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Abstract

The paper deals with the quantification of uncertainties in an elevator system, subjected to lateral vibration induced by the car
guide rail irregularities, with and without a feedback control system. A mathematical model for the elevator system is derived,
and a stochastic model for the rail profile irregularities is constructed. This model of uncertainties describes the rail profile as
a random field, which is represented by means of Karhunen-Loeve expansion. Polynomial chaos is employed to compute the
propagation of uncertainties through the stochastic model, in order to evaluate the disturbance rejection properties and robustness
of the closed-loop system.

© 2017 The Authors. Published by Elsevier Ltd.
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1. Introduction

Elevator systems are very important devices for the modern society, being essential in many places, from office
buildings to industrial transportation of material and goods. A typical elevator consists of vertical cables and a car,
that slides on lateral rails, which induce lateral vibrations due to the irregular shape of its profile. The understanding
of the impact of this vibration on a elevator dynamics, at its control, are essential for a safe operation [1].

In this sense, this paper deals with the quantification of uncertainties in an elevator system, subjected to lateral
vibrations induced by rail’s irregularities. In particular, it is interested in study the effect of the uncertainties with and
without a feedback control system for the horizontal vibration.

The rest of this paper is organized as follows. Section 2 presents the modeling and a control strategy for the system
dynamics. Numerical results are presented and discussed in section 3. Finally, the main conclusions and paths for
future works are indicated in section 4.
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Fig. 1. Sketch of an idealized mechanical system which represents the elevator system.

2. Modeling elevator system dynamics
2.1. Deterministic mechanical-mathematical model

A simplified schematics of the decoupled elevator system, which is the object of study of this work, is shown in
Figure 1. This idealized mechanical system, subjected to lateral and vertical motions, is composed by a car attached
to a vertically moving rope (cable), and is excited by an external load due to the irregularities in rail’s profile.

The rope’s linear specific mass is m, and it has the same linear velocity V as the car. The rail’s profile s(/) is a
function of /, the vertical distance travelled by mass M, given by [ = V t. The coupling with the car is done through
a linear spring, with constant k. The rope is under tension 7'(x, ¢) and its horizontal motion is described by the field
variable w(x, r), where x is the vertical coordinate. The rope length (from the traction sheave to the load) is represented
by L(t). If we define the slow time factor € = V/wyLy, in the practical cases one has € << 1 and the slow time is
defined as 7 = ez. It is possible then separate the slow dynamic related to the motion of the car (and variation of the
rope’s length) and the fast dynamic of the horizontal vibration. The time derivative of L is related to the slow time
derivative by L = edL/dr = €L’

The dynamical behavior of this mechanical system evolves according to

m(wyy + 26L' wy + € (L) wyx + €L wy) + y(w, + €L'wy) — (Twy), = 0, (1)
which is supplemented by the boundary conditions
w0, =0 and  M(wy +2€L wy + € (L' wer + €L W) er + k(w = 8)eer + (Twy)rr, = 0. (2)

This mathematical model emulates the behavior of a distributed parameter system with a discrete mass (car) in one
end, but with the length slowly variable. For details the reader is addressed to [1].
We search for solutions of the form

N
W) = ) W, (), (3)

n=1

where ¥, (x, 7) = sin(8,(7)x), and the wave-number B3,(), is a slowly variable in time, that satisfy the equation

(k - %T(T)ﬁﬁ) sin(B,L(1)) + T(1)By(cos B,L(1)) = 0 “
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for T'(t) = [M + (1/2)mL(7)]g, a time-varying mean tension.
After a substitution, we obtain a set of ordinary differential equation for the time-varying coefficients of the form

(1) + 26, (1) 4,(1) + W (T) ¢, (1) = ¥, (L(1)) k s(0), r=12---,N, &)

m(7)

where ¢, is the damping coefficient for the r natural mode, and
L
mA(t) = m f ¥2(x,7) dx + MP(L). (6)
0

Note that wave-numbers S, are related to the natural frequencies of the several modes by w,(t) = ¢B,(7), where
¢ = VT (1)/m represents the time-dependent velocity of the lateral wave.

The set of equations in Eq.(5) are decoupled in the sense that the vibration modes are independent of one another.
The equations are linear, but (slowly) time-varying.

2.2. Strategy of vibration control

In order to damp the car’s horizontal vibration, a position sensor is used in order to measure the horizontal position
¥(t). Also, an actuator that applies an horizontal force f(y(¢)) in the car must be used. This force is calculated in
real time, according to y(f), as prescribed by a feedback control law. The mathematical model of the system, that is
presented Eq.(5), is them modified by the inclusion of the force term f(y(¢)) in the second equation, which turns it in
a closed-loop system. We choose to implement a state feedback linear control law, in which f(y(¢)) is calculated as
a linear combination of the states in real time. Those states, that are not measured, are estimated by a state observer,
based in the measurements of the position sensor y(¢) [2].

2.3. Karhunen-Loeéve representation of random field

The function s(/) has a random nature, in reason of the rail’s profile irregularities. In this way, it is modeled as
a second-order, mean-square continuous, stationary random process {S (1), ! € [Lyin, lnax] C R}, with zero-mean and
autocovariance function given by

Ky(ly = 1) = 3 exp (=l = il /leorr), (7
where o2 and I, denotes, respectively, the variance and the correlation length for the process S (/).
In order to represent S (), a truncated Karhunen-Loe¢eve expansion is employed, so that

Nu

SO~ Y NAeD Y, ®)
n=1

where the integer Ny is the number of terms used in the expansion, the pairs (4,, ¢,) are solution of the Fredholm
integral equation associated to K, and {Yn}nN:1 is a family of, zero-mean, mutually uncorrelated random variables. In
this case, there is an analytical solution to the eigenvalue problem, that can be found in [3].

2.4. Polynomial chaos expansion

Plugging S (/), defined in section 2.3, into (5) we obtain a stochastic model of uncertainties for the mechanical
system, defined by a random system of differential equations of the form

X(t,Y) = FX(t,Y),Y,1), C)]

where ¢ is the time variable, X(z, Y) is a stochastic vector of state, and Y = (Yy,---, YNH)T is a vector which collects
the finite variance random variables which parametrize the random field S (/).
The polynomial chaos expansion of this stochastic vector of state is given by

o)

X(t,Y) = " x(t) gu(Y), (10)

i=0
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where {¢;(Y)}2, is an orthogonal basis for the Hilbert space of the finite variance random variables. The coefficients
{xi()}2, are deterministic functions of time that must be found [4,5]. If the random variables are Gaussian, this
basis is formed by Hermite polynomials, but it is also possible to do this expansion for other probability distributions
and corresponding orthogonal polynomials, known as Wiener-Askey scheme [5]. There are two methods to find the
temporal coefficients: 1) intrusive method; 2) non-intrusive method. The intrusive method is useful in some situations,
as can be found in [5-9], on the other hand, it can represent a very heavy burden to the computational system. In the
non-intrusive method, the expansion coefficients are calculated by the following formula

E[X(1, Y) ¢i(Y)]

11
E[¢i(Y) ¢i(V)] (an

xi(ty) =

where the denominator is calculated by an explicit formula (the basis polynomials in the Hilbert space are known), and
the numerator is calculated by solving an integral in the space R of the Nj; random variables. A grid in this space is
established and the original stochastic system is simulated for each point in this grid to obtain X(#;, Y). This must be
done to each time value ¢ in which we are interested [10]. If a grid is chosen such that there are n sample points, the
total number of samples is n™*, which grows very rapidly with Ny,. In order to avoid this problem, we use the Sparse
Grid Integration, which consists in selecting convenient grids to RM in which the number of point does not grow
exponentially with the dimension, but in a much slower rate (depending on the smoothness of the integrand) [11]. The
non-intrusive polynomial chaos approach has other advantages over the intrusive, as presented in [10,12,13].

3. Numerical results

In this section, the results of numerical simulation tests carried out to predict the dynamic behaviour of the elevator
system with, and without control system are presented. The results demonstrate the efficacy of the proposed control
strategy. For random field representation, it is adopted Ny; = 2, which means that there will be two random parameters
Y1 and Y3, that will be Gaussian and independent. The polynomial chaos expansion will use bi-dimensional Hermite
polynomials, with maximum degree five. Only the first vibration mode will be considered for control, and the plant
state variables will be x; = ¢; and y; = ¢,. The damping ratio is will be considered ¢; = 0.4. The stiffness coefficient
for the car-rail interface is k = 2083 N/m, and o5 = 7.07 x 10~ mm and [, = 100 m. We suppose that that rope’s
specific mass is m = 0.65 kg/m, the total car’s weight (car + load) is M = 3250 kg, the well height is 70 m, the car
height is 3.2 m and the total travel height is 60 m, which is also the maximum length of the rope Ly. The vertical
velocity of the elevator is V = 6 m/s and it is ascending in the simulations. This means that the rope has the slowly
variable length L(t) = (V/e)T + Ly, and € = (V/wyLy) is the slow time constant factor.

The open loop equation is then

al [o 1
|| e 26w

Figure 2 shows important parameters for the problem when the elevator is ascending with vertical velocity V = 6
m/s. We can see that the velocity of the wave propagation does not change too much, but the wake number §;
approach infinity, as well as the fundamental frequency, when L(7) approaches zero. The amplitude of the forcing
term in Eq.(12), that is %k, also goes to infinity, which means that the forcing term has growing influence as the
elevator approaches the uppermost part.

In Figure 3 it is presented the covariance surface for the case without the vibration control, and in Figure 4 it is
presented the covariance surface for the case with vibration control. One can see that the magnitudes are reduced by
more than one order of magnitude, which means that the vibration control designed is effective.

The designed control law imposed as closed-loop poles —3, —4, which resulted in the state feedback gains k; =
11.1978 and k, = 6.2835. The state observer poles was imposed to be —6,—8, which is the double, in order to
guarantee that the observer is more rapid than the plant dynamics. The resulting observer gains are #; = 13.2835 and

hy = 37.6800.
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0
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Fig. 2. Time-varying parameters for velocity V = 6 m/s.
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Fig. 3. Covariance without vibration control.

4. Concluding remarks

In this paper a model of an elevator system with a stochastic excitation originating from the guide rail profile
is presented. The excitation is represented as a random field and with a truncated Karhunen-Loeve expansion being
employed. Stochastic numerical simulations were conducted, with and without vibration control, by using polynomial
chaos expansion, in its intrusive form, to compute the propagation of uncertainties. The covariance surfaces were
obtained for both situations, and it was confirmed that the control law designed is effective in reducing the stochastic
vibrations. For future works, it is intended to include an improved model for the vibration source and use different
control techniques to compare its efficacy.
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