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Abstract. Interval Markov Chains (IMCs) are the base of a classic prob-
abilistic specification theory introduced by Larsen and Jonsson in 1991.
They are also a popular abstraction for probabilistic systems. In this pa-
per we study parameter synthesis for a parametric extension of Interval
Markov Chains in which the endpoints of intervals may be replaced with
parameters. In particular, we propose constructions for the synthesis of
all parameter values ensuring several properties such as consistency and
consistent reachability in both the existential and universal settings with
respect to implementations. We also discuss how our constructions can
be modified in order to synthesise all parameter values ensuring other
typical properties.

1 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains by allowing
to specify intervals of possible probabilities on transitions instead of precise
probabilities. When modelling real-life systems, the exact value of transition
probabilities may not be known precisely. Indeed, in most cases, these values are
measured from observations or experiments which are subject to imprecision. In
this case, using intervals of probabilities that take into account the imprecision
of the measures makes more sense than using an arbitrary but precise value.

IMCs have been introduced by Larsen and Jonsson [22] as a specification
formalism—a basis for a stepwise-refinement-like modelling method, where ini-
tial designs are very abstract and underspecified, and then they are made contin-
uously more precise, until they are concrete. Unlike richer specification models
such as Constraint Markov Chains [7] or Abstract Probabilistic Automata [13],
IMCs are difficult to use for compositional specification due to the lack of basic
modelling operators. Nevertheless, IMCs have been intensively used in order to
model real-life systems in domains such as systems biology, security or commu-
nication protocols [2, 6, 25, 17]. Going further in the abstraction hierarchy, one
could then assume that the endpoints of probability intervals are also imprecise.

This work has been partially supported by project PACS ANR-14-CE28-0002 and
Pays de la Loire research project AFSEC.



As an example, consider that a given component can be built with arbitrary
quality by using different, more or less costly, materials. This quality can be
related in practice to the maximal error rate of the component, which is reflected
in our design by the upper endpoint of the interval associated with a transition
leading to an error state. Since this value can be chosen arbitrarily, it can be
represented as a parameter. Obviously, if several instances of this component are
embedded in our design, the same parameter will be used in several places. In
this setting, the designer will be interested in computing the set of acceptable
values for this parameter – i.e. ensuring that the overall design satisfies some
given properties; or synthesising the best acceptable value for this parameter
– i.e. giving the best compromise between some given (quantitative?) property
and the production cost.

This new setting thus calls for methods and tools for modelling and analysing
IMCs where interval endpoints are not fixed in advance.

Parametric Interval Markov Chains (pIMCs for short) have been introduced
in [15] as an extension of IMCs that allows for using parameters instead of nu-
meric values as the lower or upper endpoint of intervals. The goal of using such
a model is then to synthesise parameter values ensuring correctness w.r.t. given
properties. In this paper, we focus on the first basic property of such models:
consistency. Consistency of a parameter valuation in a given pIMC boils down
to verifying that the chosen parameter values are not incoherent, i.e. that the
resulting IMC can be implemented. While [15] focuses on deciding whether a
consistent parameter valuation exists in a given pIMC, we propose in this pa-
per constructions for synthesising all consistent parameter valuations of a given
pIMC. In addition, we also consider other objectives such as reachability or avoid-
ability while always guaranteeing consistency. Reachability can be formulated in
two flavours: either universal reachability, i.e. ensuring that all implementations
reach a given set of states, or existential reachability, i.e. ensuring that there
exists at least one implementation that satisfies the property. We therefore pro-
pose constructions for solving both problems while still ensuring consistency of
the model.

Related work. Our work is a follow-up on [15], which is to the best of our
knowledge the only existing work addressing parametric probabilistic specifica-
tion theories where parameters range over probability values. In [15], we only
study the consistency problem in the existential setting and propose an algorithm
for deciding whether there exists at least one parameter valuation ensuring con-
sistency for a subclass of pIMCs. In contrast, the results we provide here are
fully general, and, more importantly, we attack a slightly different problem that
consists in synthesising all parameter values ensuring consistency and reachabil-
ity.

Other classes of systems where parameters give some latitude on probabil-
ity distributions, such as parametric Markov models [23], have been studied
in the literature [24, 19]. The activity in this domain has yielded decidability
results [21], parametric probabilistic model-checking algorithms [11] and even
tools [20, 12]. Continuous-time parametric and probabilistic models have also



been considered in some very restricted settings [9]. Networks of probabilistic
processes where the number of processes is a parameter have also been studied
in [4, 5], and probabilistic timed automata with parameters in clock constraints
and invariants have been studied in [1].

In another setting, the model checking problem for Interval Markov Chains
has been addressed in [10, 3, 8]. In [10, 3], the authors propose algorithms and
complexity bounds for checking respectively ω-regular and LTL properties on
Interval Markov Chains with closed intervals. [3] assumes that parameters can
be present in the models and formulae, but these parameters do not range on
the probability endpoints of the intervals, as in our work. On the other hand, [8]
focuses on Interval Markov Chains with open intervals and proposes algorithms
for verifying PCTL properties but does not consider parameters.

Outline. First, Section 2 recalls the basic definitions and notations of Interval
Markov chains and their parametric extension. Then, Section 3 explores the
consistency of Parametric Interval Markov Chains and proposes a construction
for synthesising all the parameter valuations that guarantee consistency. The
problem of existential consistent reachability is addressed in Section 4, and we
show how our constructions can be adapted to solve other problems such as
consistent avoidability and universal consistent reachability. Finally, Section 5
summarises the paper contributions and gives hints for future work. For space
reasons, our proofs are presented in an extended version of this paper [16].

2 Background

Throughout the paper, we use the notion of parameters. A parameter p ∈ P is
a variable ranging through the interval [0, 1]. A valuation for P is a function ψ :
P → [0, 1] that associates values with each parameter in P . We write Int[0,1](P )
for the set of all closed parametric intervals of the form [x, y] where x, y can be
either reals in the interval [0, 1] or parameters from P . When P = ∅, we write
Int[0,1] = Int[0,1](∅) to denote closed intervals with real-valued endpoints. Given
an interval I of the form I = [a, b], Low(I) and Up(I) respectively denote the lower
and upper endpoints of I, i.e. a and b. Given an interval I = [a, b] ∈ Int[0,1], we
say that I is well-formed whenever a ≤ b. It is worth noting that, for readability
reasons, we limit ourselves to closed intervals. Nevertheless, all the results we
propose can be extended with minor modifications to open/semi-open intervals
whose endpoints contain linear combinations of parameters and constants.

Given a parametric interval I ∈ Int[0,1](P ) and a parameter valuation ψ :
P → [0, 1], we write ψ(I) for the interval of Int[0,1] obtained by substituting in
the endpoints of I each parameter p by the value ψ(p). Constraints on parame-
ter valuations are expressions on parameter variables that restrict their potential
values. Given a constraint C over P and a parameter valuation ψ : P → [0, 1], we
write ψ  C when the parameter valuation satisfies constraint C. In the follow-
ing, we abuse notations and identify constraints on parameter valuations with
the set of parameter valuations that satisfy them. Therefore, given a constraint



C over P , we sometimes write ψ ∈ C instead of ψ  C. We also use intersec-
tions (resp. unions) of constraints to represent the set of parameter valuations
satisfying their conjunction (resp. disjunction).

Given a finite set S, we denote by Dist(S) the set of distributions over S,
i.e. the set of functions ρ : S → [0, 1] such that

∑
s∈S ρ(s) = 1. In the rest of the

paper, we assume that all the states in our structures are equipped with labels
taken from a fixed set of atomic propositions A. A state-labelling function over
S is thus a function V : S → 2A that assigns to each state a set of labels in A.

2.1 Markov Chains definitions

We recall the notion of Markov Chains (MCs), that will act as models for (para-
metric) IMCs. An example of a Markov Chain is given in Figure 1a.

Definition 1 (Markov Chain). A Markov Chain is a tupleM = (S, s0,M,A,
V ), where S is a finite set of states containing the initial state s0, A is a set of
atomic propositions, V : S → 2A is a labeling function, and M : S × S → [0, 1]
is a probabilistic transition function such that ∀s ∈ S,

∑
t∈S M(s, t) = 1.

We now recall the notion of Interval Markov Chains (IMCs), adapted from [14].
IMCs are a specification formalism that allows one to represent an infinite set
of MCs. Roughly, IMCs extend MCs by replacing exact probability values on
transitions with intervals of allowed probability values. An example of an IMC
is given in Figure 1b.

Definition 2 (Interval Markov Chain [14]). An Interval Markov Chain
(IMC) is a tuple I = (S, s0, ϕ,A, V ), where S, s0, A and V are as for MCs,
and ϕ : S × S → Int[0,1] is a transition constraint that associates with each
potential transition an interval of probabilities.

The following definition recalls the notion of satisfaction introduced in [14].
Satisfaction (also called implementation in some cases) allows to characterise the
set of MCs represented by a given IMC specification. Crucially, satisfaction ab-
stracts from the syntactic structure of transitions in IMCs: a single transition in
the implementation MC can contribute to satisfaction of more than one transi-
tion in the specification IMC, by distributing its probability mass against several
transitions. Similarly many MC transitions can contribute to the satisfaction of
just one specification transition. This crucial notion is embedded in the so-called
correspondence function δ introduced below. Informally, such a function is given
for all pairs of states (t, s) in the satisfaction relation, and associates with each
successor state t′ of t – in the implementation MC – a distribution over potential
successor states s′ of s – in the specification IMC – specifying how the transition
t→ t′ contributes to the transition s→ s′.

Definition 3 (Satisfaction Relation [14]). Let I = (S, s0, ϕ,A, V
I) be an

IMC andM = (T, t0,M,A, VM ) be a MC. A relation R ⊆ T×S is a satisfaction
relation if whenever tRs,



1. the labels of s and t agree: VM (t) = V I(s),

2. there exists a correspondence function δ : T → (S → [0, 1]) such that

(a) for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,

(b) for all s′ ∈ S, we have (
∑

t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ(s, s′), and

(c) for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.

We say that state t ∈ T satisfies state s ∈ S (written t |= s) iff there exists
a (minimal) satisfaction relation containing (t, s) and that M satisfies I
(written M |= I) iff t0 |= s0.

The notion of satisfaction between the MC M from Figure 1a and the IMC
I from Figure 1b is illustrated in Figure 1c. In this figure, we remark that the
transition 1→ 3 in the MCM partly contributes to the satisfaction of transitions
A→ B and A→ C in the IMC I. Similarly, transitions 1→ 2 and 1→ 3 in the
MC M both contribute to the satisfaction of transition A→ B in the IMC I.
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Fig. 1: Markov Chain, Interval Markov Chain and satisfaction relation [14]

The set of MCs satisfying a given IMC I is written [[I]]. Formally, [[I]] =
{M | M |= I}. We say that an IMC I is consistent iff [[I]] 6= ∅. Although
the satisfaction relation abstracts from the syntactic structure of transitions,
we recall the following result from [15], that states that whenever a given IMC
is consistent, it admits at least one implementation that strictly respects its
structure.

Theorem 1 ([15]). An IMC I = (S, s0, ϕ,A, V ) is consistent iff it admits an
implementation of the form M = (S, s0,M,A, V ) where, for all reachable states
s in M, it holds that M(s, s′) ∈ ϕ(s, s′) for all s′.

In the following, we say that state s is consistent in the IMC I = (S, s0, ϕ,A, V )
if there exists an implementation M = (S, s0,M,A, V ) of I in which state s is
reachable with a non-zero probability.



2.2 pIMCs and their relations to IMCs/MCs

We now recall the notion of Parametric Interval Markov Chain (pIMC), previ-
ously introduced in [15]. Intuitively, pIMCs extend IMCs by allowing parameters
to be used as interval endpoints.

Definition 4 (Parametric Interval Markov Chain). A parametric Interval
Markov Chain (pIMC) is a tuple IP = (S, s0, ϕP , A, V, P ), where S, s0, A and
V are as for IMCs, P is a set of variables (parameters) ranging over [0, 1] and
ϕP : S×S → Int[0,1](P ) associates with each potential transition a (parametric)
interval.

Given a pIMC IP = (S, s0, ϕP , A, V, P ) and a parameter valuation ψ : P →
[0, 1], we write ψ(IP ) for the IMC obtained by replacing ϕP by the function
ϕ : S × S → Int[0,1] defined by ∀s, s′ ∈ S, ϕ(s, s′) = ψ(ϕP (s, s′)). The IMC
ψ(IP ) is called an instance of pIMC IP .

Finally, we say that a MC M = (T, t0,M,A, VM ) implements pIMC IP ,
written M |= IP , iff there exists an instance I of IP such that M |= I. We
write [[IP ]] for the set of MCs implementing IP and say that a pIMC is consistent
iff its set of implementations is not empty.

In the rest of the paper, and in particular in examples, we sometimes omit
atomic propositions in our figures and reasonings as they do not impact any of
the problems we solve.

3 Consistency

When considering IMCs, one question of interest is to decide whether it is con-
sistent without computing its set of implementations. This problem has already
been addressed in the literature [14, 15], yielding polynomial decision algorithms
and procedures that produce one implementation when the IMC is consistent.
The same question holds for pIMCs, although in a slightly different setting.
In [15], we have proposed a polynomial algorithm for deciding whether a given
pIMC is consistent, in the sense that it admits at least one parameter valuation
for which the resulting IMC is consistent.
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Example 1. Consider pIMC IP given in Figure 2. In this pIMC, parameters p
and q appear in the outgoing transitions of several states, therefore the algorithm
presented in [15] cannot be used in order to decide if IP is consistent. From the
outgoing transitions of state 4, we can extract constraints stating that the value
of parameter p must be at the same time greater than 0.5 and lower than 0.3.
Although state 4 is thus clearly inconsistent, IP can still be consistent if there
exists implementations avoiding state 4. Hence, the probability to move from
state 2 to state 4 must be 0. Such an implementation is given in Figure 3 for the
parameter valuation p = q = 0.5.

In this section, we move one step further and introduce a construction that
synthesises all parameter valuations ensuring that a given pIMC is consistent.
Observe that consistency is a recursive notion: a state is consistent iff there exists
a distribution matching its outgoing intervals and such that all states reached
through this distribution are themselves consistent. Based on this observation,
we propose an inductive notion of n-consistency that follows this reasoning to a
given depth n. We then build on this notion to synthesise the set of parameter
valuations ensuring that a given pIMC is consistent. The section is organised as
follows.

We start by introducing notions and notations that will be used throughout
the rest of the paper. We then introduce the notion of n-consistency in the IMC
setting, adapt it to the pIMC setting and finally present our main contribution:
a construction that synthesises all parameter valuations ensuring that a given
pIMC is consistent.

3.1 Notations

Let IP = (S, s0, ϕP , A, V, P ) be a pIMC and let s ∈ S be a state of IP . We
say that state s is consistent in pIMC IP if there exists an implementation
M = (S, s0,M,A, V ) of IP in which s is reachable from s0.

In order to decide whether a given IMC is consistent, we need to address
the set of potential successors of a given state s. Obviously, this set of potential
successors will depend on the values given to the parameters in IP . Nevertheless,
we can rule out all states s′ for which the interval of probabilities going from
s to s′ in IP is [0, 0]. We thus write Succ(s) for the set of states that can
be reached from s with a probability interval not reduced to [0, 0]. Formally,
Succ(s) = {s′ ∈ S | ϕP (s, s′) 6= [0, 0]}.

Other states of interest are the states s′ for which ϕP (s, s′) is not reduced to
[0, 0], but that can still be avoided as successors by setting the actual probability
of going from s to s′ to 0 in an implementation. In order to be able to set
this probability to 0, the subsequent interval must contain the value 0. As a
consequence, s′ must be such that Low(ϕP (s, s′)) = 0 or such that the lower
endpoint of the interval of probability is a parameter, i.e. Low(ϕP (s, s′)) ∈ P .
Indeed, in this case, we can force this interval to contain 0 by setting the value of
its lower endpoint to 0. We thus define LP (s) = {s′ ∈ Succ(s) | Low(ϕP (s, s′)) ∈
P} and Z(s) = LP (s)∪{s′ ∈ Succ(s) | Low(ϕP (s, s′)) = 0}. Therefore, states in



Z(s) can be avoided as successors of s in some implementations. We now propose
a constraint on parameter valuations that ensures that a probability distribution
exists that matches the outgoing intervals of s while reaching only states from a
given set S′.

LC(s, S′) =

[∑
s′∈S′

Up(ϕP (s, s′)) ≥ 1

]
∩

[∑
s′∈S′

Low(ϕP (s, s′)) ≤ 1

]

∩

[ ⋂
s′∈S′

Low(ϕP (s, s′)) ≤ Up(ϕP (s, s′))

]
Informally, LC(s, S′) represents all parameter valuations ensuring that all

outgoing intervals of s are well-formed and that the sum of their lower endpoints
is lower or equal to 1 while the sum of their upper endpoints is greater or equal
to 1.

Example 2. Consider pIMC IP from Figure 2. We illustrate the construction of
LC for state 2 of IP . Let S′ = {0, 1, 2, 3}. From the definition of LC, we obtain
LC(2, {0, 1, 2, 3}) = (p+ q ≥ 1) ∩ (0 ≤ 1) ∩ (p ≥ 0) ∩ (q ≥ 0). As a consequence,
ψ ∈ LC(2, {0, 1, 2, 3}) iff ψ(p) + ψ(q) ≥ 1.

As a clear consequence of the definition of LC, any parameter valuation ψ
is in LC(s, S′) iff there exists a distribution in the IMC ψ(IP ) that avoids all
states not in S′ and satisfies all the intervals of probability going from s to S′.

Proposition 1. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S and a
set S′ ⊆ Succ(s), we have that for any parameter valuation ψ,

ψ ∈ LC(s, S′) ⇐⇒ ∃ρ ∈ Dist(S) s.t.

{
∀s′ ∈ S \ S′, ρ(s′) = 0 and
∀s′ ∈ S′, ρ(s′) ∈ ψ(ϕP (s, s′))

We remark that the intervals associated with transitions to states outside of
S′ are not taken into account in this proposition. Indeed, we only ensure that
there exists a distribution ρ such that the intervals of probability going from s
to S′ are satisfied and ρ(S \S′) = 0, but we do not ensure that 0 is an admissible
probability value for transitions going from s to S \ S′. Therefore S′ has to
be well chosen, i.e. such that (Succ(s) \ S′) ⊆ Z(s), and LC(s, S′) has to be
accompanied with other constraints in order to ensure that 0 is an admissible
probability value for transitions going outside of S′.

3.2 The notion of n-consistency for IMCs

We now introduce the notion of n-consistency in the IMC setting and then
adapt this notion to pIMCs. Informally, a state s is n-consistent in IMC I =
(S, s0, ϕ,A, V ) if there exists an unfolding of depth n starting from s for which
each node admits a probability distribution satisfying all of its outgoing proba-
bility intervals. Intuitively, if one can find a sufficiently deep unfolding satisfying
this property from s0, then the IMC is consistent. Finding the optimal depth for
this unfolding is an issue, but we prove later in the section that we do not need



to go deeper than |S|. In practice, n-consistency is defined by induction over the
structure of I. The intuition is that state s ∈ S is n-consistent iff there exists a
distribution ρ matching its outgoing intervals, and if n > 0 then ρ(s′) > 0 implies
that s′ is (n− 1)-consistent. Unfortunately, this intuitive definition raises an is-
sue: it may be the case that some state s′ appears several times in the unfolding
from s and we cannot ensure that the same outgoing distribution is chosen every
time s′ appears. This is problematic as we want use this unfolding in order to
build an implementation respecting the structure of I, and we therefore need to
provide a unique distribution for each reachable state in S. We thus propose an
alternative definition that first fixes an outgoing distribution for all states via a
function D : S → Dist(S) and then enforces this distribution in the induction.

Definition 5 (n-consistency). Let I = (S, s0, ϕ,A, V ) be an IMC and let
D : S → Dist(S) be a function that assigns a distribution on S to each state of
I. State s ∈ S is (n,D)-consistent iff for all s′ ∈ S, D(s)(s′) ∈ ϕ(s, s′), and, for
n > 0, D(s)(s′) > 0 implies s′ is (n− 1, D)-consistent.

We say that s is n-consistent if there exists D : S → Dist(S) such that s is
(n,D)-consistent.

We start with the following intuitive observation: whenever a given state is
(n,D)-consistent, then it is also (n− 1, D)-consistent.

Lemma 1. Given an IMC I = (S, s0, ϕ,A, V ), a function D : S → Dist(S)
and a state s ∈ S, for all n > 0, s ∈ S is (n,D)-consistent implies s ∈ S is
(n− 1, D)-consistent.

Although the definition of n-consistency introduced above requires that a
unique distribution is fixed a priori for all states in the IMC, we show in the
following lemma that this is in fact not necessary and that the function D : S →
Dist(S) can be constructed on-the-fly.

Lemma 2. Given an IMC I = (S, s0, ϕ,A, V ) and a state s ∈ S, we have that
for all n > 0, if there exists ρ ∈ Dist(S) such that ρ(s′) ∈ ϕ(s, s′) for all s′

and ρ(s′) > 0 implies that s′ is (n − 1)-consistent, then there exists a function
D : S → Dist(S) such that D(s) = ρ and s is (n,D)-consistent.

Definition 5 is thus equivalent to the following intuitive inductive definition: a
state s is n-consistent iff there exists a distribution ρ satisfying all of its outgoing
probability intervals and such that for all s′ ∈ S, ρ(s′) > 0 implies that s′ is
(n− 1)-consistent.

Example 3. Consider pIMC IP from Figure 2 and two of its instances ψ1(IP )
and ψ2(IP ), with ψ1(p) = ψ1(q) = 0.3 and ψ2(p) = ψ2(q) = 0.5. In both
IMCs, state 4 is not 0-consistent as one cannot find any distribution satisfying
its outgoing intervals. On the other hand, State 2 is 0-consistent in both IMCs.
State 2 is also 1-consistent in ψ2(IP ) as there exists a distribution matching its
intervals and avoiding State 4, but not in ψ1(IP ) as any distribution satisfying
the outgoing intervals of State 2 in ψ1(IP ) must assign a positive probability to
the transition to State 4, which is not 0-consistent.



As explained above, the intuition is that an IMC I = (S, s0, ϕ,A, V ) is
consistent whenever one can find a sufficiently deep unfolding starting in its
initial state and such that every node in this unfolding admits a probability
distribution that satisfies its outgoing intervals. We show in the following lemma
that the notion of n-consistency admits a fixpoint in the sense that there is a
bound N for which being N -consistent is equivalent to being k-consistent for
any k ≥ N . In fact, we show that |S| is an upper bound for the value of N .

Lemma 3. Given an IMC I = (S, s0, ϕ,A, V ), a function D : S → Dist(S)
and a state s ∈ S, for all n ≥ |S|, s is (n,D)-consistent implies that s is
(n+ 1, D)-consistent.

As a consequence to Lemmas 1 and 3, we say that state s is D-consistent if it
is (n,D)-consistent for some n ≥ |S|. Similarly, we say that state s is consistent
if it is D-consistent for some D.

We now propose two lemmas that link the notion of (|S|, D)-consistency
of the initial state of a given IMC I = (S, s0, ϕ,A, V ) to the existence of an
implementation M respecting the structure of I. The intuition of the following
lemma is that the transition matrix defined inM is a candidate function for the
(|S|, D)-consistency of s0.

Lemma 4. Given an IMC I = (S, s0, ϕ,A, V ), if (S, s0,M,A, V ) is an imple-
mentation of I then s0 is (|S|, D)-consistent, where D : S → Dist(S) is defined
by ∀s, s′ ∈ S,D(s)(s′) = M(s, s′).

Reversely, the next lemma shows that whenever s0 is (|S|, D)-consistent,
then D is a candidate transition matrix for an implementation of I respecting
its structure.

Lemma 5. Given an IMC I = (S, s0, ϕ,A, V ), if s0 is (|S|, D)-consistent, then
the Markov Chain (S, s0,M,A, V ), where M is defined by ∀s, s′ ∈ S,D(s)(s′) =
M(s, s′), is an implementation of I.

The following theorem follows directly from Theorem 1 and Lemmas 4 and 5
and concludes our section by stating one of our main results: a new characteri-
sation of consistency for IMCs based on the notion of n-consistency.

Theorem 2. Given an IMC I = (S, s0, ϕ,A, V ), I is consistent iff s0 is |S|-
consistent.

3.3 Consistency of pIMCs

We now move to the problem of consistency of pIMCs. As said earlier, our aim
in this case is not only to decide whether a given pIMC is consistent, but also
to synthesise all parameter valuations that ensure consistency of the resulting
IMC. For this purpose, we adapt the notion of n-consistency defined above to
pIMCs.



Given a pIMC IP = (S, s0, ϕP , A, V, P ), we say that s ∈ S is n-consistent iff
there exists an IMC I = (S, s0, ϕ,A, V ) such that I is an instance of IP and
in which s is n-consistent. The set of parameter valuations ensuring that s is
n-consistent is {ψ | s is n-consistent in ψ(IP )}. We now propose a construction
for the set of parameter valuations Consn(s) ensuring that a given state s in IP
is n-consistent. As in the previous section, this set is defined by induction on
n. The intuition is as follows: a given parameter valuation ψ is in Consn(s) iff
there exists a distribution ρ that matches the outgoing probability intervals of
s in ψ(IP ) and such that it only leads to (n − 1)-consistent states. Because of
Lemma 2, this ensures that s is indeed n-consistent in ψ(IP ). The existence of a
distribution such as ρ is then conditioned by the set of potential successor states
that can be reached from s in ψ(IP ). We thus start by fixing a set of states X
that we want to avoid and then compute the set of valuations ConsXn (s) that
ensure n-consistency of s through a distribution ρ that avoids states from X.
Formally, we define ConsXn (s) as follows: let ConsX0 (s) = LC(s, Succ(s) \ X) ∩[⋂

s′∈X Low(ϕP (s, s′)) = 0
]

and for n ≥ 1,

ConsXn (s) =

 ⋂
s′∈Succ(s)\X

Consn−1(s′)

 ∩ [LC(s, Succ(s) \X)]

∩

[ ⋂
s′∈X

Low(ϕP (s, s′)) = 0

]
The set of valuations ensuring n-consistency is then the union, for all poten-

tial choices of X, of ConsXn (s). Recall that, because of the definition of LC given
at the end of Section 3.1, we need to choose X as a subset of Z(s). Therefore,
we define Consn(s) =

⋃
X⊆Z(s) Cons

X
n (s). We first observe that the choice of X

has no impact on 0-consistency.

Lemma 6. Let IP = (S, s0, ϕP , A, V, P ) be a pIMC and let s ∈ S. For all
X ⊆ Z(s), we have ConsX0 (s) ⊆ Cons∅0(s).

As a consequence of Lemma 6 above, we have Cons0(s) = LC(s, Succ(s)).
We illustrate the construction for Consn in the following example.

Example 4. Consider the pIMC IP given in Figure 2. The computation of Consn
for states 0, 1, 2 is illustrated in Figure 4. We start with computing the parameter
valuations ensuring 0-consistency of all states: Cons0(0) = Cons0(3) and both
allow all possible parameter valuations, Cons0(4) = (p ≤ 0.3) ∩ (p ≥ 0.5) = ∅,
Cons0(2) = (p+ q + 0.5 ≥ 1) and Cons0(1) = (q + 0.3 ≤ 1) ∩ (q + 1 ≥ 1) ∩ (q ≥
0.3) = (q ≤ 0.7)∩(q ≥ 0.3). Observe that for all n, we have Consn(s) = Cons0(s)
for s = 1, 3, 4 since the value of Cons for their successors remains the same. We
now reason on 1-consistency for state 2. By construction, its set of possibly
avoidable successors is Z(2) = {1, 2, 4}, and ConsX1 (2) = ∅ when 4 /∈ X because
Cons0(4) = ∅, and also when X = {1, 2, 4}. For the other values of X, we obtain

Cons
{1,4}
1 (2) = Cons0(2) ∩ (q ≥ 1) = (p + q + 0.5 ≥ 1) ∩ (q ≥ 1) = (q = 1),

Cons
{2,4}
1 (2) = Cons0(1) ∩ (p ≥ 1) = (q ≤ 0.7) ∩ (q ≥ 0.3) ∩ (p ≥ 1) and
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Fig. 4: Illustration of the construction of Consn in pIMC IP from Figure 2

Cons
{4}
1 (2) = Cons0(1) ∩ Cons0(2) ∩ (p + q ≥ 1) = (q ≤ 0.7) ∩ (q ≥ 0.3) ∩

(p + q + 0.5 ≥ 1) ∩ (p + q ≥ 1) = (q ≤ 0.7) ∩ (q ≥ 0.3) ∩ (p + q ≥ 1). Hence
Cons1(2) =

⋃
X⊆Z(2) Cons

X
1 (2) = (q = 1)∪ [(q ≤ 0.7)∩(q ≥ 0.3)∩(p ≥ 1)]∪ [(q ≤

0.7) ∩ (q ≥ 0.3) ∩ (p + q ≥ 1)] = (q = 1) ∪ [(q ≤ 0.7) ∩ (q ≥ 0.3) ∩ (p + q ≥ 1)].
Furthermore, we can show that Consn(2) = Cons1(2) for all n ≥ 1. Similarly,
we can show that Cons1(0) = (p + q ≥ 0.5) ∪ [(q ≤ 0.7) ∩ (q ≥ 0.3)], and
Consn(0) = Cons2(0) = [(q ≤ 0.7) ∩ (q ≥ 0.3)] ∪ (q = 1) for all n ≥ 2.

Our aim is now to prove that Consn(s) contains exactly all parameter val-
uations ensuring that s is n-consistent. We first show that ConsXn (s) works as
intended, i.e. contains exactly all parameter valuations ψ ensuring that s is n-
consistent in ψ(IP ) while using a distribution that avoids X.

Lemma 7. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S, a set X ⊆
Z(s) and a parameter valuation ψ : P → [0, 1], we have ψ ∈ ConsXn (s) iff there
exists a function D : S → Dist(S) such that ∀s, s′, s′ ∈ X implies D(s)(s′) = 0
and state s is (n,D)-consistent in the IMC ψ(IP ).

A direct consequence of Lemma 7 above is that Consn(s) contains exactly all
parameter valuations ensuring that s is n-consistent.

Proposition 2. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S and a
parameter valuation ψ : P → [0, 1], we have ψ ∈ Consn(s) iff s is n-consistent
in the IMC ψ(IP ).

It directly follows from Lemma 1 and Proposition 2 that for all n ≥ 1 and
s ∈ S, Consn(s) ⊆ Consn−1(s), i.e. that each computation step restricts the sets
of parameter valuations.



We conclude this section by our main result, which follows directly from
Proposition 2 and Theorem 2: the set Cons|S|(s0) contains exactly all parameter
valuations ensuring that the pIMC IP = (S, s0, ϕP , A, V, P ) is consistent.

Theorem 3. Given a pIMC IP = (S, s0, ϕP , A, V, P ) and a parameter valua-
tion ψ : P → [0, 1], we have ψ ∈ Cons|S|(s0) iff the IMC ψ(IP ) is consistent.

One can therefore compute the set of parameter valuations ensuring that a
given pIMC IP = (S, s0, ϕP , A, V, P ) is consistent by computing Cons|S|(s0). If
the parameters are chosen inside Cons|S|(s0), the resulting IMC is consistent: it
admits at least one implementation that avoids all inconsistent states.

Example 5. In our running example, Cons5(0) = (0.3 ≤ q ≤ 0.7) ∪ (q = 1).
Hence, the IMC is consistent for all values of q satisfying this condition and any
value of p.

Regarding complexity, if, for instance, we represent the sets of parameters by
finite unions of systems of linear inequalities, basic set operations like intersection
are polynomial in the number of parameters. Then computing Cons0(s) for all
s ∈ S is polynomial in the number of parameters, as well as, given some X,n and
s, computing ConsXn (s). There are |S| states and here n can also take at most
|S| successive values. Set X however is chosen in Z(s) for each s. So there are
up to 2|Z(S)| possible choices for X. Now, remark that |Z(s)| is typically small
compared to |S| but, in the worst case, it can be equal to |S|. So the worst case
asymptotic complexity of the algorithm is exponential in the number of states
of the pIMC.

In the following, we write Cons(s) (resp. ConsX(s)) for the sets Cons|S|(s)
(resp. ConsX|S|(s)).

4 Consistent reachability

Another interesting problem for IMCs and pIMCs is consistent reachability. This
problem can be declined in two flavours: existential and universal. Given an
IMC I = (S, s0, ϕ,A, V ) and a target set of states G ⊆ S, existential consis-
tent reachability amounts to deciding whether there exists an implementation
M respecting the structure of I in which G is reachable from s0 with a non-
zero probability. Dually, universal consistent reachability amounts to deciding
whether the set G is reachable from s0 with a non-zero probability in all im-
plementations respecting the structure of I. When moving to pIMCs, as in the
previous section, we are interested in synthesising all parameter valuations en-
suring that a given set of states is universal/existential consistent reachable in
the resulting IMCs. In this section, we first focus on the existential problem and
start with providing a construction that allows for deciding the existential con-
sistent reachability problem for IMCs. We then adapt this construction to the
pIMC setting and finally discuss how this construction can be adapted in order
to solve the universal consistent reachability problem for IMCs/pIMCs.



4.1 Existential Consistent Reachability for IMCs

Given an IMC I = (S, S0, ϕ,A, V ), we say that a target set G ⊆ S is existential
consistent reachable in I iff there exists an implementationM = (S, s0,M,A, V )
of I in which the probability of reaching G from s0 is strictly greater than 0.
Formally, there must exist a path s0 → · · · → sn inM where M(si, si+1) > 0 for
all 0 ≤ i < n and sn ∈ G. We insist on the word consistent because it is not only
important that there exists a sequence of transitions with positive probability
matching the intervals in I and reaching G, but also that this sequence can be
mimicked in an implementation, i.e. that the chosen probability distributions
do not violate other intervals or do not impose that inconsistent states are also
reached. In the following, when clear from the context, we sometimes omit the
words “existential consistent” and only say that G is reachable in I.

Notice that our definition of existential consistent reachability only takes into
account implementations that respect the structure of I. Although this looks like
a limitation, the following theorem shows that any implementation M of I can
be turned into an implementation M̃ that respects the structure of I and that
is equivalent to M with respect to consistent reachability.

Theorem 4. Let I = (S, s0, ϕ,A, V ) be an IMC and G ⊆ S be a target set
of states. For all MC M = (T, t0,M,A, VM ) ∈ [[I]], there exists an MC M̃ =
(S, s0, M̃ , A, V ) ∈ [[I]] such that G is reachable in M̃ iff {t ∈ T | ∃s ∈ G, t |= s}
is reachable in M.

Since the problem of existential consistent reachability mixes the notions of
consistency and reachability, we cannot separate these two notions. For consis-
tency of a given state s, one has to show that there exists a distribution matching
the outgoing intervals of s and reaching only consistent states. On the other hand,
for reachability of G, one has to show that there exists a distribution that reaches
a state s′ from which G is reachable. The difficulty here is that we have to make
sure that the same distribution is chosen for both problems, not only in state s
but also in all the states that are reached both through the unfolding inherent
to consistency and through the path inherent to reachability. As for consistency,
we thus propose to start by fixing a unique outgoing distribution for all states
in S with a function D : S → Dist(S) and enforce that these distributions have
to be chosen in our inductive definition of consistent existential reachability.

Formally, we say that G ⊆ S is (0, D)-reachable from s ∈ S iff s is D-
consistent and s ∈ G. For n > 0, G is (n,D)-reachable from s iff s is D-consistent
and either s ∈ G or there exists s′ such that D(s)(s′) > 0 and G is (n − 1, D)-
reachable from s′. The intuition is that G is (n,D)-reachable from s if s is
consistent and G can be reached in at most n steps from s using distributions
from D. We then say that G is n-reachable from s if there exists a function
D : S → Dist(S) such that G is (n,D)-reachable from s.

As for consistency, we can also provide another equivalent definition for n-
reachability in which the functionD : S → Dist(S) is constructed on the fly:G ⊆
S is n-reachable from s ∈ S iff either s ∈ G and s is consistent, or there exists a



distribution matching the outgoing intervals of s, reaching only consistent states
and at least one state s′ from which G is (n− 1)-reachable.

We start with the following intuitive observation: whenever G can be reached
in at most n steps from s through D, it can also be reached in at most k steps
for any k ≥ n. This is formalised in the following lemma.

Lemma 8. Let I = (S, s0, ϕ,A, V ) be an IMC, G ⊆ S a target set of states and
D : S → Dist(S) a function that associates a distribution on S with all states.
We have that for all n ≥ 0 and s ∈ S, if G is (n,D)-reachable from s then G is
(n+ 1, D)-reachable from s.

From our definitions, we can say that G is reachable in I iff there exists
N such that G is N -reachable from the initial state s0. Intuitively, we expect
that N ≤ |S|, i.e. that if a path of length at most |S| leading to G cannot be
found, then there is no hope of finding a longer path leading to G. This result
is formalised in the following lemma.

Lemma 9. Given an IMC I = (S, s0, ϕ,A, V ) and a target set G ⊆ S, G is
existential consistent reachable in I iff G is |S|-reachable from s0.

We thus conclude that our construction for n-reachability allows deciding in
a linear number of iterations whether a given set G is reachable in the IMC I.

4.2 Existential Consistent Reachability for pIMCs

We now move to the pIMC setting. As said previously, given a pIMC IP =
(S, s0, ϕP , A, V, P ) and a target set of states G ⊆ S, our aim is to compute the
set of parameter valuations ψ ensuring that there exists an implementation of
IMC ψ(IP ) in which G is reachable. We proceed as for the consistency prob-
lem presented in the previous section: we propose a construction based on the
notion of n-reachability for IMCs that, for each state s ∈ S, inductively con-
structs a set of parameter valuations ReachGn (s) that eventually converges to the
desired set. The intuition is similar to the construction for Consn(s): we first
select a set X ⊆ Z(s) of states that we want to avoid and define the set of
valuations ReachG,X

n (s) that ensure that G can be reached from s in at most
n steps with a distribution that avoids X while preserving consistency. In the
rest of the section, we use the constraint on parameters (s ∈ G) with the follow-
ing meaning: (s ∈ G) is empty if s 6∈ G and universal otherwise. We formally
define ReachG,X

n (s) for all s ∈ S, n ≥ 0 and X ⊆ Z(s) inductively as follows:

Reach
G,X
0 (s) = ConsX(s) ∩ (s ∈ G), and for n > 0

ReachG,X
n (s) = ConsX(s)∩(s ∈ G) ∪

⋃
s′∈Succ(s)\X

ReachGn−1(s′) ∩ Up(ϕP (s, s′)) > 0 ∩
∑
s′′ 6=s′

Low(ϕP (s, s′′)) < 1


Informally, ReachG,X

0 (s) is empty if s /∈ G and contains exactly all parameter
valuations ensuring that s is consistent while avoiding X otherwise. For n > 0,



ReachG,X
n (s) either contains exactly all parameter valuations ensuring that s is

consistent while avoiding X if s ∈ G or all parameter valuations ensuring that s
is consistent while avoiding X and that G is reachable in at most n−1 steps from
at least one potential successor s′ of s not in X that can be reached in one step
from s with a strictly positive probability. In some sense, choosing a given set X
constrains the structure of the implementations we are looking for. Since we are
attacking the problem of existential consistent reachability, we therefore need to
explore every possible choice for X, and return all parameter valuations ensuring
the property for at least one set X. We thus define ReachGn (s) as the union, for
all potential choices of X, of ReachG,X

n (s): ReachGn (s) =
⋃

X⊆Z(s) Reach
G,X
n (s).

Remark that, for n = 0, we obviously have ReachG0 (s) = Cons(s) ∩ (s ∈ G).
We show in the following lemma that the definition of ReachG,X

n (s) is faithful
to our intuition and contains exactly all parameter valuations ψ ensuring that
G is n-reachable from s while avoiding X in the IMC ψ(IP ).

Lemma 10. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S, a target
set of states G ⊆ S, X ⊆ Z(s) and n ≥ 0, ψ ∈ ReachG,X

n (s) iff there exists
a function D : S → Dist(S) such that D(s)(s′) = 0 for all s′ ∈ X and G is
(n,D)-reachable from s in the IMC ψ(IP ).

A direct consequence of Lemma 10 is the following proposition, stating that
ReachGn (s) contains exactly all the parameter valuations ψ ensuring that G is
n-reachable from s in the IMC ψ(IP ).

Proposition 3. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S, a target
set of states G ⊆ S and n ≥ 0, ψ ∈ ReachGn (s) iff G is n-reachable from state s
in the IMC ψ(IP ).

Based on Proposition 3 and Lemma 9, we conclude with the following the-
orem that shows that the set of parameter valuations ensuring existential con-
sistent reachability can be computed in a linear number of iterations using our
construction.

Theorem 5. Given a pIMC IP = (S, s0, ϕP , A, V, P ) and a target set G ⊆ S,
ReachG|S|(s0) is the exact set of parameter values such that G is reachable in IP .

4.3 Consistent Avoidability and Universal Consistent Reachability

We now briefly show how the results presented in this paper can be adapted
to universal consistent reachability, i.e. the problem of synthesising all parame-
ter valuations ensuring that a set G is reachable in all implementations of the
corresponding instances of a given pIMC IP . We first start with a related prob-
lem, consistent avoidability, and then build a solution to the universal consistent
reachability problem from the proposed solution.

Consistent Avoidability. Given an IMC I = (S, s0, ϕ,A, V ), we say that
a set G ⊆ S is consistent avoidable in I iff I is consistent and there exists an



implementationM respecting the structure of I in which G is not reachable from
s0. Given a pIMC IP = (S, s0, ϕP , A, V, P ), we want to synthesise all parameter
valuations ψ such that G ⊆ S is consistent avoidable in ψ(IP ). The construction
for consistent avoidability resembles the construction for consistency presented
in Section 3. Intuitively, consistency is an avoidability property, in which we
want to avoid the locally inconsistent states. We therefore need only to update
our notion of local consistency: formally, we say that G is 0-avoidable from s
if s /∈ G and s is 0-consistent. For n > 0, we say that G is n-avoidable from s
if s /∈ G and there exists a distribution ρ satisfying the outgoing intervals of s
and reaching only states from which G is (n− 1)-avoidable. Following the same
reasoning as in Section 3, we can show that, given an IMC I = (S, s0, ϕ,A, V )
and a set G ⊆ S, G is avoidable in I iff G is |S|-avoidable from s0.

In the pIMC setting, we proceed similarly: we directly use the formula for
Consn(s) replacing all occurrences of LC(s, S′), for any s ans S′, with LC(s, S′)∩
(s 6∈ G). We thus define the new operator AvoidGn (s), for all n ≥ 0 and all states
s of the pIMC. It is then easy to show that the set AvoidG|S|(s0), hereafter written

just AvoidG(s0), represents the desired set of parameter valuations, i.e. exactly
all parameter valuations ψ ensuring that G is consistent avoidable in ψ(IP ).

Universal Consistent Reachability. Given an IMC I = (S, s0, ϕ,A, V ) and
a target set of states G ⊆ S, we say that G is universal consistent reachable
in I iff G is reachable from s0 in all implementations respecting the structure
of I. In the pIMC setting, our aim is to synthesise all parameter valuations
ensuring that a given target set of states G is universal consistent reachable
in the resulting IMCs. This set can be directly derived from the constructions
proposed in the previous sections. Indeed, the complement set of AvoidG as
presented above represents all the parameter valuations ensuring either that the
resulting IMC is inconsistent or that the set G is reachable in all implementations
of the resulting IMC. Therefore, given a pIMC IP = (S, s0, ϕP , A, V, P ) and a

target set of states G ⊆ S, we can define uReachG(s0) = Cons(s0) ∩ AvoidG(s0)
and show that uReachG(s0) contains exactly all parameter valuations ψ ensuring
that G is universal consistent reachable in ψ(IP ).

5 Conclusion and future work

In this paper, we have explored the problem of consistency of pIMCs, an ex-
tension of Interval Markov Chains that allows parameters as endpoints of the
intervals. Indeed, parameter valuations must satisfy constraints so that all the
outgoing intervals of reachable states are well-formed and the sum of their end-
points surround 1. We show that such consistency constraints can be iteratively
explored, solved and combined, thus synthesising all parameter values ensur-
ing consistency. A similar approach also applies to consistent reachability and
avoidability problems.

The properties in this paper give a good view of how to proceed to synthesise
parameters in order to guarantee consistency and reachability. Future work will
aim at providing efficient algorithms and heuristics for pIMCs exploration.
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