
HAL Id: hal-01590820
https://hal.science/hal-01590820

Submitted on 20 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimal XP Algorithm for Hamiltonian Cycle on
Graphs of Bounded Clique-Width

Benjamin Bergougnoux, O-Joung Kwon, Mamadou Moustapha Kanté

To cite this version:
Benjamin Bergougnoux, O-Joung Kwon, Mamadou Moustapha Kanté. An Optimal XP Algorithm for
Hamiltonian Cycle on Graphs of Bounded Clique-Width. WADS 2017, Jul 2017, St. John’s, Canada.
�hal-01590820�

https://hal.science/hal-01590820
https://hal.archives-ouvertes.fr

AN OPTIMAL XP ALGORITHM FOR HAMILTONIAN CYCLE ON

GRAPHS OF BOUNDED CLIQUE-WIDTH

BENJAMIN BERGOUGNOUX, MAMADOU MOUSTAPHA KANTÉ, AND O-JOUNG KWON

Abstract. For MSO2-expressible problems like Edge Dominating Set or Hamilton-
ian Cycle, it was open for a long time whether there is an algorithm which given a
clique-width k-expression of an n-vertex graph runs in time f(k) · nO(1) for some func-
tion f . Recently, Fomin et al. (SIAM. J. Computing, 2014) presented several lower

bounds; for instance, there are no f(k) · no(k)-time algorithms for Edge Dominating
Set and for Hamiltonian Cycle unless the Exponential Time Hypothesis (ETH) fails.

They also provided an algorithm running in time nO(k) for Edge Dominating Set, but
left open whether Hamiltonian Cycle can be solved in time nO(k).

In this paper, we prove that Hamiltonian Cycle can be solved in time nO(k). This

improves the naive algorithm that runs in time nO(k2) by Espelage et al. (WG 2001).
We present a general technique of representative sets using two-edge colored multigraphs
on k vertices. The essential idea behind is that for a two-edge colored multigraph, the
existence of an Eulerian trail that uses edges with different colors alternatively can be
determined by two information, that are the number of colored edges incident with each
vertex and the number of connected components containing an edge. This allows to
avoid storing all possible graphs on k vertices with at most n edges, which gives the

nO(k2) running time. We can apply this technique to other problems such as q-Cycle
Covering or Directed Hamiltonian Cycle as well.

1. Introduction

Tree-width is one of the graph width parameters that plays an important role in graph
algorithms. Various problems which are NP-hard on general graphs, have been shown
to be solvable in polynomial time on graphs of bounded tree-width [1, 2]. A celebrated
algorithmic meta-theorem by Courcelle [3] states that every graph property expressible in
monadic second-order logic which allows quantifications over edge and vertex sets (MSO2)
can be decided in linear time on graphs of bounded tree-width. Minimum Dominating
Set, q-Coloring, and Hamiltonian Cycle problems are such graph problems.

Courcelle and Olariu [5] defined the notion of clique-width of graphs, whose modeling
power is strictly stronger than tree-width. The motivation of clique-width came from the
observation that many algorithmic problems are tractable on classes of graphs that can be
recursively decomposable along vertex partitions (A,B) where the number of neighbour-
hood types between A and B are small. Courcelle, Makowsky, and Rotics [4] extended the
meta-theorem on graphs of bounded tree-width [3] to graphs of bounded clique-width, at a

Date: February 21, 2017.
Key words and phrases. XP-algorithm, Hamiltonian cycle, clique-width.
B. Bergougnoux and M.M. Kanté are supported by French Agency for Research under the GraphEN

project (ANR-15-CE-0009). O. Kwon is supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT,
agreement No. 648527).

1

ar
X

iv
:1

70
2.

06
09

5v
1

 [
cs

.D
S]

 2
0

Fe
b

20
17

2 B. BERGOUGNOUX, M.M. KANTÉ, AND O-J. KWON

cost of a smaller set of problems, namely, the class of problems expressible in MSO1, which
allows quantifications on vertex sets only. Some of the known examples of graph problems
that are MSO2-definable, but not MSO1-definable are Max-Cut, Edge Dominating
Set, and Hamiltonian Cycle problems.

A natural question is whether such problems allow an algorithm with running time f(k)·
nO(1) for some function f , when a clique-width k-expression of an n-vertex input graph
is given. This question has been carefully answered by Fomin et al. [8, 9]. In particular,

they showed that for Max-Cut and Edge Dominating Set, there is no f(k) ·no(k)-time
algorithm unless the Exponential Time Hypothesis (ETH) fails, and proposed for both

problems algorithms with running time nO(k). They argued that Hamiltonian Cycle
also cannot be solved in time f(k) · no(k), unless ETH fails, but left open the question of

finding an algorithm running in time nO(k). Until now, the best algorithm is the one by

Espelage, Gurski, and Wanke [7] which runs in time nO(k2).

Our Contribution. In this paper, we prove that Hamiltonian Cycle can be solved in
time nO(k), thereby resolving the open problem in [9]. A Hamiltonian cycle in a graph is
a cycle containing all vertices of the graph. We formally define clique-width in Section 2.

Hamiltonian Cycle
Input : A graph G
Question : Does G have a Hamiltonian cycle?

Theorem 1.1. Given an n-vertex graph G and its clique-width k-expression, one can
solve Hamiltonian Cycle in time nO(k).

A k-labeled graph is a graph whose vertices are labeled by integers in {1, . . . , k}. Clique-
width k-expressions are expressions which allow to recursively construct a graph with the
following graph operations: (1) creating a graph with a single vertex labeled i for some
i ∈ {1, . . . , k}, (2) taking the disjoint union of two k-labeled graphs, (3) adding all edges
between vertices labeled i and vertices labeled j, for j 6= i, (4) renaming all vertices labeled
i into j. The clique-width of a graph is the minimum k such that it can be constructed
using labels in {1, . . . , k}. One observes that if a graph contains a Hamiltonian cycle C,
then each k-labeled graph introduced in the clique-width k-expression admits a partition
of its vertex set into pairwise vertex-disjoint paths, path-partitions, which is a restriction
of the Hamiltonian cycle C. A natural approach is to enumerate all such partitions into
paths. Furthermore, since the adjacency relations between this k-labeled graph and the
remaining part only depend on the labels, it is sufficient to store for each pair of labels
(i, j), the number of paths whose end vertices are labeled by i and j. As the number of

paths between two label classes is bounded by n, there are at most nO(k2) possible such
information. This is the basic idea of the XP algorithm developed by Espelage, Gurski,
and Wanke [7].

The essential idea is to introduce an equivalence relation between two path-partitions.
Given a path-partition P that is a restriction of a Hamiltonian cycle C, we consider the
maximal paths in C −

⋃
P∈P E(P) as another path-partition Q. As depicted in Figure 1,

we can construct a multigraph associated with P and Q on the vertex set {v1, . . . , vk},
by adding a red edge vivj (an undashed edge) if there is a path in P with end vertices
labeled by i and j, and by adding a blue edge vivj (a dashed edge) if there is a path in Q
with end vertices labeled by i and j. A crucial observation is that this multigraph admits

A TIGHT XP ALGORITHM FOR DECIDING HAMILTONICITY PARAMETERIZED BY CWD 3

C1

C2

C3

C4

v1

v2

v3

v4

Figure 1. The restriction of a Hamiltonian cycle to a k-labeled graph.
The complement part can be considered as another set of paths.

an Eulerian trail where red edges and blue edges are alternatively used. This is indeed a
characterisation of the fact that two such path-partitions can be joined into a Hamiltonian
cycle. To determine the existence of such an Eulerian trail, it is sufficient to know the
degree of each vertex and the connected components of the corresponding multigraphs of
the two path-partitions. This motivates an equivalence relation between path-partitions.
As a byproduct, we can keep in each equivalence class a representative and since the
number of equivalence classes is bounded by 2k log(k) ·nk, we can turn the naive algorithm
into an nO(k)-time algorithm. A more detailed explanation of our algorithm is provided
in Section 3, after the required definitions.

The paper is organized as follows. Section 2 contains the necessary preliminaries and
required notions. Section 3 is devoted to the overview of the algorithm and the proof of the
existence of Eulerian trails in two-edge colored multigraphs. We then introduce in Section 4
the equivalence relation between multigraphs on the vertex set {v1, . . . , vk}, and introduce
operations related to the update of path-partitions in clique-width k-expressions, and
prove that they preserve the equivalence relation. We define the notion of representatives
in Section 5.1 and give the algorithm in Section 5.2. We conclude with more applications
of our notion of representatives in Section 6.

2. Preliminaries

The size of a set V is denoted by |V |, and we write [V]2 to denote the set of all subsets
of V of size 2. We denote by N the set of non-negative integers.

We essentially follow [6] for our graph terminology, but we deal only with finite graphs.
The vertex set of a graph G is denoted by V (G) and its edge set by E(G) ⊆ [V (G)]2. As
usual, we write xy to denote an edge {x, y}. Let G be a graph. For X ⊆ V (G), we denote
by G[X] the subgraph of G induced by X, and for F ⊆ E(G), we write G − F for the
subgraph (V (G), E(G) \F). The degree of a vertex x, denoted by degG(x), is the number
of edges incident with x. For two sets A,B ⊆ V (G), A is complete to B if for every v ∈ A
and w ∈ B, vw ∈ E(G). A cut-edge in a connected graph is an edge e such that G− {e}
is disconnected. We recall that a cycle in a graph G is a Hamiltonian cycle if it covers all
vertices of G.

4 B. BERGOUGNOUX, M.M. KANTÉ, AND O-J. KWON

η1,3

⊕

ρ3→2

η2,3

⊕

η1,2

⊕

1(a) 2(b)

η1,3

⊕

3(c) 1(d)

3(e)

Figure 2. 3-expression of C5.

A graph is non-trivial if it contains an edge, otherwise it is said trivial. A walk of
a graph is an alternating sequence of vertices and edges, starting and ending at some
vertices, where for every consecutive pair of a vertex x and an edge e, x is incident with
e. A trail of a graph is a walk where each edge is used at most once. A trail is closed if
its first and last vertices are the same.

A multigraph is essentially a graph, but we allow two edges to be incident with the
same set of vertices. Formally, a multigraph G is a pair (V (G), E(G)) of disjoint sets,
also called sets of vertices and edges, respectively, together with a map multG : E(G) →
V (G)∪ [V (G)]2, which maps every edge to one or two vertices, still called its end vertices.
Note that we admit loops in multigraphs, while we do not in our definition of graphs.
If there is e ∈ E(G) such that multG(e) = {x, y} (or multG(e) = {x}), we use the term
multiedge to refer to {x, y} (or {x}). The degree of a vertex x in a multigraph G, is defined
analogously as in graphs, except that each loop is counted twice, and similarly for other
notions. If there are exactly k edges e such that multG(e) = {x, y} (or multG(e) = {x}),
then we denote these distinct edges by {x, y}1, . . . , {x, y}k (or {x}1, . . . , {x}k); if k = 1,
then for the sake of clarity, we write {x, y} (or {x}) instead of {x, y}1 (or {x}1).

An Eulerian trail in a multigraph is a closed trail containing all edges.

2.1. Clique-width. A graph is k-labeled if there is a labeling function f : V (G) →
{1, . . . , k}, and we call f(v) the label of v. For a k-labeled graph G, we simply call the set
of all vertices with label i as the label class i of G.

The clique-width of a graph G is the minimum number of labels needed to construct G
using the following four operations:

(1) Creation of a new vertex v with label i (denoted by i(v)).
(2) Disjoint union of two labeled graphs G and H (denoted by G⊕H).
(3) Joining by an edge each vertex with label i to each vertex with label j (i 6= j, denoted

by ηi,j).
(4) Renaming label i to j (denoted by ρi→j).

A TIGHT XP ALGORITHM FOR DECIDING HAMILTONICITY PARAMETERIZED BY CWD 5

Every graph can be defined by an algebraic expression using these four operations. Such
an expression is called a clique-width k-expression or shortly a k-expression if it uses at
most k distinct labels.

For instance, the cycle abcdea of length 5 can be constructed using the following 3-
expression: η1,3(ρ3→2η2,3(η1,2(1(a) ⊕ 2(b)) ⊕ η1,3(3(c) ⊕ 1(d))) ⊕ 3(e)). We can represent
this expression as a tree-structure, depicted in Figure 2. Such trees are known as syntactic
trees associated with k-expressions.

A clique-width k-expression is called irredundant if whenever ηi,j is applied, the con-
structed graph contains no prior edges between vertices with label i and vertices with
label j. Courcelle and Olariu [5] proved that given a clique-width k-expression, it can be
transformed into an irredundant k-expression in linear time. Therefore, we can assume
that a given clique-width expression is irredundant.

2.2. Path-partition. For a graph G, a set P = {P1, . . . , Pm} of pairwise vertex-disjoint
paths in G is called a path-partition of G if

⋃
1≤i≤m V (Pi) = V (G). A path-partition P is

k-labeled if each end vertex of a path in P is labeled by some integer in {1, . . . , k}. For
a path-partition P of a k-labeled graph G, the labeling of P induced by the labeling of G
consists in assigning to each end vertex of a path in P its label in G. Lastly, for a k-labeled
path-partition P of a graph, we define the auxiliary multigraph Aux(P) with vertex set
{v1, . . . , vk} and edge set

⋃
i,j∈{1,...,k}

{{vi, vj}1, . . . , {vi, vj}`ij} where `ij is the number of

paths in P with end vertices labeled i and j respectively.

3. Overview of the algorithm

In an irredundant clique-width k-expression φ defining a given graph G, G is recursively
constructed using k-labeled graphs. Such k-labeled graphs H arising in the k-expression
defining G are subgraphs of G and satisfy the following properties:

(1) for two vertices v, w ∈ V (H) with same labels in H, NG(v) ∩ (V (G) \ V (H)) =
NG(w) ∩ (V (G) \ V (H)),

(2) for some label class i, say Li, and label class j, say Lj , in H with i 6= j, if there exist
v ∈ Li, w ∈ Lj with vw ∈ E(G) \E(H), then Li is complete to Lj in G, and there are
no edges between Li and Lj in H.

In (2), the former statement is because when we add vw, all vertices in each set of Li or Lj

have same labels, and the latter statement is because of the irredundancy of φ. Given such
a k-labeled subgraphH ofG, for any Hamiltonian cycle C, the restriction of C toH induces
a k-labeled path-partition of H. Because of the two properties (1) and (2), it is sufficient
to store the end vertices of each path. This is naturally represented as a multigraph
on k vertices, motivating the definition of the auxiliary multigraphs associated with k-
labeled path-partitions. Our algorithm will be based on the following characterization of
equivalent path-partitions.

We formally prove the following relations between two path-partitions in Section 5.

Proposition 5.2. Let P1 and P2 be k-labeled path-partitions of H whose labelings are
induced by the labeling of H. If

• (degAux(P1)(v1), . . . ,degAux(P1)(vk)) = (degAux(P2)(v1), . . . ,degAux(P2)(vk)) and

• {V (C) | C is a component of Aux(P1)} = {V (C) | C is a component of Aux(P2)},
then the following are equivalent.

6 B. BERGOUGNOUX, M.M. KANTÉ, AND O-J. KWON

(1) G has a Hamiltonian cycle C1 containing each path in P1 as a subpath and such that
every edge in C1 − (

⋃
P∈P1

E(P)) is contained in E(G) \ E(H).
(2) G has a Hamiltonian cycle C2 containing each path in P2 as a subpath and such that

every edge in C2 − (
⋃

P∈P2
E(P)) is contained in E(G) \ E(H).

Suppose there are two such path-partitions P1 and P2, and G has a Hamiltonian cycle
C1 containing each path in P1 as a subpath and such that every edge in C1−(

⋃
P∈P1

E(P))
is contained in E(G) \ E(H). Let Q be the subpaths of C1 connecting two consecutive
paths in P1. See Figure 1 for an illustration, where dashed edges denote the paths of Q.
Note that if a path in Q is an edge, then it is an edge between two label classes, and since
φ is an irredundant k-expression, these two label classes are completely adjacent to each
other.

One can observe that there is a one-to-one correspondence between the end-vertices
of P1 and those of Q. Let us label each end vertex of a path in Q as the label of H,
We consider the auxiliary multigraph Aux(P1) and the auxiliary multigraph Aux(Q) by
considering Q as a path-partition of the underlying graph on

⋃
Q∈Q V (Q). We obtain

a multigraph F from the disjoint union of Aux(P1) and Aux(Q) by identifying each vi.
Following the Hamiltonian cycle C, one easily checks that there is an Eulerian trail which
alternates between edges in Aux(P1) and edges in Aux(Q).

We will prove that if we replace Aux(P1) with Aux(P2) in F , then the new graph also
admits an Eulerian trail, because of the given conditions in Proposition 5.2. To see this,
we observe the following, which is a strengthen of Euler’s theorem on Eulerian trails. It
is well known that a connected multigraph contains an Eulerian trail if and only if every
vertex has even degree. Moreover, when edges are colored by two colors, say red and blue,
and each vertex is incident with the same number of edges for both colors, then we can
find an Eulerian trail where the two colors appear alternatively. We call such an Eulerian
trail a red-blue alternating Eulerian trail. For a multigraph G colored by red and blue and
v ∈ V (G), let rdegG(v) denote the number of red edges incident with v, and let bdegG(v)
denote the number of blue edges incident with v.

Lemma 3.1. Let G be a connected multigraph whose edges are colored by red and blue.
Then the following are equivalent. Then G has a red-blue alternating Eulerian trail if and
only if for every vertex v, bdegG(v) = rdegG(v).

Proof. It is clear that if G has a red-blue alternating Eulerian trail, then for every vertex v,
bdegG(v) = rdegG(v). We prove the other direction. Let m be the number of edges in G.
We choose a red-blue alternating trail v1e1v2e2 · · · vieivi+1 with maximum i such that e1

is colored red, and there is exactly one non-trivial component C of G−
(⋃

j∈{1,...,i}{ej}
)

,

and C contains v1 and vi+1, and in Gi := G−
(⋃

j∈{1,...,i}{ej}
)

,

• for each v ∈ V (G) \ {v1, vi+1}, rdegGi
(v) = bdegGi

(v),
• if vi+1 6= v1, and ei is colored red (resp. blue), then bdegGi

(vi+1) = rdegGi
(vi+1)+1

(resp. rdegGi
(vi+1) = bdegGi

(vi+1) + 1) and bdegGi
(v1) = rdegGi

(v1) + 1.
• if vi+1 = v1, then bdegGi

(v1) = rdegGi
(v1) or bdegGi

(v1) = rdegGi
(v1) + 2.

We claim i = m − 1. Suppose i < m − 1. Note that there are at least two edges in
E(G) \ E(Gi).

We observe that there are at most one cut-edge in Gi incident with vi+1. If there are
two cut-edges incident with vi+1, then one cut-edge f satisfies that Gi−f has a connected

A TIGHT XP ALGORITHM FOR DECIDING HAMILTONICITY PARAMETERIZED BY CWD 7

component C that does not contain v1 and vi+1. However, all vertices v in C satisfy
rdegGi

(v) = bdegGi
(v) by the assumption, and in particular, they have even degrees, and

this is not possible. Therefore, there are at most one cut-edge in Gi incident with vi+1.
Suppose vi+1 6= v1 and ei is colored red. The proof is symmetric when ei is colored

blue. If there is a blue edge e incident with vi+1 in Gi, then we can choose e as a next
edge to extend the red-blue alternating trail. Thus, we may assume there is only one edge
e incident with vi+1 and it is a cut-edge of Gi. By the condition, vi+1 is not adjacent
to any red edge in Gi, and thus it has degree 1 in Gi. Therefore, Gi − e has only one
non-trivial component, and it implies that we can choose e as a next edge to extend the
red-blue alternating trail.

Suppose vi+1 = v1 and bdegGi
(v1) = rdegGi

(v1) + 2. In this case, ei should be a red
edge. Since there are at least two blue edges incident with vi+1 in Gi, we can choose a
blue edge e that is not a cut-edge. Suppose vi+1 = v1 and bdegGi

(v1) = rdegGi
(v1). In

this case, ei should be a blue edge. Note that rdegGi
(v1) 6= 0 by the condition that there

is at least one non-trivial connected component containing v1 and vi+1, and thus there is
at least one red edge incident with vi+1 in Gi. We claim that there is at least one red
edge among them that is not a cut-edge. Suppose for contradiction that there is only one
red edge incident with vi+1 in Gi and it is a cut-edge in Gi. By the assumption, there is
exactly one blue edge incident with vi+1 in Gi. Since one of two edges incident with vi+1

is not a cut-edge, the other one is also not a cut-edge. It contradicts to the assumption.
Thus, we can choose a red edge e that is not a cut-edge.

In each case, we can extend the red-blue alternating trail using e, which contradicts
to the maximality. Therefore i = m − 1, and vi+1 should be connected to v1 by a blue
edge f := vi+1v1. Thus, v1e1v2e2 · · · vieivi+1fv1 is a required red-blue alternating Eulerian
trail. �

Indeed, when we replace Aux(P1) with Aux(P2) in F , the set of components does not
change (thus consists of one non-trivial component), and each vertex is incident with same
number of red and blue edges, and by Lemma 3.1, the resulting graph has an Eulerian
trail. We will argue that one can construct a Hamiltonian cycle of G from paths of P2

using the properties (1) and (2) at the beginning of this section.
Motivated by Proposition 5.2, we define in Section 4 an equivalence relation between

two sets of multigraphs on the same vertex set {v1, . . . , vk}. We further define operations
on those multigraphs, corresponding to procedures of updating path-partitions, and prove
that the equivalence between two sets is preserved under such operations. These results
will form the skeleton of the main algorithm.

4. An equivalence relation between families of k-vertex multigraphs

For two multigraphs G and H on the same vertex set {v1, . . . , vk} and with disjoint
edge sets, we denote by G//H the multigraph with vertex set {v1, . . . , vk} and edge set
E(G) ∪ E(H).

For families F ,F1,F2 of multigraphs on the vertex set {v1, . . . , vk} and two distinct
integers i, j ∈ {1, . . . , k}, we define the following operations:

(1) F + (i, j) is the set of all multigraphs F ′ where F ′ can be obtained from a
multigraph F in F as follows1: choose two distinct edges {vi, v′i}t and {vj , v′j}s,

1We allow v′i (or v′j) to be equal to vi (or vj).

8 B. BERGOUGNOUX, M.M. KANTÉ, AND O-J. KWON

and let F ′ be the multigraph on vertex set {v1, . . . , vk} and edge set (E(F) \
{{vi, v′i}t, {vj , v′j}s}) ∪ {e} with e /∈ E(F) mapped to {v′i, v′j}.

(2) F + t(i, j) is the set constructed from F by doing the operation +(i, j) t times.
(3) F|i→j is the set of all multigraphs F where F can be obtained from a multigraph

in F by replacing every edge by an end vertex vi with an edge with an end vertex
vj .

(4) F1] F2 := {F1//F2 : F1 ∈ F1, F2 ∈ F2}.
Let F1 and F2 be two families of multigraphs on the vertex set {v1, . . . , vk}. We write

F1 . F2 if for every multigraph H on the vertex set {v1, . . . , vk},
- whenever there existsG2 ∈ F2 such that (degG2

(v1), . . . ,degG2
(vk)) = (degH(v1), . . . ,degH(vk))

and G2//H has at most one non-trivial component, there exists G1 ∈ F1 such that
(degG1

(v1), . . . ,degG1
(vk)) = (degH(v1), . . . ,degH(vk)) and G1//H has at most one non-

trivial component.

We say that F1 is equivalent to F2, written F1 ≡ F2, if F1 . F2 and F2 . F1.
We prove that the equivalence between two families is preserved by the operation +(i, j).

Proposition 4.1. Let F1 and F2 be two families of multigraphs on the vertex set {v1, . . . , vk}.
If F1 ≡ F2, then F1 + (i, j) ≡ F2 + (i, j).

Proof. Suppose F1 ≡ F2. It is sufficient to prove that F1 + (i, j) . F2 + (i, j). For
this, suppose there exist a graph H on {v1, . . . , vk} and G2 ∈ F2 + (i, j) such that
(degG2

(v1), . . . ,degG2
(vk)) = (degH(v1), . . . ,degH(vk)) and G2//H has at most one non-

trivial component. Since G2 ∈ F2 + (i, j), there exist F2 ∈ F2, edges {vi, v′i}t, {vj , v′j}s in

F2 such that G2 = (V (F2), E(F2) \ {{vi, v′i}t, {vj , v′j}s} ∪ {e}) with e /∈ E(F2) mapped to

{v′i, v′j} in G2. Let H ′ := (V (H), E(H) ∪ {e′}) with e′ /∈ E(H) mapped to {vi, vj} in H.
We claim that

• (degF2
(v1), . . . ,degF2

(vk)) = (degH′(v1), . . . ,degH′(vk)) and
• F2//H

′ has at most one non-trivial component.

By the construction of G2 from F2, for every v` ∈ V (F2) \ {vi, vj}, v` has the same degree
in F2 and G2, and the degrees of vi and vj in G2 are one less than the degrees in F2,
respectively. Since the degrees of vi and vj in H ′ are one more than the degrees in H, we
have (degF2

(v1), . . . ,degF2
(vk)) = (degH′(v1, . . . ,degH′(vk)). Assume now that F2//H

′

has at least two non-trivial components. First observe that the four vertices vi, vj , v
′
i, v
′
j

are in the same non-trivial component C of F2//H
′, and {vi, v′i} are in a same non-trivial

component of G2//H. If C ′ is another non-trivial component of F2//H
′, then it does not

intersect {vi, v′i, vj , v′j}, i.e., C ′ is non-trivial component in G2//H that does not intersect

the one containing {vi, v′i}, yielding a contradiction.
Since F1 ≡ F2, there exists F1 ∈ F1 such that (degF1

(v1), . . . ,degF1
(vk)) =

(degH′(v1), . . . ,degH′(vk)) and F1//H
′ has at most one non-trivial component. By Lemma 3.1,

F1//H
′ contains an Eulerian trail where edges in F1 and edges in H ′ are alternatively used.

Let {vi, v′′i }t′ and {vj , v′′j }s′ be the edges where {vi, v′′i }t′ , e′, {vj , v′′j }s′ appear in the Euler-

ian trail in this order (recall that e′ is mapped to {vi, vj}). Clearly, if we remove the edges
{vi, v′′i }t′ , e′, {vj , v′′j }s′ and add an edge f mapped to {v′′i , v′′j } in F1//H

′, then the ob-

tained multigraph K still admits an alternating Eulerian trail. Let G1 = (V (F1), E(F1) \
{{vi, v′′i }t′ , {vj , v′′j }s′} ∪ {f}) with f /∈ E(F1) mapped to {v′′i , v′′j } in G1. One easily checks

that K = G1//H, and since K has an Eulerian trail where edges in G1 and edge in H are
alternatively used, by Lemma 3.1, (degG1

(v1), . . . ,degG1
(vk)) = (degH(v1), . . . ,degH(vk))

A TIGHT XP ALGORITHM FOR DECIDING HAMILTONICITY PARAMETERIZED BY CWD 9

and G1//H has at most one non-trivial component. Because G1 ∈ F1 +(i, j), we can thus
conclude that F1 + (i, j) . F2 + (i, j). �

We prove a similar property for the other operations.

Proposition 4.2. Let F1 and F2 be families of multigraphs on the vertex set {v1, . . . , vk}
and let i, j ∈ {1, . . . , k} be two distinct integers. If F1 ≡ F2, then F1|i→j ≡ F2|i→j.

Proof. Suppose F1 ≡ F2. It is sufficient to prove that F1|i→j . F2|i→j . Suppose there
exist a graph H on {v1, . . . , vk} and G2 ∈ F2|i→j such that (degG2

(v1), . . . ,degG2
(vk)) =

(degH(v1), . . . ,degH(vk)) andG2//H has at most one non-trivial component. By Lemma 3.1,
there is an Eulerian trail C where edges of G2 and edges of H are alternatively used. Since
G2 ∈ F2|i→j , there exists F2 ∈ F2 such that G2 is obtained from F2 by replacing every
edge with an end vertex vi with an edge with an end vertex vj . Clearly, we can construct
F2 from G2 by reversing each of these operations. We construct the multigraph H ′ from
H as follows :

• following the construction of F2 from G2, whenever an edge {v`, vj}t is replaced
with {v`, vi}s for some v`, we replace the edge {v`′ , vj}t with {v`′ , vi}p in H where
{v`, vj}t and {vj , v`′}s are consecutive edges in C.

This operation preserves the existence of an alternating Eulerian trail. It implies that
(degF2

(v1), . . . ,degF2
(vk)) = (degH′(v1), . . . ,degH′(vk)) and F2//H

′ also has at most one
non-trivial component.

Since F1 ≡ F2, there exists F1 ∈ F1 such that (degF1
(v1), . . . ,degF1

(vk)) =
(degH′(v1), . . . ,degH′(vk)) and F1//H

′ has at most one non-trivial component. In other
words, F1//H

′ has an Eulerian trial where edges in F1 and edges in H ′ are alterna-
tively used. Similar to the previous procedure, we can obtain a graph G1 form F1 by
following the construction of H from H ′, such that G1 ∈ F1|i→j and G1//H has an
Eulerian trail where edges in G1 and edges in H are alternatively used. By Lemma 3.1
(degG1

(v1), . . . ,degG1
(vk)) = (degH(v1), . . . ,degH(vk)) and G1//H has at most one non-

trivial component, and we conclude that F1|i→j . F2|i→j . �

Proposition 4.3. Let F1,F2,F3 be families of multigraphs on the vertex set {v1, . . . , vk}.
If F1 ≡ F2, then F1] F3 ≡ F2] F3.

Proof. Suppose F1 ≡ F2. It is sufficient to prove that F1] F3 . F2] F3. Suppose there
exist a graph H on {v1, . . . , vk} and G2 ∈ F2 and G3 ∈ F3 such that
(degG2//G3

(v1), . . . ,degG2//G3
(vk)) = (degH(v1), . . . ,degH(vk)) and (G2//G3)//H has at

most one non-trivial component. Thus, (G2//G3)//H has an Eulerian trail C where edges
in G2//G3 and edges in H are alternatively used. Clearly, (G2//G3)//H = G2//(G3//H).
Now, we obtain a graph H ′ from G3//H by successively repeating the following: if P is
a maximal path in C which alternates between edges of G3 and those of H, remove all
the edges of P and add an edge eP between the two endpoints of the P . Notice that by
replacing in C each maximal path P alternating between edges of G3 and of H, by the
edge eP , we obtain an Eulerian trail alternating between edges of G2 and edges of H ′.

Since F1 ≡ F2, there exists G1 ∈ F1 such that G1//H
′ has an Eulerian trail C1

where edges in G1 and edges in H ′ are alternatively used. We can replace each edge
eP of H ′ with P in C1, obtaining an Eulerian trail of G1//(G3//H) which alternates
between edges of G1//G3 and of H. Therefore, (degG1//G3

(v1), . . . ,degG1//G3
(vk)) =

10 B. BERGOUGNOUX, M.M. KANTÉ, AND O-J. KWON

(degH(v1), . . . ,degH(vk)) and (G1//G3)//H has at most one non-trivial component. This
concludes the proof of the statement. �

5. Hamiltonian Cycle problem

We prove the main result of this paper.

Theorem 1.1. Given a graph G and its k-expression, one can solve Hamiltonian Cycle
in time nO(k).

5.1. Equivalence between partial solutions. We now define formally our notion of
representatives based only on the degree sequence and connected components of auxiliary
multigraphs associated with k-labeled path-partitions.

Definition 5.1 (Representatives by auxiliary multigraphs). Let G and H be multigraphs
on vertex set {v1, . . . , vk}. We write G ' H whenever (degG(v1), . . . ,degG(vk)) =
(degH(v1), . . . ,degH(vk)) and {V (C) | C is a component of G} is equal to {V (C) | C is
a component of H}. One easily checks that ' is an equivalence relation on any set F of
multigraphs on vertex set {v1, . . . , vk}.

For a family F of multigraphs on vertex-set {v1, . . . , vk}, let reduce(F) be the operation
which takes in each equivalence class of F/ ' a representative.

The goal of this section is to prove the following.

Proposition 5.2. Let G be a graph with its irredundant clique-width k-expression φ, and
let t be a node in the syntactic tree. Let Gt be the k-labeled graph constructed at t, and let
P1 and P2 be k-labeled path-partitions of Gt whose labelings are induced by the labeling of
Gt. If Aux(P1) ' Aux(P2), then the following are equivalent.

(1) G has a Hamiltonian cycle C1 containing each path in P1 as a subpath and such that
every edge in C1 − (

⋃
P∈P1

E(P)) is contained in E(G) \ E(Gt).
(2) G has a Hamiltonian cycle C2 containing each path in P2 as a subpath and such that

every edge in C2 − (
⋃

P∈P2
E(P)) is contained in E(G) \ E(Gt).

Proof. By symmetry, it is sufficient to prove that (1) implies (2). Suppose G has a Hamil-
tonian cycle C1 containing each path in P1 as a subpath and such that every edge in
C1 − (

⋃
P∈P1

E(P)) is contained in E(G) \ E(Gt). Let Q be the set of all maximal paths
in C1− (

⋃
P∈P1

E(P)), and let H := G[
⋃

Q∈Q V (Q)]. We consider Q as the path-partition
of H where the end vertices of paths in Q are labeled by their labels in Gt.

Since C1 is a Hamiltonian cycle, Aux(P1)//Aux(Q) has an Eulerian trail where edges
in Aux(P1) and edges in Aux(Q) are alternatively used. Thus Aux(P1)//Aux(Q) has at
most one non-trivial connected component, and

(degAux(P1)(v1), . . . ,degAux(P1)(vk)) = (degAux(Q)(v1), . . . ,degAux(Q)(vk)).

Since Aux(P1) ' Aux(P2) by the assumption, Aux(P2)//Aux(Q) has at most one non-
trivial connected component and

(degAux(P2)(v1), . . . ,degAux(P2)(vk)) = (degAux(Q)(v1), . . . ,degAux(Q)(vk)).

Therefore, by Lemma 3.1, Aux(P2)//Aux(Q) admits an Eulerian trail where the edges in
Aux(P2) and the edges in Aux(Q) are alternatively used.

Now, we show that G has a Hamiltonian cycle C2 containing each path in P2 as a
subpath and such that every edge in C2−(

⋃
P∈P2

E(P)) is contained in E(G)\E(Gt). Let

A TIGHT XP ALGORITHM FOR DECIDING HAMILTONICITY PARAMETERIZED BY CWD 11

e1, e2, . . . , e2m be the sequence of the edges in an Eulerian trail of Aux(P2)//Aux(Q) where
edges in Aux(P2) and edges in Aux(Q) are alternatively used such that e1 ∈ E(Aux(P2)).
For convenience, let e0 := e2m and e2m+1 := e1. For each i ∈ {1, . . . , 2m}, let L(i) be the
vertex incident with ei and ei−1, and let R(i) be the vertex incident with ei and ei+1. For
each integer i ∈ {1, . . . ,m}, let P2i−1 be the path in P2 corresponding to e2i−1, and for
each integer i ∈ {1, . . . ,m}, let Q2i be the path in Q corresponding to e2i. We construct
a Hamiltonian cycle of G from (

⋃
P∈P2

V (P),
⋃

P∈P2
E(P)) as follows. Let i ∈ {1, . . . ,m}.

(1) If Q2i consists of an edge, then we add an edge between the end vertex of P2i−1

corresponding to R(2i−1) and the end vertex of P2i+1 corresponding to L(2i+1).
(2) Suppose Q2i is a path of length at least 2. Let q2i

1 , q
2i
2 be the end vertices of

Q2i corresponding to L(2i) and R(2i), respectively. Let q2i
3 , q

2i
4 be the neighbors of

q2i
1 , q

2i
2 in Q2i, respectively. Then, we add Q2i−{q2i

1 , q
2i
2 } to the subgraph, and add

an edge between q2i
3 and the end vertex of P2i−1 corresponding to R(2i− 1), and

add an edge between q2i
4 and the end vertex of P2i+1 corresponding to L(2i+ 1).

We verify that this is always possible. Suppose Q2i consists of an edge. By the assumption
of C1, the edge in Q2i is contained in E(G) \E(Gt); in other words, this edge is added in
some ascendant node of t. This also implies that R(2i−1) 6= L(2i+1), and by the definition
of the clique-width expression, the label class with respect to the index of R(2i−1) and the
label class with respect to the index of L(2i+ 1) are completely adjacent to each other in
G. Therefore, there is an edge between the end vertex of P2i−1 corresponding to R(2i−1)
and the end vertex of P2i+1 corresponding to L(2i+ 1), and furthermore, this edge is not
in Gt because φ is irredundant. So, we can add it to connect two paths.

Now suppose Q2i has length at least 2. By the definition of the clique-width expression,
all vertices in a label class in Gt have the same neighborhood in V (G) \ V (Gt). So, there
are an edge between q2i

3 and the end vertex of P2i−1 corresponding to R(2i − 1), and an
edge between q2i

4 and the end vertex of P2i+1 corresponding to L(2i+ 1), and we can add
them.

It implies that G has a Hamiltonian cycle C2 containing each path in P2 as a subpath
and such that every edge in C2 − (

⋃
P∈P2

E(P)) is contained in E(G) \ E(Gt). �

We can now prove the following which essentially tells us that if F is the set of pos-
sible k-labeled path-partitions at a node t of the syntactic tree, it is enough to store
reduce({Aux(P) | P ∈ F}).

Proposition 5.3. Let F be a family of graphs on the vertex set {v1, . . . , vk}. Then
F ≡ reduce(F).

Proof. Since reduce(F) is a subset of F , it is sufficient to prove that reduce(F) . F . Let
H be a multigraph on {v1, . . . , vk} and let G2 ∈ F such that (degG2

(v1), . . . ,degG2
(vk)) =

(degH(v1), . . . ,degH(vk)) and G2//H has at most one non-trivial component. By the
definition of reduce(F), there is G1 ∈ reduce(F) so that G1 ' G2. By definition of ', we
have (degG1

(v1), . . . ,degG1
(vk)) = (degH(v1), . . . ,degH(vk)). Since the components are

the same in G1 and in G2, and the edges in H join components of G2 in G2//H as in
G1//H, we can conclude that G1//H has at most one non-trivial component. �

5.2. An nO(k)-algorithm for Hamiltonian Cycle.

Proof of Theorem 1.1. We assume that G has at least 3 vertices, otherwise we can auto-
matically say it is a No-instance. Since every k-expression can be transformed into an

12 B. BERGOUGNOUX, M.M. KANTÉ, AND O-J. KWON

irredundant k-expression in linear time, we may assume that G is given with an irredun-
dant k-expression. Let φ be the given irredundant k-expression defining G, and T be the
syntactic tree of φ. For every node t of T , let Gt be the subgraph of G defined at node t,
and for each i ∈ {1, . . . , k}, let Gt[i] be the subgraph of Gt induced on the vertices with
label i.

For each node t and each vector (a1, . . . , ak) ∈ {0, 1, . . . , n}k, let c[t, (a1, . . . , ak)] be the
set of all graphs F on the vertex set {v1, . . . , vk} where

• F = Aux(P) for some k-labeled path-partition P of Gt,
• for each i ∈ {1, . . . , k}, ai is the degree of vi in F .

Instead of computing the whole set c[t, (a1, . . . , ak)], we will compute a subset r[t, (a1, . . . , ak)]

of c[t, (a1, . . . , ak)] of size 2O(k log k) such that r[t, (a1, . . . , ak)] ≡ c[t, (a1, . . . , ak)].
We explain how to decide whether G has a Hamiltonian cycle. Let troot be the root

node of T , and let tlastjoin be the node that is a node taking the disjoint union of two
graphs and closest to the root node. We can observe that G has a Hamiltonian cycle if and
only if there are some node t between troot and tlastjoin with child t′ and a path-partition
P of Gt′ such that

• t is a join node labeled by ηi,j ,
• degAux(P)(vi) = degAux(P)(vj) > 0 and degAux(P)(vi′) = 0 for all i′ ∈ {1, . . . , k} \
{i, j}.

This is equivalent to that c[t′, (a1, . . . , ak)] 6= ∅ for some vector (a1, . . . , ak) where ai =
aj > 0 and ai′ = 0 for all i′ ∈ {1, . . . , k}\{i, j}. Therefore, if there is a Hamiltonian cycle,
then r[t′, (a1, . . . , ak)] 6= ∅ for such a tuple of t, t′, and (a1, . . . , ak), and we can correctly
say that G has a Hamiltonian cycle, and otherwise, there are no such tuples, and we can
correctly say that G has no Hamiltonian cycles.

Now, we explain how to recursively generate r[t, (a1, . . . , ak)].

(1) (Creation of a vertex v with label i)
If ai = 2 and aj = 0 for all j 6= i, then c[t, (a1, . . . , ak)] consists of one graph

on the vertex set {v1, . . . , vk} with a loop incident with vi, and otherwise, it is an
empty set. So, we add the graph ({v1, . . . , vk}, {vivi}) to r[t, (a1, . . . , ak)] when
ai = 2 and aj = 0 for all j 6= i, and set r[t, (a1, . . . , ak)] := ∅ otherwise.

(2) (Disjoint union node with two children t1 and t2)
Since every path-partition of Gt is obtained by taking the disjoint union of a

path-partition of Gt1 and a path-partition of Gt2 , we have

c[t,(a1, . . . , ak)]

:=
⋃

(a11,...,a
1
k)+(a21,...,a

2
k)=(a1,...,ak)

c[t1, (a
1
1, . . . , a

1
k)]] c[t2, (a2

1, . . . , a
2
k)].

We assign

r[t,(a1, . . . , ak)]

:= reduce

 ⋃
(a11,...,a

1
k)+(a21,...,a

2
k)=(a1,...,ak)

r[t1, (a
1
1, . . . , a

1
k)]] r[t2, (a2

1, . . . , a
2
k)]

 .

A TIGHT XP ALGORITHM FOR DECIDING HAMILTONICITY PARAMETERIZED BY CWD 13

(3) (Join node with the child t′ such that each vertex with label i is joined to each
vertex with label j)

Note that every path-partition of Gt is obtained from a path-partition of Gt′

by adding some edges between end vertices of label i and end vertices of label j.
We can observe that when we add an edge between an end vertex v of a path P1

with label i, and an end vertex w of a path P2 with label j, these two paths P1

and P2 will be unified into a path whose end vertices are end vertices of P1 and
P2 other than v and w. Thus, it corresponds to the operation +(i, j) on auxiliary
multigraphs. We observe that

c[t,(a1, . . . , ak)] =
⋃

a′i−ai=a′j−aj=`≥0

a′x=ax for x 6= i, j

(c[t′, (a′1, . . . , a
′
k)] + `(i, j)).

We take all possible vectors (a′1, . . . , a
′
k) where a′i− ai = a′j − aj ≥ 0, and for all

t ∈ {1, . . . , k} \ {i, j}, a′t = at. Assume ` = a′i − ai. For each ` ∈ {0, 1, . . . , n}, we
assign

r` := reduce(· · · reduce(reduce(r[t′, (a′1, . . . , a
′
k)] + (i, j)) + (i, j)) · · ·+ (i, j)),

where we repeat ` times, and assign

r[t, (a1, . . . , ak)] := reduce(r0 ∪ r1 ∪ · · · ∪ rn).

(4) (Renaming node with a child t′ such that the label of each vertex with label i is
changed to j)

Every path-partition of Gt is also a path-partition of Gt′ , and vice versa. Since
just labelings of vertices are changed, we can observe that if ai 6= 0, then c[t, (a1, . . . , ak)]
is the empty set, and otherwise, we have

c[t,(a1, . . . , ak)] :=
⋃

ax=a′x for all x 6= i, j
a′i+a′j=aj

c[t′, (a′1, . . . , a
′
k)]|i→j .

If ai 6= 0, then we assign the empty set to r[t, (a1, . . . , ak)], and otherwise, we
assign

r[t,(a1, . . . , ak)] := reduce

 ⋃
ax=a′x for all x 6= i, j

a′i+a′j=aj

r[t′, (a′1, . . . , a
′
k)]|i→j

 .

To confirm the correctness of our algorithm, we claim the following.

Claim 1. Let t be a node and (a1, . . . , ak) ∈ {0, 1, . . . , n}k. Then r[t, (a1, . . . , ak)] ≡
c[t, (a1, . . . , ak)].

Proof. It is clear when t is a node that creates a new vertex.
Suppose t is a disjoint union node with two children t1 and t2. For two vectors

(a1
1, . . . , a

1
k) and (a2

1, . . . , a
2
k) where (a1

1, . . . , a
1
k) + (a2

1, . . . , a
2
k) = (a1, . . . , ak), we have

r[t1, (a
1
1, . . . , a

1
k)]] r[t2, (a2

1, . . . , a
2
k)] ≡ c[t1, (a1

1, . . . , a
1
k)]] c[t2, (a2

1, . . . , a
2
k)]

by Proposition 4.3. Thus, we have r[t, (a1, . . . , ak)] ≡ c[t, (a1, . . . , ak)].

14 B. BERGOUGNOUX, M.M. KANTÉ, AND O-J. KWON

Suppose t is a join node with the child t′ such that each vertex with label i is joined
to each vertex with label j. By applying Propositions 4.1 and 5.3 recursively, we obtain
that r[t, (a1, . . . , ak) ≡ c[t, (a1, . . . , ak)].

Lastly, suppose t is a renaming node with a child t′ such that the label of each vertex
with label i is changed to j. We may assume ai = 0. In that case, by Propositions 4.2
and 5.3, we have r[t, (a1, . . . , ak) ≡ c[t, (a1, . . . , ak)]. ♦

By Claim 1, we correctly update a representative set r[t, (a1, . . . , ak)] of c[t, (a1, . . . , ak)]
for each pair of t and (a1, . . . , ak). Therefore, we can correctly decide whether G has a
Hamiltonian cycle or not using sets r[t, (a1, . . . , ak)].

Running time. Each constructed set r[t, (a1, . . . , ak)] consists of at most 2O(k log k)

graphs, as we keep at most one graph for each partition of {v1, . . . , vk} after the reduce op-
eration. For the node taking the disjoint union of two graphs, for a fixed vector (a1, . . . , ak),

there are nO(k) ways to take two vectors A1 and A2 such that A1 + A2 = (a1, . . . , ak).

So, we can update r[·, ·] in time nO(k) · 2O(k log k). For the node joining edges between
two classes, the value ` can be taken from 0 to n. Since each operation +(i, j) take

k2 · 2O(k log k) time, we can update r[·, ·] in time n2 · 2O(k log k). Clearly, we can update

r[·, ·] in time n · 2O(k log k) for the relabeling nodes. Therefore, we can solve Hamiltonian

Cycle for G in time nO(k). �

6. More applications and Concluding Remarks

We discuss two variants of Hamiltonian Cycle, where we can apply the same tech-
nique.

Let q be a positive integer. The q-Cycle Covering problem asks for a given graph
G whether there is a set of at most q pairwise vertex-disjoint cycles in G whose union
contains all vertices of G. Definitely, 1-Cycle Covering is the Hamiltonian Cycle
problem. In the q-Cycle Covering problem, we relax the definition of path-partitions
so that it may contain at most q cycles, and we keep the number of cycles in the path-
partition. Also, we define its auxiliary multigraph Aux(P) using those remaining paths.
One can easily check that two such modified path-partitions P1 and P2 are equivalent for
q-Cycle Covering if they contain the same number of cycles and Aux(P1) ' Aux(P2).

The second application is for Directed Hamiltonian Cycle. Clique-width was also
considered for directed graphs by Courcelle and Olariu [5]. The clique-width operations
for directed graphs are the same as for the undirected graphs, except the one that add
edges between two label classes, defined as follows:

(3∗) Adding an arc (u, v) for each vertex u with label i to each vertex v with label j
(i 6= j, denoted by ηi,j).

The clique-width of a directed graph G is the minimum number of labels needed to con-
struct G using these operations. In this case, we use directed auxiliary multigraphs.
Similar to Lemma 3.1, we can show the following.

Lemma 6.1. Let G be a connected directed multigraph whose arcs are colored by red and
blue. Then the following are equivalent.

(1) For every vertex v, the number of blue edges leaving v is the same as the number
of red edges entering v, and the number of red edges leaving v is the same as the
number of blue edges entering v.

A TIGHT XP ALGORITHM FOR DECIDING HAMILTONICITY PARAMETERIZED BY CWD 15

(2) G has a red-blue alternating Eulerian directed trail.

Using Lemma 6.1, we can proceed same as Theorem 1.1.
We conclude with one question. A digraph D is an out-tree if D is an oriented tree

with only one vertex of in-degree zero (called the root). The vertices of out-degree zero
are called leaves of D. The Min Leaf Out-Branching problem asks for a given digraph
D and an integer `, whether there is a spanning out-tree of D with at most ` leaves.
This problem generalizes Hamiltonian Path by taking ` = 1. Ganian, Hlinený, and

Obdrzálek [10] showed that there is a n2O(k)
-time algorithm for solving Min Leaf Out-

Branching problem, when a clique-width k-expression of a digraph D is given. We ask
whether it is possible to drop down the exponential blow-up 2O(k) to O(k).

References

[1] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial
k-trees. ”Discrete Applied Mathematics”, 23:11–24, 1989.

[2] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Comput. Sci.,
209:1–45, 1998.

[3] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs. ”Infor-
mation and Computation”, 85:12–75, 1990.

[4] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs
of bounded clique width. Theoretical Comput. Sci., 33:125–150, 2000.

[5] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Appl. Math., 101(1-
3):77–114, 2000.

[6] R. Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics. Springer, third edition,
2005.

[7] W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-width
bounded graphs in polynomial time. In Graph-theoretic concepts in computer science (Boltenhagen,
2001), volume 2204 of Lecture Notes in Comput. Sci., pages 117–128. Springer, Berlin, 2001.

[8] F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh. Intractability of clique-width parame-
terizations. SIAM J. Comput., 39(5):1941–1956, 2010.

[9] F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh. Almost optimal lower bounds for
problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563, 2014.

[10] R. Ganian, P. Hlinený, and J. Obdrzálek. Clique-width: When Hard Does Not Mean Impossible. In
T. Schwentick and C. Dürr, editors, 28th International Symposium on Theoretical Aspects of Computer
Science (STACS 2011), volume 9 of Leibniz International Proceedings in Informatics (LIPIcs), pages
404–415, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

(Kanté and Bergougnoux) Université Clermont Auvergne, LIMOS, CNRS, Aubière, France.
E-mail address: {mamadou.kante,benjamin.bergougnoux}@uca.fr

(Kwon) Logic and Semantics, Technische Universität Berlin, Berlin, Germany.
E-mail address: ojoungkwon@gmail.com

	1. Introduction
	Our Contribution.

	2. Preliminaries
	2.1. Clique-width
	2.2. Path-partition

	3. Overview of the algorithm
	4. An equivalence relation between families of k-vertex multigraphs
	5. Hamiltonian Cycle problem
	5.1. Equivalence between partial solutions
	5.2. An nO(k)-algorithm for Hamiltonian Cycle.

	6. More applications and Concluding Remarks
	References

