫ T

0

e−rtdt

)
dr ≤ 1

π

∫ +∞

0

Φn(r)

r
dr ≤ C

λn
,

the constant C being independent of n. This and (68) yield

‖u‖2L2(0,T ;D(A) ≤ C
+∞∑
n=1

∫ T

0

∣∣〈F (t), ϕn〉L2(Ω)

∣∣2dt ≤ C‖F‖2L2(Q),

with the aid of the Parseval identity, which establishes the result.

4 Time analyticity: proof of Theorem 1.4

With reference to Duhamel’s representation formula (24) of the weak solution to (1), we may
treat the two cases F = 0 and u0 = 0 separately. We stick with the notations of Section 2.2 and
for any open connected set O in R or C, we denote by A(O, L2(Ω)) the space of L2(Ω)-valued
analytic functions in O.

1) Step 1: F = 0. In light of Proposition 2.1, it is enough to show that the mapping t ∈
(0,+∞) 7→ S0(t)u0, where S0 is defined by (25), is extendable to an analytic map of O into
L2(Ω), where O := {reiω; r ∈ (0,+∞), ω ∈ (−θ1, θ1)} for some arbitrary θ1 ∈

(
0, θ − π

2

)
∩

(0, π − θ).
We start by noticing that |±θ + ω| ∈ (θ − θ1, θ + θ1) ⊂

(
π
2 , π

)
for all ω ∈ (−θ1, θ1) and

hence that cos(±θ + ω) ≤ cos(θ − θ1). Thus we have |ezs| ≤ e|z||s| cos(θ−θ1) for all z ∈ O and all
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s ∈ γ±(ε, θ), by (23), and (27) then yields
∥∥ezss2Y (s)u0

∥∥
L2(Ω)

≤ 2‖µ‖L∞(0,1)

λ1 sin θ ϑ(ε)e|z||s| cos(θ−θ1)

with the aid of Lemma 2.1 and Statement (b) in Lemma 2.3. Thus, taking into account that
cos(θ − θ1) ∈ (−1, 0), we get for any compact set K ⊂ O that

∥∥ezss2Y (s)u0

∥∥
L2(Ω)

≤
2‖µ‖L∞(0,1)

λ1 sin θ
ϑ(ε)edK |s| cos(θ−θ1), z ∈ K, s ∈ γ±(ε, θ), (69)

where dK := min{|z|, z ∈ K} ∈ (0,+∞). Next, since z 7→ ezss2Y (s)u0 ∈ A(O, L2(Ω)) for all
s ∈ γ±(ε, θ), we derive from (69) that z 7→ 1

2πi

∫
γ±(ε,θ)

ezss2Y (s)u0ds ∈ A(O, L2(Ω)). Further,

since the path γc(ε, θ) is finitely extended, it is easy to see that z 7→ 1
2πi

∫
γc(ε,θ)

ezss2Y (s)u0ds ∈
A(O, L2(Ω)). Therefore, using (22) we find that

z 7→ 1

2πi

∫
γ(ε,θ)

ezss2Y (s)u0ds ∈ A(O, L2(Ω)).

The desired result follows from this, (25) and (27).

2) Step 2: u0 = 0. Fix t0 ∈ (0,+∞). We shall prove existence of r ∈ (0,+∞) such that

t 7→
∫ t

0
S1(τ)F (t − τ)dτ is extendable to a holomorphic function of D(t0, r) into L2(Ω). Here,

S1 is the operator defined by (26), and for all z0 ∈ C and all R ∈ (0,+∞), we denote by
D(z0, R) := {z ∈ C; |z − z0| ∈ [0, R)} the open disk of C centered at z0 with radius R.

First, since F is extendable to a holomorphic function of Sρ into L2(Ω), we may assume
without loss of generality that F ∈ A(Sρ, L

2(Ω)). Next we pick δ1 ∈
(
0, ρ4

)
∩ (0, t0) in such

a way that z − τ ∈ D(0, ρ) ⊂ Sρ for all (z, τ) ∈ D(t0, 2δ1) × D(t0, 2δ1) and obtain that the
mapping

τ 7→ sΦ(s)eτsF (z − τ, ·) ∈ A(D(t0, 2δ1), L2(Ω)), z ∈ D(t0, 2δ1), (70)

where Φ the same as in (37).
Further, for t1 ∈ (t0 − δ1, t0) fixed, since [t1, z] ⊂ D(t0, 2δ1) for all z ∈ D(t0, 2δ1), we see

from (70) that

U∗(s, z) :=

∫
[t1,z]

sΦ(s)eτsF (z − τ, ·)dτ, s ∈ C \ R−, z ∈ D(t0, 2δ1) (71)

is well defined. Moreover, for all z ∈ D(t0, δ1) and all h ∈ D(0, δ1) \ {0}, we have

U∗(s, z + h)− U∗(s, z)
h

=
1

h

(∫
[t1,z+h]

sΦ(s)eτsF (z + h− τ, ·)dτ −
∫

[t1,z]

sΦ(s)eτsF (z + h− τ, ·)dτ

)

+

∫
[t1,z]

sΦ(s)eτs
F (z + h− τ, ·)− F (z − τ, ·)

h
dτ

=

∫
[z,z+h]

sΦ(s)eτsF (z + h− τ, ·)dτ +

∫
[t1,z]

sΦ(s)eτs
F (z + h− τ, ·)− F (z − τ, ·)

h
dτ,

and hence

lim
h→0

U∗(s, z + h)− U∗(s, z)
h

= sΦ(s)ezsF (0, ·) +

∫
[t1,z]

sΦ(s)eτs∂zF (z − τ, ·)dτ

in L2(Ω). As a consequence z 7→ U∗(s, z) ∈ A(D(t0, δ1), L2(Ω)) for all s ∈ C \ R−.
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Furthermore, using that [t1, z] ⊂ D(t0, δ1) ⊂ O for each z ∈ D(t0, δ1), we derive from (71)
that

‖U∗(s, z)‖L2(Ω) ≤ 2δ1|s|‖Φ(s)‖B(L2(Ω))‖F‖L∞(D(0,2δ1),L2(Ω))e
d(t0,δ1)|s| cos(θ±θ1), s ∈ γ±(ε, θ),

with d(t0, δ1) := inf{|z|; z ∈ D(t0, δ1)} ∈ (0,+∞). Thus, bearing in mind that θ± θ1 ∈
(
π
2 , π

)
,

we infer from this and from (38) that

‖U∗(s, z)‖L2(Ω) ≤ C|s|
−1−α0+δ

, z ∈ D(t0, δ1), s ∈ γ±(ε, θ),

for some positive constant C which is independent of s and z. Therefore z 7→
∫
γ±(ε,θ)

U∗(s, z)ds ∈
A(D(t0, δ1), L2(Ω)) and hence

z 7→
∫
γ(ε,θ)

U∗(s, z)ds ∈ A(D(t0, δ1), L2(Ω)). (72)

Similarly, by setting

U](s, z) :=

∫
[0,t1]

sΦ(s)eτsF (z − τ)dτ, s ∈ C \ R−, z ∈ D(t0, δ1), (73)

and arguing as above, we find that

z 7→
∫
γ(ε,θ)

U](s, z)ds ∈ A(D(t0, δ1), L2(Ω)). (74)

Finally, putting (24), (26), (37), (71) and (73) together, we obtain that the solution u to (1)
reads

u(t, ·) =

∫ t

0

S1(s)F (t−s)ds =
1

2πi

(∫
γ(ε,θ)

U∗(s, t)ds+

∫
γ(ε,θ)

U](s, t)ds

)
, t ∈ (t0−δ1, t0 +δ1),

and consequently u ∈ A((t0 − δ1, t0 + δ1), L2(Ω)) by (72) and (74). Since t0 is arbitrary in
(0,+∞), this entails that u ∈ A((0,+∞), L2(Ω)), completing the proof of Theorem 1.4.

5 Lipschitz stability: proof of Theorem 1.5

The strategy of the proof of the stability inequality (11) essentially follows the lines of the
derivation of [15, Theorem 2.3] and boils down to the estimates (7)-(8) established in Theorem
1.1.

For the sake of notational simplicity, we start by rewriting the IBVP (1) with F = 0 as
D(µ)
t u = La,qu in Q,

u(0, ·) = u0 in Ω,

u = 0 on Σ,

(75)

where La,qu(x, t) := div(a(x)∇u(x, t)) + q(x)u(x, t) is associated with the diffusion matrix a
and the electric potential q. Next, we notice that v := u− ũ is solution to

D(µ)
t v = La,qv + F in Q,

v(0, ·) = 0 in Ω,

v = 0 on Σ,
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with
F := D(µ̃−µ)

t ũ+ La−ã,q−q̃ũ. (76)

Thus, in light of (13), we are left with the task of estimating the L1(0, T ;L2(Ω))-norm of F .
This will be done with the help of (7)-(8), giving

‖ũ‖L1(0,T ;H2(Ω)) ≤ CeCTT γ and ‖∂tũ‖L1(0,T ;L2(Ω)) ≤ CeCTTα0γ . (77)

Here and in the remaining part of this proof, C denotes a generic positive constant depending
only on M , ca, γ, α0 and δ, which may change from line to line. Further, using the fact that
(a, q) and (ã, q̃) are in C1(Ω)× C0(Ω), we obtain that

‖Lã−a,q̃−qũ‖L1(0,T ;L2(Ω)) ≤
(
‖a− ã‖C1(Ω) + ‖q − q̃‖C0(Ω)

)
‖ũ‖L1(0,T ;H2(Ω))

≤ CeCT
(
‖a− ã‖C1(Ω) + ‖q − q̃‖C0(Ω)

)
, (78)

with the aid of (77). On the other hand, for all t ∈ (0, T ) we have∥∥∥D(µ̃−µ)
t ũ(t)

∥∥∥
L2(Ω)

≤ ‖µ̃− µ‖L∞(0,1)

∫ 1

0

‖∂αt ũ(t)‖L2(Ω)dα

≤ ‖µ̃− µ‖L∞(0,1)

∫ 1

0

1

Γ(1− α)

(∫ t

0

‖∂τ ũ(τ)‖L2(Ω)

(t− τ)α
dτ

)
dα,

from the very definition of D(µ)
t , with

∥∥∥∫ t0 ‖∂τ ũ(τ)‖L2(Ω)

(t−τ)α dτ
∥∥∥
L1(0,T )

≤ ‖∂tũ‖L1(0,T ;L2(Ω))

∫ T
0
t−αdt,

hence∥∥∥D(µ̃−µ)
t ũ

∥∥∥
L1(0,T ;L2(Ω))

≤ ‖µ̃− µ‖L∞(0,1)‖∂tũ‖L1(0,T ;L2(Ω))

∫ 1

0

T 1−α

(1− α)Γ(1− α)
dα

≤ CeCT ‖µ̃− µ‖L∞(0,1)T
α0γ

∫ 1

0

T 1−α

Γ(2− α)
dα, (79)

by (77) and the identity Γ(2 − α) = (1 − α)Γ(1 − α). Since the mapping α 7→ Γ(α) is lower
bounded by a positive constant, uniformly in the interval [1, 2], we deduce from (79) that∥∥∥D(µ̃−µ)

t ũ
∥∥∥
L1(0,T ;L2(Ω))

≤ CeCT
T 1+α0γ

| log T |
‖µ̃− µ‖L∞(0,1).

Putting this together with (76) and (78), we obtain that

‖F‖L1(0,T ;L2(Ω)) ≤ CeCT
(
T 1+α0γ

| log T |
‖µ− µ̃‖L∞(0,1) + T γ

(
‖a− ã‖C1(Ω) + ‖q − q̃‖C0(Ω)

))
.

With reference to (9), this entails for all κ ∈ [0, 1) and all p ∈
[
1, 1

1−α0(1−κ)

)
, that

‖u− ũ‖Lp(0,T ;H2κ(Ω)) ≤ CeCT
(
T 1+α0γ

| log T |
‖µ− µ̃‖L∞(0,1) + T γ

(
‖a− ã‖C1(Ω) + ‖q − q̃‖C0(Ω)

))
,

which yields the desired result.
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6 Appendix

6.1 Proof of Lemma 3.3

We stick with the notations used in the proof of Lemma 3.2 and recall from (56) that

Gn,+(t) +Gn,−(t) = − 1

π

∫ +∞

ε

Im

(
eiθ+rteiθ

reiθw(reiθ) + λn

)
dr, ε ∈ (0, 1).

Since the integrand in the above integral reads

Im
(

eiθ+rteiθ
)

Re

(
1

reiθw(reiθ) + λn

)
+ Re

(
eiθ+rteiθ

)
Im

(
1

reiθw(reiθ) + λn

)
and that limθ→π Im

(
eiθ+rteiθ

)
= limθ→π ert cos θ sin(θ + rt sin θ) = 0, we derive from (56) that

Gn(t) =
1

2πi
lim
θ→π

∫
γc(ε,θ)

1

sw(s) + λn
estds+

1

π

∫ +∞

ε

Φn(r)e−rtdr, (80)

where Φn(r) := Im
(

1
reiπw(reiπ)+λn

)
is expressed by (66). Here, we used the fact that Gn(t) =

1
2πi limθ→π

∫
γ(ε,θ)

1
sw(s)+λn

estds, as the integral in the right hand side of (55) is independent of

θ ∈ (π2 , π).

Further, since
∫
γc(ε,θ)

est

sw(s)+λn
ds =

∫ θ
−θ fn(ε, β)dβ with fn(ε, β) := iεeiβeεte

iβ∫ 1
0
εαeiαβµ(α)dα+λn

, and

|fn(ε, β)| ≤ 2εeεt

λn
for all β ∈ [−π, π] provided ε ∈

(
0,min

(
1, (ηλ1)

1
α

))
, then we get

lim
ε→0

(
lim
θ→π

∫
γc(ε,θ)

est

sw(s) + λn
ds

)
= 0,

by applying the dominated convergence theorem. Thus, bearing in mind that the right hand
side of (80) is independent of ε ∈ (0,+∞) since this is the case for the one of (55), we get
(65)-(66) by sending ε to 0 in (80).

We turn now to proving (67). To this purpose, for all n ∈ N, we introduce an ∈ (0,+∞)
such that ∫ 1

0

aαnµ(α)dα =
λn
2
. (81)

Notice that the positive real number an is well defined for every n ∈ N, as the mapping

h : r 7→
∫ 1

0
rαµ(α)dα is one-to-one from [0,+∞) onto itself. Moreover, we point out for further

use that
lim

n→+∞
an = +∞. (82)

This can be understood from the facts that an = h−1
(
λn
2

)
, where h−1 denotes the function

inverse to h, that the mapping r 7→ h(r) is increasing on [0,+∞), and that limr→+∞ h(r) =

limn→+∞ λn = +∞. Next, using (81), we get for all r ∈ [0, an] that
∣∣∣∫ 1

0
rα cos(πα)µ(α)dα

∣∣∣ ≤∣∣∣∫ 1

0
rαµ(α)dα

∣∣∣ ≤ ∫ 1

0
aαnµ(α)dα ≤ λn

2 , whence
∫ 1

0
rα cos(πα)µ(α)dα + λn ≥ λn

2 . Putting this

together with (66) and the estimate sinu ≤ u, which holds true for all u ∈ [0, π], we find for
every r ∈ (0, an] that

Φn(r)

r
≤ 4

λ2
n

∫ 1

0

rα−1 sin(πα)µ(α)dα ≤ 4π

λ2
n

∫ 1

0

αrα−1µ(α)dα ≤ 4π

λ2
n

d

dr

(∫ 1

0

rαµ(α)dα

)
.
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From this and (81), it then follows that∫ an

0

Φn(r)

r
dr ≤ 4π

λ2
n

∫ 1

0

aαnµ(α)dα ≤ 2π

λn
. (83)

The next step of the proof boils down to the fact that there exist two positive constants C0

and R0, both of them depending only on µ, such that we have∫ +∞

R

1∫ 1

0
rα+1 sin(πα)µ(α)dα

dr ≤ C0∫ 1

0
Rα sin(πα)µ(α)dα

, R ∈ [R0,+∞). (84)

The proof of (84), which is quite similar to the derivation of L’Hospital’s rule, is presented
in Section 6.2 for the convenience of the reader. Prior to applying (84) and upon possibly
enlarging R0, we notice from (6) that we have∫ α0−δ

0

rαµ(α)dα ≤
∫ 1

α0−δ
rαµ(α)dα, r ∈ [R0,+∞). (85)

This follows directly from the two basic estimates
∫ α0−δ

0
rαµ(α)dα ≤ ‖µ‖L∞(0,1)(α0 − δ)rα0−δ

and
∫ 1

α0−δ r
αµ(α)dα ≥

∫ α0−δ
α0− δ2

rαµ(α)dα ≥ δµ(α0)
4 rα0− δ2 , which are valid for all r ∈ (0,+∞).

Now, in light of (82), we pick N ∈ N so large that aN ≥ R0 and we apply (84) with R = an
for all n ∈ NN := {n ∈ N, n ≥ N}. With reference to (66), we obtain that∫ +∞

an

Φn(r)

r
dr ≤

∫ +∞

an

1∫ 1

0
rα+1 sin(πα)µ(α)dα

dr ≤ C0∫ 1

0
aαn sin(πα)µ(α)dα

, n ∈ NN .

In view of (10), this leads to∫ +∞

an

Φn(r)

r
dr ≤ C0∫ α1

α0−δ a
α
n sin(πα)µ(α)dα

≤ C∫ α1

α0−δ a
α
nµ(α)dα

≤ C∫ 1

α0−δ a
α
nµ(α)dα

, n ∈ NN ,

(86)
by setting C := C0

min(sin(π(α0−δ)),sin(πα1)) ∈ (0,+∞). Next, applying (85) with r = an and

n ∈ NN , which is permitted since an ≥ aN ≥ R0 for all n ∈ NN , we get that
∫ 1

α0−δ a
α
nµ(α)dα ≥∫ 1

0
aαnµ(α)dα

2 . Therefore, we have
∫ +∞
an

Φn(r)
r dr ≤ C

λn
for all n ∈ NN , from (81) and (86). This

entails (67) since N is finite.

6.2 Proof of the estimate (84)

For R ∈ (0,+∞), put f(R) :=
∫ +∞
R

1∫ 1
0
rα+1 sin(πα)µ(α)dα

dr and g(R) := 1∫ 1
0
Rα sin(πα)µ(α)dα

.

Evidently, f and g are two positive functions in (0,+∞) that vanish at infinity:

lim
R→+∞

f(R) = lim
R→+∞

f(R) = 0, (87)

and for all R ∈ (0,+∞) and all R1 ∈ (R,+∞), we find by applying Rolle’s theorem to the
function r → (f(r) − f(R1))(g(R) − g(R1)) − (f(R) − f(R1))(g(r) − g(R1)) on the interval
[R,R1], that there exists ξ ∈ (R,R1) such that we have

f(R)− f(R1)

g(R)− g(R1)
=
f ′(ξ)

g′(ξ)
. (88)

Next, since
∫ α0−δ

0
rα sin(πα)µ(α)dα ≤ (α0 − δ)‖µ‖L∞(0,1)r

α−0−δ and∫ 1

α0−δ
rα sin(πα)µ(α)dα ≥

∫ α0

α0− δ2
rα sin(πα)µ(α)dα ≥ crα0− δ2 ,
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by (6), where c := min
(
sin
((
α0 − δ

2

)
π
)
, sin(α0π)

) δµ(α0)
4 ∈ (0,+∞), then there is necessarily

R0 ∈ [1,+∞), such that∫ α0−δ

0

rα sin(πα)µ(α)dα ≤
∫ 1

α0−δ
rα sin(πα)µ(α)dα, r ∈ [R0,+∞).

From this and the identity f ′(r)
g′(r) =

∫ 1
0
rα sin(πα)µ(α)dα∫ 1

0
αrα sin(πα)µ(α)dα

, obtained for all r ∈ (0,+∞) by direct

calculation, it then follows that

f ′(r)

g′(r)
≤

2
∫ 1

α0−δ r
α sin(πα)µ(α)dα

(α0 − δ)
∫ 1

α0−δ r
α sin(πα)µ(α)dα

≤ 2

α0 − δ
, r ∈ [R0,+∞).

Putting this with (88) we get

f(R)− f(R1)

g(R)− g(R1)
=
f ′(ξ)

g′(ξ)
≤ 2

α0 − δ
, R ∈ [R0,+∞),

uniformly in R1 ∈ (R,+∞). Thus, taking R1 → +∞ in the above estimate, we obtain

lim
R1→+∞

f(R)− f(R1)

g(R)− g(R1)
=
f(R)

g(R)
≤ 2

α0 − δ
, R ∈ [R0,+∞),

in virtue of (87), which is the statement of (84).
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