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Abstract

Human activity recognition (HAR) is an important research field that relies on sensing technologies to
enable many context-aware applications. Nevertheless, tracking personal signs to enable such applications
has given rise to serious privacy issues, especially when using external activity recognition services. In
this paper, we propose (Π-Knn): a privacy-preserving version of the K Nearest Neighbors (k-NN) classifier
that is mainly built on (Π-CSP+): a novel cryptography-free private similarity evaluation protocol. As a
sample application, we consider a medical monitoring system enhanced with a HAR process based on our
privacy preserving classifier. The integration of the privacy preserving HAR aims to improve the accuracy
of the clinical decision support. We conduct a standard security analysis to prove that our protocols
provide a complete privacy protection against malicious adversaries. We perform a comparative performance
evaluation through several experiments while using real HAR system parameters. Experimental evaluations
show that our protocol (Π-CSP+) incurs a low increasing overhead (37% in Online classification and 50%
in Offline classification) compared to PCSC, representative state-of-the art protocol, which incurs 3600%
and 4800% in online and offline classification respectively. Besides, Π-CSP+ provides a stable and efficient
response time (W=0.0x m.seconds) for both short and long duration activities while serving up to 1000
clients. Comparative results confirm the computational efficiency of our protocol against a competitive
state-of-the-art protocol.

Keywords: Human Activity Recognition, k-NN Classification, Multi-Party Computation, Privacy
Preserving.

1. INTRODUCTION

Data mining methods are gaining an increasing attention because of the wide proliferation of knowledge-
based applications. Analyzing data from wireless and sensor networks has enabled developing new services,
such as Human Activity Recognition (HAR). HAR consists of tracking environmental and personal sensed
signs, then, analyzing them to provide accurate information about persons’ daily activities. Nevertheless,
the collection and analysis of personal private data, such as GPS location, raises concerns about users’
privacy, especially when the analysis is performed through external service providers. External recognition
aims to reduce the cost of computation and storage accrued by client devices. Additionally, it aims ensuring
a high accuracy level in recognition results, which are built upon big data stores of activity patterns.

To face such a concern, several Privacy-Preserving Data Mining (PPDM) methods have been proposed.
These include classification, clustering and other data mining tasks [1]. PPDM methods protect the privacy
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by changing or deleting sensitive data before analysis [2]. This approach is based on a trade-off between
accuracy and privacy [3]. Other approaches employed cryptographic techniques to provide a high privacy
protection level, but, they are computationally very expensive [4].

From another side, privacy-preserving HAR may provide useful information that enhances context-aware
aspects in several applications, like e-healthcare monitoring systems. CodeBlue [5], AlarmNet [6] and some
other popular medical monitoring systems [7, 8] have been proposed and focused on addressing power,
security and computational resource constraints [9]. Yet, they have some shortages in tracking information
about patients’ physical activities. Such information is useful to avoid wrong diagnosis and treatment when
vital sensed signs are jammed, errored or modified. To shed light on this, studies of information needs by
clinicians show that in about 81 percent of ambulatory diagnosis, physicians are missing critical information
[10]. Other studies report that about 18 percent of medical errors may be due to insufficient availability of
patient information [11]. Thus, acquiring a complete picture of patient state will reduce medical errors and
may drive for a broad adoption of e-healthcare monitoring systems for the clinical decision support (CDS)
task.

In this paper, we propose a novel privacy-preserving k-NN classification version, which aims to address
privacy and efficiency concerns when using external services for human activity recognition. As an applica-
tion, we propose a framework that combines the human activity recognition (HAR) process with the clinical
decision support (CDS) process. This may enhance accuracy in medical decision while protecting patients’
privacy.

We summarize the contributions of this work in the following items

• We build a novel privacy-preserving version of k-NN, named (Π-Knn), and we use it for the classification
task, which is applied according to external activity patterns.

• We propose (Π-CSP+), a novel privacy-preserving and efficient cosine similarity protocol, which is the
main core of (Π-Knn). It aims to securely assess similarity between HAR sensed data and external
activity patterns. Π-CSP+ is based on simple arithmetic operations to avoid computation overheads
induced by cryptographic techniques.

• As an application of the HAR system, we propose SimilCare, A novel medical monitoring framework
that embeds information about patients’ activities within a clinical knowledge database while using
our proposed Π-Knn protocol. SimilCare aims to cover shortage of existing healthcare monitoring
systems in tracking information about patients’ activities, while ensuring their privacy.

• We present a security analysis of our proposed protocols (Π-CSP+ and Π-Knn) using a standard
security proof [12], which has revealed a complete privacy protection. In addition, we perform sim-
ulations through different experiments while using real HAR system parameters. The computation
performances are highly efficient compared to the most efficient protocol found in the literature [4].

The remainder of this paper is organized as follows. In section 2, we provide a literature survey of
related works and we discuss them. Section 3 presents preliminaries and building blocks used for designing
our protocols. Next, we devote section 4 to present our privacy-preserving protocols, besides their integration
in the proposed SimilCare framework. Then, we evaluate the privacy protection and the performance level
in section 5 and 6 respectively. We end-up this work with our final conclusions in section 7.

2. RELATED WORK

Several existing HAR systems have not considered protecting users’ privacy during the recognition and
classification phase. In this section, we review recent works in HAR field. Besides, we give a review
on privacy-preserving k-NN classification, and privacy-preserving similarity evaluation, which is the main
privacy-related computation within k-NN protocol.
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2.1. Human activity recognition (HAR)

Najafi et al. [13] proposed an activity recognition system based on Kinematic sensors. This system
aims to monitor elderly people in their daily lives. Authors have focused on accuracy in activities detection
but gave no privacy preserving measurements. Hou et al. [14] proposed PAS: an open architecture that
exploits off-the-shelf technologies to assist elderlies. PAS incorporated mechanisms to secure data storage and
communication, however, there is no privacy protection of sensed data during recognition process. Jiang et al.
[15] proposed CareNet: a system prototype for remote physical activity monitoring in healthcare application.
CareNet provides secure communication while there are no privacy protection measurements regarding data
storage and analysis. Lau et al. [16] introduced CARMA: A Context Aware Remote Monitoring Assistant
application, which enables activity recognition for patients using non-obtrusive devices. CARMA aims to
assist clinicians to obtain implicit information regarding the patients’ context. Authors focused on the
recognition accuracy and did not provide any privacy-preserving specification. Evani et al. [17] proposed
a patient activity monitoring system using wearable flex sensors. Their system recognizes sitting, standing
and walking activities as well as inactivity. Regarding data privacy, authors did not specify any protection
measurement. Recently, De et al. [18] introduced a fine-grained activity recognition system using multi-
modal wearable sensors. Authors highlighted the need for detecting complex activities in critical healthcare
applications. The proposed system could recognize 19 in-home activities without using video recording that
induces direct privacy concerns. Although the use of only wearable devices, some sensed data, such as GPS
location, could breach the privacy of the monitored persons.

2.2. Privacy-preserving k-NN

Privacy issue in k-NN classification has been largely tackled in literature works. Xiong et al. [19]
presented a framework including multi-round algorithms for mining horizontally partitioned databases using
a privacy preserving k-NN classifier. Their approach made a trade-off between accuracy, efficiency and
privacy. Recently, Mynavathi et al. [20] used Gaussian noise to build a novel secure k-NN classifier, which
aims to provide better secured data mining result with minimum information loss. Such approach based
on data perturbation methods balanced the privacy preservation and the accuracy of data mining. Other
approaches [21, 22, 23] employed cryptographic techniques, such as homomorphic encryptions, to build
privacy-preserving k-NN classifiers over encrypted data.

In this work, we propose a secure and cryptography-free k-NN classifier that provides a complete privacy
protection without information loss. We build this classifier on a novel privacy-preserving cosine similarity
evaluation protocol free from cryptographic operations. Secure similarity evaluation is the main core in
building secure k-NN classification.

2.3. Privacy-preserving cosine similarity

Several works have already been proposed to secure the cosine similarity metric that we use in this
work. This is equivalent to secure the scalar product evaluation (section 3.3). Vaidya and Clifton [24]
proposed a privacy preserving scalar product protocol, which was based on algebraic operations to scale well
to large data sets. Nonetheless, B. Goethals et al. [25] identified some attacks against this protocol with
binary values and proposed another secure protocol based on Homomorphic encryption. Hiroaki Kikuchi
et al. [26] proposed a secure similarity evaluation using the cosine correlation and the Euclidean distance
by implementing two Homomorphic encryption-based protocols. Yang et al. [27] proposed an ElGamel
encryption-based protocol for secure cosine similarity computation which resists to malicious adversaries.
LU et al. [4] proposed a privacy-preserving cosine similarity protocol for big data analytics. Authors argued
that encryption-based methods are not adequate for large scale data analysis. Thus, they built their proposal
on simple arithmetic operations without any cryptographic scheme. Recently, Huang et al. [28] proposed
a secure scalar product protocol for wireless sensor networks. Their protocol was based on Homomorphic
encryption to protect privacy under semi-honest model of adversaries. Zhu et al. [29] proposed a secure
two-party scalar product protocol. Authors affirmed having no extra communication overheads compared
to the scalar product computation without privacy-protection.
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To summarize, we can classify existing privacy-preserving similarity evaluation works into two categories:
a) methods that are based on cryptographic schemes [25, 30, 31, 32, 26, 27, 28, 29], such as Homomorphic
encryption. These methods are trading security and performance. Even though they are providing a high
privacy protection, they are inducing unaffordable overhead in computational time, which is not suitable
for real-time services. b) The second class involves cryptography-free methods [24, 31, 32, 33, 4], which use
light-weight arithmetic transformations to protect private data. The latter class ensures providing services
with high computational efficiency at the expense of privacy. Almost all methods that fall in this class
operate under some condition, such as a specific data type (integer or binary).

3. BACKGROUND

3.1. Human activity recognition (HAR)

Human activity recognition (HAR) is the field that aims to provide accurate information on people’s
activities. The general structure of a HAR system involves three main phases, as shown in Fig. 1.

• In data collection phase, the sensors’ raw data are communicated to the data collection node. Sensors
are attached to different locations on the body or placed in the environment. The raw data are sampled
in a multivariate time series (sij) depending on sensors frequencies, where j corresponds to a sensed
attribute and i is the sample number.

• During feature extraction phase, the large raw data are transformed into a reduced representation
set of features that are more discriminative for the activities at hand. Given a set of time windows
(wi) equal in size, each of which involves a set of time-series from the sensed raw data. Then, a feature
vector is created in each time window and passed to classification phase.

• During classification phase, different algorithmic methods (nearest neighbor, neural networks,...)
could be used to classify feature vectors got from the precedent phase according to activity patterns.

Recall from section xx that HAR is the field that aims to provide accurate information on people’s 

activities. Here bellow is given a formal definition of the HAR problem besides the general structure 

of HAR process illustrated by figure 1. 

 

  

 

 

 

    
 

   

 

  
 

Figure 1: General structure of a HAR process

Let HARP denote the problem of recognizing human activities from sensors’ raw data, which is formally
defined bellow [34].

Definition 1 (HARP). Let A = {a1, ..., ak} be a set of activities labels and W = {w0, ..., wn} be a set of n
time windows equal in size. We assume each wi includes a set of time series Si = {si0, ..., sim} from the m
measured attributes. Then, the HAR problem returns to find a mapping function f : Si 7→ A such that f(Si)
is as similar as possible to the activity performed in wi

In this work, we focus on classification phase. We will use the k-NN classifier as a mapping function (f)
to solve the HARP.

3.2. k-NN classification

Classifiers are machine learning tools used for solving the HAR problem [34]. In this work we leverage
the k-nearest neighbors (k-NN) classifier, which is one of the most used classification methods [35]. Given
x a new object, we compute its k nearest neighbors from a set of already classified objects according to
a distance/similarity metric, then, we assign x to the most represented class in the set of the k nearest
neighbors. Let D= {(x1, y1), ..., (xp, yp)} be a set of p labelled objects where xi and yi correspond to the
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object data and the object class respectively. Let z be a new object that we want to get its class denoted
yz. Given a function g, we define the set of points x for which g reaches its largest value as

argmax
x

g(x) = {x|∀y : g(x) ≥ g(y)}

Algorithm 1 bellow presents the k-NN classification process.

Algorithm 1: k-NN classification

Input : D, z and k, where: D = {(x1, y1), ..., (xp, yp)}, z is the new object and 0 < k ≤ p.
Output: yz, the class label of z.

1: Compute d(z, xi), the distance/similarity between z and every object in D.
2: Select Dz ⊆ D, the set of k closest objects to z.
3: yz = argmax

c

∑
(xi,yi)∈Dz I(c = yi), where the identity function I converts true and false values to

1 and 0 respectively.

In this work, we leverage the use of cosine similarity metric within the k-NN process (instruction 1,
Algorithm 1). This metric yields good results when evaluated in k-NN context [36].

3.3. Cosine similarity

Cosine similarity is a statistical metric used among others to find nearest neighbors by k-NN classifiers
[36]. Given two vectors of numerical attributes ~a = (a1, ..., an) and ~b = (b1, ..., bn), we get the cosine metric
value by

cos(~a,~b) =
(~a ·~b)
‖~a‖‖~b‖

(1)

where (~a ·~b) is the scalar product obtained as

(~a ·~b) =

n∑
i=1

(ai × bi) (2)

and ‖~a‖ (resp. ‖~b‖) is the Euclidean norm that could be shortened when dealing with normalized vectors.

Assume â = (~a/‖~a‖) and b̂ = (~b/‖~b‖) the normalized representation of ~a and ~b respectively. Then

cos(~a,~b) = (â · b̂) (3)

In our work, we will consider securing the computation of this metric between two different parties. This
aims to build a secure k-NN classifer that we name Π-Knn and we embed within the proposed monitoring
framework explored in next section.

4. Π-Knn: A PRIVACY-PRESERVING AND EFFICIENT k-NN CLASSIFICATION PRO-
TOCOL FOR HUMAN ACTIVITY RECOGNITION

In this section, we present an efficient and privacy-preserving k-NN algorithm called Π-Knn. We build
this protocol on a privacy-preserving Cosine Similarity Protocol that we call Π-CSP+. Next, we integrate
these protocols in SimilCare, a novel proposed medical monitoring framework.

5



4.1. Motivation

Despite numerous studies and projects already developed in HAR field (section 2.1), the adoption of
such important application in real-life settings is still lacking. Two relating issues are to be expected: user
privacy and service efficiency. In fact, HAR systems raised several privacy concerns surrounding mining
personal tracked signs. This is highly true in service-oriented HAR, where personal signs are sensed locally,
then, exported to be classified according to activity patterns held by external servers. Facing this, privacy-
preserving classifiers have been proposed relying heavily on cryptographic schemes, such as homomorphic
encryptions (section 2.2). This, raised a novel issue related to efficiency in computational time [4]. It is
therefore the vision of this work to propose both a private and efficient k-NN classifier that we named Π-Knn.
Our classifier is based on a novel private similarity protocol named Π-CSP+, and built on efficient matrix
algebra without involving any cryptographic scheme.

4.2. k-NN privacy issue

Let us consider a HAR system denoted S1 that performs the classification phase (section 3.1) using the
k-NN process (section 3.2) according to activity patterns held by an external service provider denoted S2. In
this case, S1 and S2 need to collaborate in computing the distance/similarity between each recorded activity
and the class patterns (instruction 1, Algorithm 1). Let ~z = (z1, ..., zn) denote a feature vector of a new
activity recorded by S1 and let ~pj = (p(1,j), ..., p(n,j)) denote the pattern of the class j. As we leverage the
use of the cosine similarity metric (section 3.3) because of its good accuracy level in k-NN contexts [36], we
formalize the collaboration between S1 and S2 as follows

cos(~z, ~pj) = (ẑ · p̂j) =

n∑
i=1

(ẑi × p̂(i,j)) (4)

Where ẑ and p̂j denote the normalized representation of ~z and ~pj respectively. Such a computation needs
to disclose attributes of one site to the other, which is considered as a privacy breach for both S1 or S2

when it comes to private data. This may be a common situation for HAR distributed applications where
the client monitoring system makes use of external activity patterns. External analytics aim to shorten
the learning phase required by classifier tools [34] and should improve the response time owing to the high
computational capacity of service providers. Thus, in order to tackle this privacy issue we propose Π-CSP+:
a privacy-preserving and efficient cosine similarity protocol.

4.3. Π-CSP+: a Privacy-preserving and efficient cosine similarity protocol

In this subsection, we present the Π-CSP+ that aims to ensure the privacy protection of the similarity
evaluation task. This protocol measures the similarity of the set of maximum available individuals in the
minimum communication steps. We adopt a cryptography-free communication scheme in order to provide a
high efficient service. This scheme is based on an attribute-independent noise, which enhances its scalability
contrary to existing similar approaches [4] that generate a scalar noise for each object attribute.

Let us consider two different sites S1 and S2 having respectively A = {â1, ..., âp} and B = {b̂1, ..., b̂v}
sets of objects that involve private sensitive data. We assume for (1 ≤ i ≤ p) and (1 ≤ j ≤ v) : âi and b̂j
∈ Rn, they have the same structure and they result from a normalization process. Under these assumptions
the cosine similarity between the original objects of A and B will be shortened to the scalar product of the
correspondent normalized objects (section 3.3). We define MR[p× p], MA[p× n] and MB [n× v] as matrix
tools used during the scalar product process, where MR is a random noise, MA involves the p data objects of
A and MB includes the v data objects of B. We build MA from data objects put as rows and we build MB

from data objects put as columns. Assume MR is an invertible matrix, (p, n, v) ∈ N3∗ such as: (1 < p < n
and 0 < v < p). Implementation of Π-CSP+ is detailed in Algorithm 2.

Note 1. in Π-CSP+ we consider the data normalization process explicitly. This may help to avoid any
confusion between the cosine similarity of the original vectors and the cosine similarity of the normalized
ones.
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Algorithm 2: Π-CSP+, a Privacy-preserving and Efficient Cosine Similarity Protocol

Input : Aorigin = { ~a1, ..., ~ap} S1 data objects

Borigin = {~b1, ..., ~bv} S2 data objects
Output: (For S1 only) MAB [p× v] containing the cosine similarity results, where

MAB [i, j] = cos(~ai, ~bj)

Preprocessing: S1 and S2 compute respectively A = {â1, ..., âp} and B = {b̂1, ..., b̂v} the sets
of normalized objects from Aorigin and Borigin.

Step 1 by S1

1: Generates a random invertible matrix MR[p× p]
2: Puts A’s elements as rows in a matrix MA[p× n]
3: Performs (MR ×MA) and sends the result matrix (MRA) to S2

Step 2 by S2

4: Puts B’s elements as columns in a matrix MB [n× v]
5: Performs (MRA ×MB) and sends back the result matrix (MRAB) to S1

Step 3 by S1

6: Performs (M−1
R ×MRAB) = (MA ×MB) = MAB which is the searched cosine similarity matrix.

4.4. Π-Knn description

Based on Π-CSP+ presented above we build a privacy-preserving version of the k-NN process (Algorithm
1) and we call it Π-Knn. In order to adapt the similarity evaluation task of the k-NN algorithm to Π-CSP+
we divide each time window wi, which is considered as a time unit for one classification (Definition 1), into
v sub-windows. Thereby, in each classification we will consider v recorded activities each of which has a
separate extracted feature vector.

Like in Algorithm 1, let us assume D= {(x1, y1), ..., (xp, yp)} a set of p patterns held by a service
provider denoted SP , such as for (1 ≤ i ≤ p): xi ∈ Rn and has the correspondent yi class label. Assume
Z =< z1, ..., zv > a set of v observations in a SimilCare client system denoted SC, such as for (1 ≤ j ≤ v):
zj is the feature vector extracted from the observation j and has y(z,j) as activity class that we are searching
for. Assume for (1 ≤ j ≤ v): zj ∈ Rn and it has the same structure of xi for (1 ≤ i ≤ p). Π-Knn
classification of the v observations is detailed in Algorithm 3.

Algorithm 3: Π-Knn, a Privacy-preserving and Efficient k-NN classification protocol

Input : D = {(x1, y1), ..., (xp, yp)}: xi,(1≤i≤p) ∈ Rn
Z =< z1, ..., zv >: zj,(1≤j≤v) ∈ Rn
1 < p < n
0 < v < p
0 < k ≤ p

Output: < y(z,1), ..., y(z,v) >, the correspondent class label of each observation within Z
Step 1 by (SP ∪ SC)

1: Compute Π-CSP+({x1, ..., xp}, {z1, ..., zv}), the cosine similarity matrix using the Π-CSP+ protocol.
Step 2 by SP

2: for (j = 1; j <= v; j + +) do
3: Select D(z,j) ⊆ D, the set of k patterns having the highest similarity rate in the column j of the

cosine similarity matrix got from 1.
4: y(z,j) = argmax

c

∑
(xi,yi)∈D(z,j)

I(c = yi), where the identity function I converts true and false

values to 1 and 0 respectively.
5: end for
6: return < y(z,1), ..., y(z,v) > to SC
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4.5. SimilCare: an activity-aware medical monitoring framework

We designed SimilCare by integrating the Human Activity Recognition (HAR) process within a Clinincal
Decision Support process. We leverage the use of a standard design for both components in order to better
support the adoption of this framework by existing systems. We sketch the whole framework design in Fig.
2 and the privacy-related components in Fig. 3. In what follows, we describe each SimilCare component.

• Monitored patient: It represents the patient monitored by SimilCare. He/she interacts with the
monitoring process of SimilCare across wearable, portable and implantable sensors, which track per-
sonal and environmental signs to feed both HAR and CDS components.

• HAR component: It performs three main tasks (Fig. 1). The data collection task is carried out
by different sensors while considering only environmental and acceleration signals, which are stored in
the HAR data server. We avoid using physiological signs in HAR process since they do not provide
useful information in activity recognition [34]. Nevertheless, because they are available for the CDS
component they could be used whenever needed by a HAR system. The HAR service extracts features
from the HAR data server, composes feature vectors and contacts the patterns service provider for
a classification task. The classification is performed using our proposed privacy-preserving protocol
(Π-Knn & Π-CSP+). In the end, the HAR service stores the activity recognition report within the
knowledge data server in order to be used by the CDS component.

• CDS component: It consists of a clinical decision support system with a standard design and an
extended output node (alarms, calls and SMS). It includes an input data node, which is the vital data
server that stores physiological data signs, a knowledge database stored within the knowledge data
server and containing rules as well as activities’ reports and an inference engine that consists of the
CDS service. The outputs of this component are handled by I/O service in order to display reports
through HMIs, trigger alarms, make emergency calls or send messages. The knowledge database
activities reports are affected by the HAR component and the rules are added across the user HMI,
handled by I/O service before being stored into the knowledge data server.

• Privacy-preserving and efficient classification: This is a multi-party component that involves
the proposed privacy-preserving multi-party classification protocol (Π-Knn & Π-CSP+) as shown in
Fig. 3. The client part is implemented on the HAR component and the server part is on the pattern
service provider side.

• Pattern service provider: This is the external part of SimilCare. It consists of any external service
that will provide a set of activity patterns to enable the classification of extracted feature vectors. It
represents the server side during the execution of the multi-party classification protocol.

• Users: This part represents all users that interact with the framework. This includes medical staff,
system administrator as well as the monitored patient. Interactions of users with SimilCare may be
for reading notifications and medical reports or for entering decision rules and system configurations.

Note 2. Recall that we designed SimilCare as a standard infrastructure paradigm that would integrate any
HAR system with a CDS system to provide a secure activity-aware medical monitoring. Therefore, we do not
specify any secure protocol that should be implemented for internal data storage or intern communications,
which is out of the scope of this work. The main purpose of this work is to provide a privacy-preserving clas-
sification protocol (Π-Knn and Π-CSP+) that we embed within SimilCare to provide activities information
about monitored patients while preserving their privacy.

4.6. Π-Knn within SimilCare: How it runs ?

For generalization purpose we avoided to distribute sites’ roles (client and server) when presenting Π-
CSP+ (Algorithm 2). Thereby, we give it more adaptability for several contexts. Without loss of generality,
for SimilCare application we consider substituting respectively S1 and S2 presented in Π-CSP+ (Algorithm
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Figure 2: The design model of SimilCare framework

Figure 3: Privacy-related components in SimilCare framework

2) by the patterns service provider and the SimilCare HAR service (the HAR classification module) denoted
respectively SP and SC within the Π-Knn protocol (Algorithm 3). In Fig. 4, we sketch a running process
of Π-Knn and Π-CSP+ during a SimilCare classification sequence.

5. SECURITY ANALYSIS

In this section, we provide a security analysis of our proposal according to the real/ideal simulation
paradigm [12, 37]. We stress that such a proof provides very strong security guarantees [37].

Note 3. Notice for clarification that real/ideal simulation given in this section has no relation with simu-
lation made for the performance evaluation in the next section.

5.1. Definitions & Notations

Definition 2 (Two-party computation). Assume P1 and P2 two parties having respectively v1 and v2 private
data and want to jointly get the result of the application of a public function f at the point (v1, v2). Thus,
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Figure 4: Π-Knn and Π-CSP+ running process in a SimilCare classification sequence.

f(v1 , v2) is called two-party computation [37].

Definition 3 (Adversary models). The allowed behavior of corrupted parties that participate to a two-party
computation protocol can be classified according to the adversary’s model [37].

a) Passive adversary. Also called semi-honest adversary, which is supposed following the protocol speci-
fications yet it is allowed to analyze all information gathered by corrupted parties during the execution of
the protocol.

b) Active adversary. Also called malicious adversary, which allows corrupted parties to randomly de-
viate from the protocol specifications. The two common behaviors of such an adversary in a two-party
computation are a) aborting the protocol untimely or b) injecting fake inputs.
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Notation 1. Let Π denote a two-party protocol executed by P1 and P2 in order to evaluate a function f on
the join of their private inputs MA and MB respectively. Let param denote the set of security parameters
used during the execution of Π.

5.2. Real/Ideal paradigm

In what follows we introduce the real/ideal paradigm used for the security proof. Let Π, param, MA

and MB be as defined above.

• In a real model execution we consider the presence of a real adversary denoted A, which corrupts
one of the two parties and behaves according to an adversarial model (Definition 3). At the end of
the execution, uncorrupted party outputs which was specified in the protocol and the corrupted party
outputs any random function of A’s view, which involves its inputs, its outputs and the messages it
gets during the execution1. Let REΠ,A(z,param,MA,MB) denote the global output of a real-life
execution of Π on inputs MA, MB , security parameters param and auxiliary input z, which involves
additional information that A may have (such as the nature of inputs and the expression of f). Let
REΠ,A,i(z,param,MA,MB) denote the output of the party Pi (i ∈ {1, 2}) in the same execution of
Π. Then

REΠ,A(z, param,MA,MB) = REΠ,A,1(z, param,MA,MB) ∪REΠ,A,2(z, param,MA,MB)

• In an ideal model execution we assume the presence of an incorruptible trusted party denoted T
that receives parties’ inputs in aim to evaluate the function f , then delivers the expected value to each
party. We assume the presence of an ideal adversary denoted S that handles inputs of the corrupted
party and behaves according to an adversarial model before sending them to T . By the end, the
uncorrupted party outputs what was received from T while the corrupted party outputs a random
function of S’s view during the execution (which consists of the corrupted party’s input, S’s eventual
changed inputs and values received from T ). Let IDf,S(z,param,MA,MB) denote the global output
of an ideal execution of f applied on inputs MA, MB , security parameters param and auxiliary input
z, which involves additional information that S may have. Let IDf,S,i(z,param,MA,MB) denote the
output of the party Pi (i ∈ {1, 2}) in the same execution. Then

IDf,S(z, param,MA,MB) = IDf,S,1(z, param,MA,MB) ∪ IDf,S,2(z, param,MA,MB)

5.3. Security definition

Let Π, param, MA and MB be as above. Let
d≡ denote the distribution equality.

Definition 4 (Secure two-party protocol). We consider Π as a secure two-party protocol if for any real
adversary A that behaves according to some adversary model (Definition 3) while attacking the protocol Π,
there exists an ideal adversary S having the same adversary model such that for a fixed security parameter
param, we have on any inputs MA, MB and auxiliary input z

{IDf,S(z, param,MA,MB)} d≡ {REΠ,A(z, param,MA,MB)}

By this global security definition (outputs of corrupted and uncorrupted parties together) we ensure the
intertwined [12] security requirements that are privacy and correctness. To clarify this, let c and u denote
respectively the index of corrupted and the uncorrupted party. Then:

• We protect the privacy so that any information output by c in the real execution could be output in
the ideal one and this is by requiring

{IDf,S,c(z, param,MA,MB)} d≡ {REΠ,A,c(z, param,MA,MB)}

1In other equivalent formalizations, the adversary outputs its view and the corrupted party has no output. We leverage our
formalization for its simplicity.
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• We guarantee the correctness so that any information output by u in the real execution could be
output in the ideal one and this is by requiring

{IDf,S,u(z, param,MA,MB)} d≡ {REΠ,A,u(z, param,MA,MB)}

5.4. Security proof

In this subsection, we will prove the security of the Π-CSP+ through the real/ideal simulation relying
on definitions and notations given above. Next, we deduce the security of the Π-Knn protocol.

Theorem 1. The Π-CSP+ presented by Algorithm 2 is a secure two-party protocol in the presence of an
active adversary.

Proof. Let Π denote the Π-CSP+ and let param be the set of security parameters defined as param=
{p, n, v} where (1 < p < n) and (0 < v < p). Assume S1 and S2 are the two participating parties and MA

and MB are their inputs respectively. Let z denote an auxiliary input that each party may have and that
involves information about Π-CSP+. In this proof we will consider separately the case where S2 is corrupted
and the case where S1 is corrupted:

• Case 1. If S2 is corrupted then it can inject fake inputs (MB) (however, aborting the protocol untimely
is not possible for this case because even the real execution will not run). In this case, S receives the
fake MB from S2 and just sends it to T, thereby completing the simulation. By the end, the output
of S2 in the ideal and real execution are as follows

IDf,S,2(z, param,MA,MB) = {MB}
REΠ,A,2(z, param,MA,MB) = {MB ,MRA}

(5)

Nevertheless, relying on security parameters defined in param, MRA will contain ((p × p) + (p × n))
unknowns opposite to (p×n) equations, thus MRA will not involve any information for S2 and can be
considered as a random noise. thus, (5) ⇒

{IDf,S,2(z, param,MA,MB)} d≡ {REΠ,A,2(z, param,MA,MB)} (6)

On the other hand, the output of S1 are as follows

IDf,S,1(z, param,MA,MB) = {MA,MAB}
REΠ,A,1(z, param,MA,MB) = {MA,MAB ,MRAB}

(7)

But, since we have (p < n) defined in param, MRAB will involve (p × v) equations and (n × v)
unknowns, so, it can not reveal any information for S1. Hence, MRAB is considered as a random noise.
Thus, (7)⇒

{IDf,S,1(z, param,MA,MB)} d≡ {REΠ,A,1(z, param,MA,MB)} (8)

Through (6) and (8) we have proved that when S2 is corrupted by an active adversary, Π-CSP+ is a
secure two-party protocol that correctly emulates an ideal process and verifies the definition 4. i.e.

{IDf,S(z, param,MA,MB)} d≡ {REΠ,A(z, param,MA,MB)} (9)

• Case 2. If S1 is corrupted then it can inject fake inputs (MA) or abort the protocol in step 2. But,
since S2 does not require any output, the abort of S1 will have no effect. Let us consider the case
where S1 sends a fake MA. In this case, S will receive MA from S1 and just sends it to T in order
to complete the simulation. By the end, S2 and S1 will output respectively (5) and (7). Like in case
1, MRA and MRAB could be seen as a random noise when considering security parameters defined
in param. Thus, ((5) and (7)) ⇒ ((6) and (8)) from which we can deduce that when S1 is actively
corrupted, Π-CSP+ is a secure two-party protocol that correctly emulates an ideal process and verifies
definition 4.
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Note 4. We stress that we consider S1 and S2 changing their inputs (MA and MB respectively) in each
execution of Π-CSP+. Thereby, additional data (MRAB and MRA) that we considered as a random noise
for one execution will be likewise useless and do not involve any information for the next executions. Hence,
we ensure the secure re-execution of Π-CSP+ for t (t > 0) times by the same parties. This assumption is
perfectly valid in SimilCare context where the HAR service (client) would participate every time with feature
vectors extracted from real-time sensed signs. As for the other side, HAR service will have no way to know
if the patterns provider (server) have reordered its inputs or changed them by some novel extracted patterns.

Corollary 1. The Π-Knn protocol presented by Algorithm 3 is a secure two-party protocol in the presence
of an active adversary.

Proof. As the call to Π-CSP+ is the only multi-party task within Π-Knn, the proof of corollary 1 relies
heavily on theorem 1 proved above.

5.5. Limitation: What could Π-CSP+ disclose ?

In the case S1 is corrupted, it can inject a fake MA having the form

MA =


x11 0 0 . . . . . . . . . . . 0
0 x22 0 . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 xpp 0 . . . 0


where (x11, ..., xpp) ∈ Rp∗. This should disclose the p first rows of MB . We notice the same behavior in
all other scalar product protocols [24, 33, 4] and we stress that it is the expected final result of the scalar
product, which would be obtained even in the ideal execution. This respects well the security definition in the
real/ideal paradigm (Definition 4). Although, we can avoid such a disclosure risk in some contexts where
accuracy of the inputs is crucial. For instance, in SimilCare context the pattern service provider should
provide valid patterns to the HAR service, otherwise, the CDS service may generate a false alarm or incur
a false negative error (undetected anomaly when it is present). This could be disastrous for the patients’
health and may inflict a hard penalty upon the patterns provider. Therefore, injecting such malicious matrix
should not happen in the context of SimilCare.

6. PERFORMANCE ANALYSIS

• Computation cost. In this section, we evaluate the computation performance of Π-CSP+ (Algo-
rithm 2), which is the main core of the proposed Π-Knn protocol (Algorithm 3). This evaluation
aims to analyze the effect of adding our privacy-preserving measurements through Π-CSP+ on the
computational performance of the k-NN classifier. To do so, we consider a global context where a
SimilCare HAR service denoted SC monitors a patient all day long. SC extracts (v) vectors of (n)
features from the patient tracked signs and constructs the matrix MB (Algorithm 2: instruction 4).
Let SP denote a pattern service provider that holds (p) patterns of activities, from which it constructs
the matrix MA (Algorithm 2: instruction 2). Assume each pattern has (n) features and corresponds
to the feature vectors extracted from the patient signs. Assume SP and SC run Π-CSP+ (Algorithm
2) by inputting MA and MB respectively. First, we assess the effect of HAR parameters that affect
the performance of Π-CSP+ by construction, which are the number of features (n), the number of
extracted vectors (v) and the number of patterns (p) held by the service provider. For this, we make
three experiments denoted E1, E2 and E3 and we vary n, v and p respectively in real values ranges
chosen from literature works. Next, we evaluate the effect of the selected time window length on the
performance of Π-CSP+. We select two representative window lengths to simulate the recognition of
several types of activities and we perform E4 and E5 experiments. We describe the whole evaluation
system in Fig. 5 and we provide each experiment’s detail next in this section.
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Figure 5: The performance evaluation system.

• Communication cost. Regarding the communications, one can observe that Π-CSP+ does not
induce additional messages while integrating the noise within original data. In order to check this
observation, let SP and SC denote the two parties executing Π-CSP+ and having respectively (p×n)
and (n× v) vectors. Thus, according to Π-CSP+ (Algorithm 2), both SP and SC will communicate
respectively MRA and MRAB having the same number of vectors (p × n and n × v) as their original
sets yet preserving their privacy.

• Comparative evaluation. Recall from section 2.3 that almost all existing privacy-preserving sim-
ilarity evaluation protocols maintain a balance between data privacy and computational efficiency.
Some protocols are built upon cryptographic schemes, such as Homomorphic encryption [25, 26, 27].
Such building blocks involve time-expensive operations that induce a high computational overhead
and make them far less efficient in computational time. Other works present more efficient protocols
than cryptographic ones with less privacy guarantees than our Π-CSP+ [24, 33].

To the best of our knowledge, PCSC [4] is the most recent protocol for the private cosine similarity
evaluation that provides a good privacy protection without involving cryptographic operations. Thus,
we present a performance comparison between Π-CSP+ and PCSC protocol by performing the same
experimental tests that we present next in this section.

Moreover, to fairly compare the overhead incurred by the two protocols, we run again the same ex-
perimental tests using DCSC, the Direct Cosine Similarity Computation that does not involve any
privacy-preserving measurement (equation (1), section 3.3). DCSC will serve as a running time refer-
ence for the two evaluated protocols.

6.1. Experimental environment and scenarios

We make experiments on the same set of vectors using a custom simulator built in Python and an Intel
i5-2557M CPU running at 1.70 GHz and having a 4 GB of RAM. Thereafter, we describe the experimental
scenarios.

Note 5. In each experiment, we vary the evaluated parameter in a range of values to cover several literature
works. For this raison, we use random generated observations instead of a real data set, which obviously has
been got using fixed parameters.

• Experiment E1: the effect of (n). In this evaluation we test the effect of the number of features
(n) involved within the vectors on the running time of our protocol (Π-CSP+), then, we make the
same test on PCSC [4] and DCSC for comparison purpose. We fix the number of vectors (v) extracted
by SC to 1 vector, and we fix the number of patterns held by SP to 500 patterns. Then, we vary the
number of features (n) in the range [10, 5000] features, to match several HAR real systems, whether
they apply a dimensionality reduction phase or not. This scenario copes with Online-HAR [34], which
provides a real-time recognition of the performed activity.

14



• Experiment E2: the effect of (v). In this experiment, we test the effect of the number of vectors
(v) extracted by SC and sent to SP on the running time of our protocol (Π-CSP+), then, we make
the same test on PCSC [4] and DCSC for comparison purpose. For this, we fix the number of features
to 40 features, which is the mean size used by several HAR systems [38, 39], and we fix the number of
patterns held by SP to 500 patterns. Then, we vary v in the range [10, 5000] vectors. This scenario
matches Offline-HAR [34], where the classification is performed by a batch-process.

• Experiment E3: the effect of (p). We make this experiment to test the effect of the number of
patterns (p) held by SP on the running time of our protocol (Π-CSP+), then, we make the same test
on PCSC [4] and DCSC for comparison purpose. We fix the number of features (n) to 40 features,
and we fix the number of vectors (v) extracted by SC to 1 for online-HAR and 50 for offline-HAR (E1

and E2). Then, we vary p in the range [500,5000] patterns.

• Experiments E4 & E5: the scalability assessment. In this evaluation, we assess the scalability
level of a pattern provider (SP ) to handle online-HAR requests from several SimilCare clients (SC).
For this, we consider SP receiving N(wi) similarity requests according to a Poisson process from
different SimilCare clients at rate (λ) request(s) per time window (wi): N ∼ P (λ). Assume the
requests processing times (ti) have an exponential distribution with rate (µ) requests per time window
(wi): ti ∼ exp(µ). We consider fixing the size of feature vectors to 40 features, which is the mean size
of several HAR systems found in the literature. We consider the service provider having s processing
servers with unlimited access, each of which holds 500 patterns, has a FIFO service discipline and
operates all day long. Let M/M/s denote this system using Kendall’s notation [40]. We make two
experiments denoted E4 and E5 to simulate the case of one sever (s=1) and multi-server (s=20).
We assess the usability rate (U) of the service provider and the waiting time (W ) for each request
to be served, besides other performance measures (the average number of clients in the system (L)
and the average number of clients waiting in the queue (Lq)). Experiments E4 and E5 are performed
according to different arrival rates (λ ∈ {10, 100, 500, 1000}). We use results of E2 to determine the
average processing rate (µ) of the evaluated protocol. Finally, we make comparison with PCSC protocol
[4] and we sketch the results in Table 2, Fig. 8 and Fig. 9. Notice that in this simulation, we did not
consider offline classification because there is no need to do it for different clients simultaneously.

Selection of the window length (w). The computational complexity of any recognition system
depends on the sampling window length used for feature extraction and classification. Several window
lengths have been used in the literature ranging from w=1 second to w=45 seconds [41]. Selecting an
appropriate length is a trade-off between the quality of the extracted features and the computational
overhead. Generally, a long window length provides good extracted features [42]. However, the longer
the window length is, the more the end-user should wait for the recognition result. Another trade-off
involved in choosing a window length is the accuracy of the recognition result. That is, a short window
may not provide sufficient information to recognize the performed activity. On the other hand, a long
window may involve more than one activity within its range.

Moreover, a main finding reported in several works is that the optimal window length depends on the
activity to recognize [34, 42, 43]. It has been proved that a short window of w '5 seconds allows the
accurate recognition of posture and short duration activities, such as walking, sitting, ascending and
descending stairs. Besides, a long window length on average of w '30 seconds is adequate for long
duration activities, such as making the bed, gardening and bathroom use [42].

In this simulation, we use two different window lengths (w=5 seconds and w=30 seconds) to assess
the scalability of our protocol for recognizing all types of activities.

6.2. Results and discussion

• Results of E1. Through E1 experiment, we evaluated the effect of varying the number of features (n)
on the running time of the three similarity computation methods (Π-CSP+, PCSC and DCSC) in aim
to evaluate online HAR. Results illustrated in Fig. 6a reveal the high efficiency level in running time of
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Table 1: Performance measures of the simulated queueing models

Performance
Measures

M/M/1
(E4, s=1 server)

M/M/s
(E5, s=20 servers)

(ρ) Intensity Traffic λ
µ

λ
s×µ

(U) Usability Rate ρ ρ

(P0) Prob. System is idle 1 - ρ
(

1 +
(sρ)s)
s!(1−ρ)) +

∑s−1
n=1

(sn)n)
n!

)−1

(B) Prob. Queue Non-Empty ρ2
(sρ)s

s!(1−ρ)P0

(L) Average Clients in the System ρ
1−ρ sρ+ ρ B

1−ρ

(Lq) Average Clients in the Queue ρ2

1−ρ ρ B
1−ρ

(W ) Average Waiting Time 1
µ(1−ρ)

1
µ

(
1 + B

s(1−ρ)

)

Π-CSP+ that reaches 190 m.seconds for a very large number of features (n = 5000). Between n = 30
and n = 50, which is the average number of feature used by several real systems, Π-CSP+ had a slow
increasing rate of around 37%. On the other hand, PCSC running time revealed a high increasing
rate of 3600% between n = 30 and n = 50, besides a high overhead distance from the running time of
DCSC computation reference (> 31000 m.seconds at n = 1000), which is highly greater than Π-CSP+
time distance from DCSC (< 50 m.seconds at n=1000). The efficient increasing rate in computation
time of Π-CSP+ (37%) compared to PCSC (3600%) is due to the construction of Π-CSP+, where
the random values added by the server to obfuscate its patterns are independent from the number
of features involved in each pattern (Matrix MA, Algorithm 2). In contrast, PCSC protocol requires
adding random values to each feature attribute.

• Results of E2. In E2 experiment, we evaluated offline HAR by focusing on the effect of sending
simultaneously v vectors on the running time of the previous three computation methods. Results
shown in Fig. 6b reveal more clearly the efficiency in runing time of Π-CSP+. PCSC distance time
from DCSC reference was increasing continuously (on average of 6000 × 100 m.seconds for v=500)
with an increasing rate of around 4800% between v=500 and v=1000. On the other hand, Π-CSP+
presented a very efficient increasing rate of around 50% between v=500 and v=1000, while keeping
a short stable distance on average of 30 m.seconds from DCSC running time (for v < 2000). The
efficient increasing rate in computation time of Π-CSP+ (50%) compared to PCSC (4800%) is due
to the construction of Π-CSP+, where the client side ensures the privacy of its vectors by its matrix
parameters (section 5.4) and does not require to add any noise that is added on the server side. On
the other hand, PCSC requires adding random values both on the server and the client side.

• Results of E3. In this evaluation, we tested the effect of the number of patterns (p) on the running
time of the previous similarity protocols. We avoided to plot the running time of DCSC as it had
the same behaviour as in E2. Results shown in Fig. 7a and Fig. 7b reveal a significant effect on the
running time of Π-CSP+ compared to E1 and E2, which is due to the random matrix added by the
server, and that relies on the number of patterns (p). Nevertheless, Π-CSP+ still provides an efficient
response (< 200 m.seconds) compared to PCSC protocol, which was far less efficient with a response
time that reached around 6000× 100 m.seconds.

• Results of E4. In E4 experiment, we simulated a queueing model where a pattern provider (SP )
serves multi SimilCare users for the HAR classification task. Assume SP having one processing server
(s=1), we evaluated the queuing system using performance measures of M/M/1 model (Table 1)
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(a) E1. Online HAR. Effect of the number of features (n)
on running time (v = 1, p = 500)

 

(b) E2. Offline HAR. Effect of the number of vectors (v)
on running time (n = 40, p = 500)

Figure 6: Evaluation of the effect of n and v on the HAR running time

(a) E3. Effect of the number of patterns (p) on running time
in online HAR (v = 1, n = 40)

(b) E3. Effect of the number of patterns (p) on running time
in offline HAR (v = 50, n = 40)

Figure 7: Evaluation of the effect of p on the HAR running time

according to a time window w=5 seconds. From evaluation results (Fig. 8, Table 2), we see that
the server running PCSC protocol has not reached the steady state (ρ > 1) for all arrival rates (λ ∈
{10, 100, 500, 1000}), contrary to Π-CSP+, which was undergoing a slow intensity traffic (ρ < 0.014)
due to its high processing rate (µ = 71400/s). Π-CSP+ revealed a low usability rate (U < 2%), which

17



Table 2: Evaluation results of the simulated queueing models in E4 and E5 experiments

Window
Length

(w)

The
Evaluated
Protocol

Processing
Rate
(µ)

Arrival
Rate

(λ/wi)

Intensity
Traffic

(ρ)

Usability
Rate

(U) %

Average Clients
in the Syst.
(L) × 103

Average Clients
in the Queue

(Lq) × 106

Average Waiting
Time

(W ) ms

5 (E4) Π-CSP+ 71400

10 0.0001 0.01 0 0 0.01
100 0.0014 0.14 1 2 0.01
500 0.007 0.7 7 49 0.01
1000 0.014 1.4 14 199 0.01

5 (E4) PCSC 4

10 >1 >100 ∞ ∞ ∞
100 >1 >100 ∞ ∞ ∞
500 >1 >100 ∞ ∞ ∞
1000 >1 >100 ∞ ∞ ∞

30 (E5) Π-CSP+ 400000

10 0.0000 0.00 0 0 0.002
100 0.0000 0.00 0 0 0.002
500 0.0000 0.00 1 0 0.002
1000 0.0001 0.01 2 0 0.002

30 (E5) PCSC 26

10 0.0192 1.92 384 0 38.5
100 0.1923 19.23 3846 0 38.5
500 0.9615 96.15 39438 20207 78.9
1000 >1 >100 ∞ ∞ ∞

results in a very low probability of server overload. This claim may be confirmed by looking the average
number of requests waiting in the queue (Lq < 200×10−6) that tends to 0 and induces a high efficient
and stable response time (W = 0.01 m.seconds). Results of E4 revealed the adequacy of Π-CSP+ to
provide a recognition service each 5 seconds (w), which is the observation window adequate for posture
activities. The recognition is provided for several SimilCare users (up to 1000), with only one server.

• Results of E5. In E5, we enlarged the observation window (w) to 30 seconds, which is adequate
for household activities, and we assume the pattern provider (SP ) having several processing servers
(s=20). Then, we evaluated the queuing system using performance measures of M/M/s model (Table
1) according to the new time window (w=30 seconds). Evaluation results (Fig. 9, Table 2) show that
the server running PCSC protocol could reach the steady state only for low arrival rates (λ < 1000
requests/30 seconds). After that, the server had been overloaded with a utilization rate of U > 100%
and an infinite number of requests waiting in the queue (Lq = ∞). On the other hand, the server
running Π-CSP+ becomes more efficient due to its high processing rate (µ=400000). Π-CSP+ had a
very low utilization rate (U=0.01%) for a high arrival rate (λ=1000). Besides, it provided a very slow
and stable response time (W = 0.002 m.seconds), which results in an empty waiting queue (Lq = 0).
Results of E5 have confirmed the adequacy of Π-CSP+ protocol to be implemented on servers that
operates with several clients. Π-CSP+ handles similarity requests in an few time and scales efficiently
for up to 1000 clients.

7. CONCLUSION

In this paper, we have proposed a secure k-NN classification protocol named (Π-Knn), designed for
Human Activity Recognition (HAR). We have built this protocol on a novel efficient and privacy-preserving
cosine similarity protocol named (Π-CSP+). As an application, we have integrated our proposed privacy-
preserving HAR classifier in SimilCare, a novel medical monitoring framework, to support the medical
decision by securely providing information about patients’ activities. Through security analysis conducted
with the standard real/ideal paradigm, we have proved the privacy protection of our proposed protocols that
resist against malicious attacks. Across different experimental analysis performed with common used HAR
parameters, our protocol (Π-CSP+) reached 37% overhead in Online-HAR and 50% overhead in Offline-
HAR, which is high-efficient compared to other private similarity evaluation protocols from the literature.
On the server side, Π-CSP+ provided a stable and efficient response time (W= 0.0x m.seconds) for both
short and long time window lengths (w ∈ {5, 30} seconds). All experimental results have confirmed the
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adequacy of our protocol for applications that require a real-time activity recognition service, as the medical
monitoring.

(a) Average Clients in the system (L) (b) Usability Rate (U)

(c) Average Clients in the queue (Lq) (d) Average Waiting time (W)

Figure 8: E4. Performance results of a service-provider simulated with M/M/s model with s=1 server and a time window w=5
seconds (adequate for posture activities).

(a) Average Clients in the system (L) (b) Usability Rate (U)

(c) Average Clients in the queue (Lq) (d) Average Waiting time (W)

Figure 9: E5. Performance results of service-provider simulated with M/M/s model with s=20 servers and a time window
w=30 seconds (adequate for household activities).
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