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Abstract. CLKIDω is a sequent-based cyclic inference system able to
reason on first-order logic with inductive definitions. The current ap-
proach for verifying the soundness of CLKIDω proofs is based on expen-
sive model-checking techniques leading to an explosion in the number of
states.
We propose proof strategies that guarantee the soundness of a class of
CLKIDω proofs if some ordering and derivability constraints are satisfied.
They are inspired from previous works about cyclic well-founded induc-
tion reasoning, known to provide effective sets of ordering constraints.
A derivability constraint can be checked in linear time. Under certain
conditions, one can build proofs that implicitly satisfy the ordering con-
straints.

1 Introduction

CLKIDω [9] is the de facto standard sequent-based cyclic inference system for
performing lazy induction reasoning on specifications based on first-order logic
with inductive definitions (FOLID). The CLKIDω proofs are represented as finite
derivation trees with nodes labelled by sequents. A particular feature is that cy-
cles can be built by establishing connections between terminal and non-terminal
nodes labelled with identical sequents. The soundness of CLKIDω proofs is en-
tailed from some global trace condition by using Infinite Descent induction ar-
guments [20]. This condition requires that, for every infinite path in the cyclic
derivation of a false sequent, all successive steps starting from some point are de-
creasing and certain steps occurring infinitely often are strictly decreasing w.r.t.
some semantic ordering.

CLKIDω has been implemented in the Cyclist prover [8]. Since the global
trace condition is an ω-regular property, Cyclist can check it during the proof
construction or post hoc as an inclusion between two Büchi automata by calling
an external model checker. It turns out that the inclusion test may be costly.
Indeed, for any proof P , the approach requires the construction of the automaton
complementary to that accepting strings over infinite progressing traces in P ,
based on a complementation method for Büchi automata as described in [11].
The method ensures that, for every automaton with n states, the generated
complementary automaton has at least 2O(n logn) states [12]. In case of failure



of the inclusion test, previous proof steps should be reconsidered, requiring that
existing connections be broken, proof steps cancelled or different inference rules
applied. Hence, it may happen that the test be executed several times during the
proof construction. For the proofs of the toy examples from [8], the percentage
of time taken by the soundness check include values from 0% to 44%.

Example 1.1. The ‘P and Q’ example [20] is specified in [8] using the following
mutually dependent inductive predicates P and Q defined over naturals:

⇒ P (0) (1)
P (x) ∧Q(x, s(x))⇒ P (s(x)) (2)

⇒ Q(x, 0) (3)
P (x) ∧Q(x, y)⇒ Q(x, s(y)) (4)

where 0 and s are the usual constructor symbols for naturals. Let N define the
set of naturals by the productions:

⇒ N(0) (5) N(x)⇒ N(s(x)) (6)

According to Table 1 from [8], Cyclist can prove the sequent N(x), N(y) `
Q(x, y) in about half a second, by building a proof tree with only 13 nodes. The
validation process required 181 calls to the external model checker, among which
171 calls are failing. 31% of the time is spent on the soundness check.

On the other hand, a different approach based on ordering constraints has
been proposed in [15,17] for performing cyclic well-founded induction to check
inductive consequences of conditional specifications. The proofs generated by this
approach are normalized to sets of tree derivations and represented as directed
graphs (for short, digraphs) allowing some terminal nodes to be connected to
root nodes. The minimal cycles resulting by following the arrows in the digraph
are denoted as cyclic lists of paths leading a root to a terminal node in the same
tree derivation. The ordering constraints for checking the proof soundness involve
only comparisons between instances of root formulas. Their number is given by
the number of paths from the minimal cycles and does not depend on the length
of these paths. Cyclic well-founded induction proofs have been validated in [16]
by certifying environments as Coq [19].

This approach is rather general and helps to define reductive inference sys-
tems [5,15], as those based on implicit induction [4]. They can build automat-
ically proof derivations whose soundness is implicitly guaranteed by the proof
method, hence no validation steps are required. Lacking the inconvenients pre-
sented by the on-the-fly/post-hoc soundness tests or backtracking steps, they
allow for an effective proof generation and help to deal with industrial-size ap-
plications [3,14].

This paper, structured in four sections, presents an effective solution to vali-
date the global trace condition for proofs generated with CLKIDωN , a restricted
version of CLKIDω using ordering constraints, in the same line as for cyclic well-
founded induction proofs. Section 2 is a quick presentation to the logical frame-
work based on FOLID and an introduction to CLKIDωN . In Section 3, we define
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proof strategies that guarantee the global trace condition for CLKIDωN proofs
satisfying a set of ordering and derivability constraints. An ordering constraint
consists of a comparison between two sequents, defined as a multiset extension
of an ordering <a over literals. It can be decided in polynomial time in the size
of the sequents if the <a-relations can also be decided in polynomial time. The
derivability constraints can be checked in linear time provided that the ‘history’
of some atoms from the compared sequents is preserved. We took as running
example the conjecture from Example 6 of [8], whose proof required the maxi-
mal time percentage for the soundness check. We provide a CLKIDωN proof of it
and show that its soundness check needs only two ordering constraints. A link
with the reductive reasoning techniques is established; as a proof of concept, we
define proof strategies that can build a reductive proof of N(x), N(y) ` Q(x, y)
and show that the ordering constraints are implicitly satisfied. The conclusions
and future work are given in the last section.

2 The logical framework

The logical setting relies on FOLID with equality, as presented, e.g., in [7,9].

Syntax. Let Σ be a (countable) language built on a finite alphabet of arity-
fixed function symbols F and predicate symbols, and V an enumerable set of
variables. Each predicate symbol is either inductive (i.e., defined by axioms as
below) or ordinary (i.e., not inductive). Terms and formulas are defined as usual.
(t1, . . . , tn) denotes a vector of terms and P (t1, . . . , tn) an inductive atom, where
P is an inductive predicate symbol and t1, . . . , tn are terms. ≡ represents the
syntactic equality. A substitution σ is a finite non-empty set of mappings of
distinct variables to terms

⋃n
i=1{xi 7→ ti}, also denoted as {x 7→ t}, where

x ≡ (x1, . . . , xn) and t ≡ (t1, . . . , tn). t[σ] denotes the instance of a term t built
with the substitution σ; we also say that t[σ] matches t. Similarly, we can apply
substitutions and build instances for atoms, formulas and (multi)sets of formulas.
FV (S) denotes the set of free variables from the set of formulas S.

Each inductive predicate symbol P is defined by a finite inductive definition
set of productions (axioms) consisting of implication formulas of the form

(
∧h
m=1Qm(um) ∧

∧l
m=1 Pim(tm))⇒ P (t), (7)

where h, l, i1, . . . , il are naturals and Q1, . . . , Qh (resp., Pi1 , . . . , Pil) are ordi-
nary (resp., inductive) predicate symbols. (7) is an unconditional production if
h = 0 and l = 0. If not, (7) is a conditional production and

∧h
m=1Qm(um) ∧∧l

m=1 Pim(tm) is its condition. Φ denotes the set of productions defining each
inductive predicate symbol.

Orderings. Let (E ,≤) be a non-empty poset. The strict part of the partial
order ≤, referred to as ordering, is denoted by <. A binary relation R is stable
under substitutions if whenever sR t then (s[σ])R (t[σ]), for every substitution
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σ and terms/formulas s and t. Given two finite multisets A and B of elements
from E , we say that << is the multiset extension of < and write B << A if
there are two finite multisets X and Y such that B = (A − X) ] Y , X 6= ∅
and ∀y ∈ Y , ∃x ∈ X, y < x holds, where ] (resp., −) is the union (resp.,
difference) on multisets. In practice, X (resp., Y ) is A (resp., B) after having
deleted pairwisely the common elements.

The CLKIDω
N inference system. CLKIDωN consists of a finite set of inference

rules that process sequents [10] of the form Γ ` ∆, where Γ and ∆ are finite
multisets of first-order formulas and referred to as antecedents and succedents,
respectively. An inference rule transforms a sequent, called conclusion, into a
(potentially empty) multiset of sequents, called premises; they are separated by
a horizontal line followed by the name of the rule. Most of the CLKIDωN inference
rules transform one (principal) formula from the conclusion. In this case, it is
explicitly represented in the sequent. A more detailed presentation of the sequent
calculus can be found elsewhere, e.g., [13].

Γ ∩∆ 6= ∅ (Ax)
Γ ` ∆

Γ ′ ` ∆′
Γ ′ ⊆ Γ,∆′ ⊆ ∆ (Wk)

Γ ` ∆

Γ ` F,∆ Γ ` G,∆
(∧R)

Γ ` F ∧G,∆

Γ ` F,∆
(¬L)

Γ,¬F ` ∆
Γ,F ` ∆

(¬R)
Γ ` ¬F,∆

Γ, F ` ∆ Γ,G ` ∆
(∨L)

Γ, F ∨G ` ∆

Γ ` F,G,∆
(∨R)

Γ ` F ∨G,∆
Γ, F,G ` ∆

(∧L)
Γ, F ∧G ` ∆

Γ ` F, F,∆
(contrR)

Γ ` F,∆
Γ ` ∆

(Subst)
Γ [θ] ` ∆[θ]

Γ ` F,∆ Γ,G ` ∆
(⇒ L)

Γ, F ⇒ G ` ∆
Γ,F, F ` ∆

(contrL)
Γ, F ` ∆

Γ,F [{x 7→ t}] ` ∆
(∀L)

Γ, ∀xF ` ∆

Γ ` F,∆
x ∩ FV (Γ ∪∆) = ∅ (∀R)

Γ ` ∀xF,∆
Γ, F ` ∆

x ∩ FV (Γ ∪∆) = ∅ (∃L)
Γ, ∃xF ` ∆

Γ ` F,∆ Γ, F ` ∆
(Cut)

Γ ` ∆

Γ ` F [{x 7→ t}], ∆
(∃R)

Γ ` ∃xF,∆
Γ, F ` G,∆

(⇒ R)
Γ ` F ⇒ G,∆

Fig. 1: Sequent-based rules for classical first-order logic.

CLKIDωN consists of the rules displayed in Fig. 1, the rules that process
equalities from Fig. 2, as well as the ‘unfold’ and ‘case’ rules. (= L) is an instance
of the corresponding CLKIDω rule for which x can also be a non-variable term.

(= R)
Γ ` t = t,∆

Γ [{x 7→ u}] ` ∆[{x 7→ u}]
x is not a variable of u (= L)

Γ, x = u ` ∆

Fig. 2: Sequent-based rules for equality reasoning.

The unfold rule unrolls the definition of the inductive symbol to transform
some succedent atom of a sequent. We denote the unfolding of P (t′) with the
production (7), when P (t′) ≡ P (t)[σ], by

4



Γ ` Q1(u1)[σ], ∆ . . . Γ ` Qh(uh)[σ], ∆ Γ ` Pi1 (t1)[σ], ∆ . . . Γ ` Pil
(tl)[σ], ∆

(R.(7))
Γ ` P (t′), ∆

The case rule is a left-introduction operation for inductive predicate symbols:

case distinctions (Case P )
Γ, P (s1, . . . , sn) ` ∆

Every production of the form (7) for which t ≡ (t1, . . . , tn) produces the case
distinction

Γ, s1 = t1, . . . , sn = tn, Q1(u1), . . . , Qh(uh), Pi1(t1), . . . , Pil(tl) ` ∆ (8)

Each variable y from (7) is fresh w.r.t. the free variables from the conclusion of
the rule (y can be renamed to a fresh variable, otherwise). Pi1(t1), . . . , Pil(tl) are
case descendants of P (s1, . . . , sn).

CLKIDω
N pre-proof trees. A derivation tree for some sequent S is built by

successively applying inference rules starting from S. The terminal nodes in
the tree can be either leaves or buds. A leaf is labelled by a sequent that is
the conclusion of a 0-premise inference rule. A bud is every node labelled by a
sequent that is the conclusion of no rule. For each bud, there is a companion, i.e.,
an internal node having the same sequent labelling. If a companion is annotated
by some sign (e.g., † or ∗), then the buds related to it are uniquely annotated
by that sign followed by a number.

Definition 2.1 (pre-proof tree, induction function for tree). The pair (D,
R) denotes a pre-proof tree of some sequent S, where D is a finite derivation
tree whose root is labelled by S and R is a defined induction function assigning
a companion to every bud in D.

Example 2.2. A CLKIDωN pre-proof tree of N(x), N(y) ` R(x, y) is

(R.(9))
Ny ` R(0, y)

(R.(9))
` R(0, 0)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(10))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)
(R.(10))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗1)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(11))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

where the inductive predicate R is defined, as in [8], by the productions

⇒ R(0, y) (9) R(x, 0)⇒ R(sx, 0) (10) R(ssx, y)⇒ R(sx, sy) (11)

For lack of horizontal space, we have unambiguously omitted the parentheses
and commas when denoting some natural and atom N(t), i.e., s(t) (resp., N(t))
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becomes st (resp., Nt), where t is the notation of t without parentheses. This
alternative notation will be used in the following, when necessary.

The double line means that (= L) was applied on each premise of (Case).
The (Cut) premise Nx′ ` Nssx′ is suppressed on the right-hand branch as in
Example 6 of [8]. The principal formula for each (Case) application is underlined.
Finally, the induction function R is defined such that the companion of the bud
denoted by (∗1) (resp., (†1)) is (∗) (resp., (†)).

Semantics. The semantics for FOLID with equality is defined as in [9]. Prefixed
points of a monotone operator issued from Φ [1] help to interpret inductive
predicates. A standard model for (Σ,Φ) is a first-order structure defined by the
least prefixed point, approached by an iteratively built approximant sequence.

Definition 2.3 (validity of a sequent). LetM be a standard model for (Σ,Φ),
Γ ` ∆ a sequent and ρ a valuation which interprets in M the free variables from
the sequent. We write Γ |=Mρ ∆ if whenever G holds in M using ρ, for all G ∈ Γ ,
there is some D ∈ ∆ that holds in M using ρ. We say that Γ ` ∆ is M -true if
Γ |=Mρ ∆, for every ρ. When M is implicit from the context, true is used instead
of M -true.

A rule is sound, or preserves the validity, if its conclusion is true whenever its
premises are true. Hence, the conclusion of every 0-premise sound rule is true.

Theorem 2.4. The CLKIDωN inference rules are sound.

Definition 2.5 (sound pre-proof tree). A pre-proof tree of a sequent S is
sound if S is true.

3 Checking the soundness of pre-proofs

Not every pre-proof tree is sound. A very simple example of unsound pre-proof
tree can be built for every false sequent S by firstly adding a copy of some an-
tecedent formula using (contrL) then deleting it using (Wk). Since the resulting
sequent is identical to S, its node is a bud. This finishes the pre-proof tree.

We intend to apply an approach similar to that used for building well-founded
(Noetherian) induction-based proofs [15] to check the soundness of pre-proof
trees. In this setting, a cycle is uniformly represented as a set of paths from root
companions to bud nodes. When a node of the pre-proof tree plays the role of
bud and companion, it is duplicated by some transformation operation such that
the roles are played separately by each copy. The normalization process consists
in the exhaustive application of the transformation operations that convert a
pre-proof tree to a set of pre-proof trees, for short pre-proof tree-sets.

In this section, we briefly explain the transformation operations and show
how to build digraphs from pre-proof tree-sets. Then, we prove that a pre-proof
tree is sound if the minimal cycles from the digraph of the pre-proof tree-set
resulting from its normalization satisfy certain ordering and derivability con-
straints. Finally, we present some strategies for directly building sound pre-proof
tree-sets.
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3.1 Defining the checking criteria

The first transformation operation applies on an internal node labeled by some
premise of (Subst):

...
Γ ` ∆

(Subst)
Γ [σ] ` ∆[σ]

...

produces
Γ ` ∆ (∗1)

(Subst)
Γ [σ] ` ∆[σ]

...

...
Γ ` ∆ (∗)

(new tree)

The node is duplicated; one of its copies is detached together with the sub-
tree derivation rooted by the node to become a new tree derivation. The two
occurrences of the duplicated bud establish a new relation bud-companion by
extending the definition of the induction function for trees to sets of trees.

The second transformation rule is performed on a non-root companion of
n− 1 (n > 1) buds and annotated by (∗), of the form

...

Γ ` ∆ (∗)

...

to give Γ ` ∆ (∗n)

...

...

Γ ` ∆ (∗)

(new tree)

The companion (∗) is duplicated such that the subtree derivation rooted by
it becomes a new pre-proof tree and the copy of (∗) becomes a bud annotated
by (∗n). A new relation bud-companion is created between (∗n) and (∗).

Example 3.1. The application of the second transformation on the companion
annotated by (†) in the pre-proof tree given in Example 2.2 generates a normal-
ized pre-proof tree-set, as shown in Fig. 3.

(R.(9))
Ny ` R(0, y)

Nx′ ` R(x′, 0) (†1)
(R.(10))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(11))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

(R.(9))
` R(0, 0)

Nx′ ` R(x′, 0) (†)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(10))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)

Fig. 3: The normalized pre-proof tree-set.
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Definition 3.2 (pre-proof tree-set, induction function for tree-set). The
pair (MD, MR) denotes a pre-proof tree-set, where MD is a multiset of pre-
proof trees and MR is a defined induction function assigning a companion to
every bud fromMD.

Lemma 3.3. The normalization process terminates.

Lemma 3.4. Let (MD,MR) be the pre-proof tree-set obtained by the normal-
ization of some pre-proof tree of a sequent S. Then, MD

i) has a pre-proof tree rooted by a node labelled by S, and
ii) is built from pre-proof trees for which the premises of all (Subst) rules are

bud sequents.

Any pre-proof tree-set can also be represented as a digraph of sequents using
nodes from its tree-set and arrows annotated with substitutions. Let S(N) denote
the sequent labelling N , for every node N . A solid arrow leads a node N1 to a
node N2 if there is a rule applied on S(N1) and S(N2) is a premise of the rule.
It is annotated with the identity substitution for S(N)(≡ Γ ` ∆), denoted by
σ
S(N)
id and defined as

⋃
x∈FV (Γ∪∆){x 7→ x}, if N is not a (= L)-node. When not

ambiguous, the identity substitutions are omitted. If N is a (= L)-node whose
principal formula is x = u, the arrow leaving N is annotated by the equality
substitution {x 7→ u}. On the other hand, a dashed arrow leads a bud B to its
companion and is annotated with a substitution written in boldface. If S(B)
is the premise of a (Subst) rule using the substitution θ, this substitution is θ.
Otherwise, it is σS(B)

id .
For convenience, the sequent Γ ` ∆ labelling a node N i in the digraph is

indexed by i as Γ `i ∆.

Example 3.5. Fig. 4 shows the digraph of the pre-proof tree-set from Fig. 3.

A path is a (potentially infinite) list of nodes built by following the arrows in
the digraph. It is (Subst)-free if none of the sequents labelling its nodes is the
premise of some (Subst)-rule.

Definition 3.6 (cumulative substitution). A (Subst)-free path [N1, . . . , Nn]
(n > 0) is annotated by the cumulative substitution σallid σ1 · · ·σn−1, where σi is
the substitution annotating the solid arrow leading Ni to Ni+1, for each i ∈
[1..n− 1], and σallid is the overall identity substitution ∪N∈[N1,...,Nn]{x 7→ x | x ∈
FV (Γ ∪∆) and S(N) ≡ Γ ` ∆}.

Example 3.7. The cumulative substitution for the (Subst)-free path
[N1, N3, N5, N6, N7] from Fig. 4 is {x 7→ sx′; y 7→ sy′}, which is the
composition of the overall identity substitution {x 7→ x; y 7→ y} with the
substitutions {x 7→ sx′}, {y 7→ sy′}, and other identity substitutions.

The digraph P of a pre-proof tree-set (MD, MR) can be partitioned in a
set of strongly connected components (SCCs). Some of them may have only one
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node. The SCCs with more than one node have at least one cycle, i.e., a path
built along its nodes where the nodes are repeated. A minimal cycle does not
contain other cycles.

Definition 3.8 (n-cycle). Every minimal cycle in P can be represented as a
n-cycle, defined as a finite circular list [N1

1 , . . . , N
p1
1 ], . . . , [N1

n, . . . , N
pn
n ] of n

(> 0) paths leading root nodes to buds such that N1
next(i) =MR(N

pi
i ), for any

i ∈ [1..n], where next(i) = 1 + (i mod n).

The standard method for checking the soundness of pre-proof trees, e.g. [9],
is based on a ‘proof by contradiction’ approach. Let us assume that the root
sequent of some pre-proof tree is false. It is sufficient to show that some global
trace condition is satisfied for every infinite path in the pre-proof tree, built
by visiting nodes labelled by false sequents if the root sequent is false. This
condition stipulates that all successive steps starting from some point in the path
are decreasing and certain steps occurring infinitely often are strictly decreasing
w.r.t. some semantic ordering underlying ordinals. The trace is a list of inductive
antecedent atoms (IAAs) of the sequents labelling the nodes from the path.
Let P (t) be one of these atoms. Since P can be generated by a sequence of
approximants (P γ)γ≥0, the measure value for P (t) used by this ordering is the
smallest ordinal γ such that P γ(t) holds for some suitable interpretation. The
well-foundedness property of the ordering contradicts the fact that the path is
infinite.

The question of whether a pre-proof tree is sound is decidable (see e.g. Propo-
sition 7.4 from [9]), by using a decision procedure based on the automata-based
complementation method. On the other hand, the computational and combina-
torial complexity of the validation of the global trace condition can be reduced
for pre-proof trees of certain structure, e.g., for those having trace manifolds [6,7].

The trace manifold condition can be checked only on pre-proof trees in cycle
normal form, for which the companion of every bud B is also an ancestor of
B. Any pre-proof tree can be transformed in a cycle normal form. Mainly, it
is unfolded into an infinite pre-proof tree, then the infinite branches are folded
to get an equivalent normalized pre-proof tree. An improved complexity bound
can be achieved by an iterative ‘untangling’ process of the pre-proof tree. By
Theorem 6.3.6 from [7], if a derivation tree has n nodes, the equivalent normalized
derivation tree has no more than n2

n/2

nodes.
In the same quest to reduce the complexity of the validation process, we

adapt the approach for building well-founded induction proofs [15] to generate
pre-proof trees that implicitly guarantee the validity of the global trace condition.
For this, we denote by ≤π a partial ordering defined over the set of instances of
every sequent labelling root nodes from some SCC π with cycles. Its strict part
is denoted by <π and its equivalence part by ∼π. Contrary to [15], <π is not
required to be well-founded. We assume that <π is built as the multiset extension
of a ‘stable under substitutions’ ordering <a defined over IAAs and used to
compare instances of the root sequents from π. Hence, <π is also stable under
substitutions [2]. We also assume that ∼π is stable under substitutions. Like <π,
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<a does not need to be well-founded. For each node N in π and every instance
S of S(N), we denote by AS the measure value (weight) of S, represented as
a multiset of IAAs of S and used in the comparisons of S with other sequent
instances w.r.t. ≤π.

Definition 5.4 of [9] for a trace in a pre-proof tree can be adapted for a digraph
P and simplified to take into account the restricted version of (= L).

Definition 3.9 (trace). A trace following some (potentially infinite) path p in
P, denoted by [N1, N2, . . .], is a sequence (τi)(i≥0) such that:

– τi = P (t), where P (t) is an IAA of S(N i);
– if Γi ` ∆i is the conclusion of (Subst) then τi = τi+1[ρ], where ρ is the

substitution associated with the rule instance;
– if Γi, x = u ` ∆i is the conclusion of (= L), then τi+1 = τi[{x 7→ u}];
– if S(N i) is the conclusion of a (Case)-rule, then either i) τi+1 = τi, or ii)
τi is its principal formula and τi+1 is a case descendant of τi. In this case,
i is called a progression point;

– if S(N i) is the conclusion of any other rule, then τi+1 = τi.

We say that an IAA τj derives from an IAA τi using the trace (τk)(k≥0) if
i < j. Given two arbitrary substitutions γ and δ, we also say that τj [γ] derives
from τi[δ] using (τk)(k≥0). Let π be a SCC from P and <a the ‘stable under
substitutions’ ordering defined over the set of instances of the IAAs from the
root sequents inside π. We can define <π as the multiset extension of <a that
satisfies some derivability constraints.

Definition 3.10 (<π-derivability). Let N i and N j be two nodes occurring in
some path p from an SCC π, θ and δ two substitutions, and A′S(Ni)[θ] (resp.,
A′S(Nj)[δ]) the multiset resulting from AS(Ni)[θ] (resp., AS(Nj)[δ]) after the pair-
wise deletion of all common IAAs from AS(Ni)[θ] and AS(Nj)[δ]. Then, S(N j)[δ]
is <π-derivable from S(N i)[θ] along p if i) for each l ∈ A′S(Nj)[δ], there exists
l′ ∈ A′S(Ni)[θ] such that l′ >a l and l derives from l′ using some trace following
p, and ii) for each l ∈ AS(Nj)[δ]\A′S(Nj)[δ], there is some l′ ∈ AS(Ni)[θ]\A′S(Ni)[θ]

such that l ≡ l′ and l derives from l′ using some trace following p.

Lemma 3.11. In Definition 3.10, for each IAA l from S(N j)[δ] there is an IAA
l′ from S(N i)[θ] such that l derives from l′ using some trace following p.

We give below some useful properties of the <π-derivability relation.

Lemma 3.12. S <π S′ if S is <π-derivable from S′ along some path p in π.

Lemma 3.13. The ‘<π-derivability’ relation is stable under substitutions. It is
also transitive, i.e., if S is <π-derivable from S′ along p and S′ is <π-derivable
from S′′ along p then S is <π-derivable from S′′ along p, for some path p in π.

We are ready to introduce the ordering constraints that help to discharge
induction hypotheses by n-cycles.
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Definition 3.14 (induction hypothesis (IH), IH discharged by an
n-cycle, IH-node). Let π be an SCC with cycles and C an n-cycle
[N1

1 , . . . , N
p1
1 ], . . . , [N1

n, . . . , N
pn
n ] from π. The instances S(Npj

j )[δj ] (j ∈ [1..n])
are called induction hypotheses (IHs), where δj annotates the dashed arrow start-
ing from N

pj
j in C. For all i ∈ [1..n], let θci be the cumulative substitution an-

notating [N1
i , . . . , N

f
i ], where the IH-node Nf

i is either i) Npi
i if [N1

i , . . . , N
pi
i ]

is (Subst)-free, or ii) Npi−1
i , otherwise. The IHs S(N1

j )[δj ] (j ∈ [1..n]) are dis-
charged by C if, ∀i ∈ [1..n], S(Npi

i )[δi] is <π-derivable from S(N1
i )[θ

c
i ] along

[N1
i , . . . , N

pi
i ].

Definition 3.14 is well-formed; the cumulative substitution can be computed
for the case ii) because, for each i ∈ [1..n], [N1

i , . . . , N
pi−1
i ] is a (Subst)-free

path, by following the claim ii) of Lemma 3.4. By construction, S(Nf
i ) is the

IH S(N1
next(i))[δnext(i)], for all i ∈ [1..n]. For every IAA l of a sequent bud

corresponding to some τi from a trace (τk)(k≥0) following a path from some
minimal cycle, we define the history of l as the subtrace (τk)(k<i). If each such
IAA stores its history during the proof construction, every derivability constraint
can be decided in linear time w.r.t. the size of the history, by visiting one by one
each element in the history.

Nx,Ny `1 R(x, y)

{x 7→0}

ww

{x7→sx′}

((
Ny `2 R(0, y) Nx′, Ny `3 R(sx′, y)

{y 7→0}

vv
{y 7→sy′}

��
Nx′ `10 R(x′, 0)

{x′ 7→0}

yy
{x′ 7→sx′′} ��

Nx′ `4 R(sx′, 0)

��

Nx′, Ny′ `5 R(sx′, sy′)

��
`11 R(0, 0) Nx′′ `12 R(sx′′, 0)

��

Nx′ `9 R(x′, 0)

{x′ 7→x′}{x′ 7→x′}{x′ 7→x′}
gg

Nx′, Ny′ `6 R(ssx′, y′)

��
Nx′′ `13 R(x′′, 0)

��

Nssx′, Ny′ `7 R(ssx′, y′)

��
Nx′ `14 R(x′, 0)

{x′ 7→x′′}{x′ 7→x′′}{x′ 7→x′′}

dd

Nx,Ny `8 R(x, y)

{x7→ssx′;y 7→y′}{x7→ssx′;y 7→y′}{x7→ssx′;y 7→y′}

oo

Fig. 4: The digraph of the pre-proof tree-set from Fig. 3.

Example 3.15. The digraph from Fig. 4 has two SCCs with cycles. One of them,
denoted by π, consists of the 1-cycle [N10,N12, N13, N14]. The other, denoted by
π′, is made of the 1-cycle [N1, N3, N5, N6, N7, N8]. No cycle has the bud N9.

We define the measure value for any sequent instance of the form
S(N10)[{x′ 7→ t; . . .}] (resp., S(N1)[{x 7→ t1; y 7→ t2; . . .}]) as {N(t)} (resp.,
{N(t2)}). <π and <π′ are multiset extensions of an ordering <a over the IAAs
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of the form N(t) and whose measure value is {t}, for any term t. <a is the mul-
tiset extension of the ‘stable under substitutions’ rpo ordering [2], denoted by
<rpo and based on the symbol precedence establishing that 0 is smaller than s.

Every IH from these 1-cycles is discharged. The IH S(N10)[{x′ 7→
x′′}] is <π-derivable from S(N10)[{x′ 7→ sx′′}] along the (Subst)-free path
[N10, N12, N13, N14], by using the trace [Nx′, Nx′′, Nx′′, Nx′] for the IAA
Nx′ of S(N10). Similarly, the IH S(N1)[{x 7→ ssx′; y 7→ y′}] is <π′ -
derivable from S(N1)[{x 7→ sx′; y 7→ sy′}] along the (Subst)-free path
[N1, N3, N5, N6, N7, N8], by using the trace [Ny,Ny,Ny′, Ny′, Ny′, Ny] for the
IAA Ny of S(N1). The two comparisons hold as z <rpo sz, for every variable z.

Definition 3.16 (proof). A proof is every pre-proof tree-set whose digraph has
only n-cycles that discharge their IHs.

Theorem 3.17 (soundness). The root sequents from every proof are true.

Proof (Sketch). It follows the general structure of the soundness proof for some
cyclic well-founded inference systems, e.g., see Theorem 5.11 from [17]. Mainly,
we define a partial ordering <R over the root nodes from the digraph P of a proof
such that, for every two distinct root nodes N1 and N2, we have N1 <R N2 if
i) N1 and N2 are not in the same SCC, and ii) N1 can be joined from N2 in P.

By contradiction, we assume that there exists a root node N such that S(N)
is false. A classical induction reasoning using<R allows to explore all possibilities
for N to be considered as one of the root nodes from P. The most difficult case is
when N is part of some SCC with cycles. A contradiction yields by showing that
there exists a trace with an infinite number of progression points, using similar
arguments as in the proof of Lemma 5.7 [9] and witnessed by an infinite strictly
decreasing sequence of ordinals, thanks to the <-derivability constraints. ut

Theorem 3.17 is the key argument for proving that our approach allows
indeed to verify pre-proof trees.

Lemma 3.18. A pre-proof tree is sound if the pre-proof tree-set resulting from
its normalization operation is a proof.

Validation costs. We analyse the worst-case time complexity for validating the
soundness of a pre-proof tree of n nodes with p (< n) buds occurring in minimal
cycles. The number of transformation operations during the normalization step
is given by the sum of non-root companions and non-terminal (Subst)-nodes,
which is smaller than 2n. The cost of a transformation operation, including the
node duplication and the creation of a bud-companion relation, is assumed to be
some constant c. Hence the cost of the transformation operations is smaller than
2nc. If c′ is the constant representing the cost for annotating a substitution, the
cost for building the digraph of the normalized pre-proof tree-set is smaller than
nc′. The partition of a digraph in SCCs can be done in linear time [18].

If B denotes a bud occurring in a minimal cycle, the IH that instantiates
S(B) is unique because B has only one companion and at most one companion
can be the root of the tree including B. The number of <-derivability constraints
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is that of their buds, i.e., p. In the worst case, p is n− 1. The validation cost of
a <-derivability constraint is the sum of the costs of derivability and ordering
constraints. The time complexity for checking whether an IAA l derives from
another IAA l′ is linear w.r.t. the size of the history of l, which is a value smaller
than n. The time complexity for checking a multiset extension relation is O(rq),
where r and q are the number of IAAs from the measure value of the compared
sequents. In the worst case, when all bud IAAs have their history of length n and
p is n−1, the time complexity for checking the derivability constraints is O(n2k2),
where k is the maximal cardinality of a sequent’s measure value. Similarly, the
worst-case validation cost of the ordering constraints is polynomial in k, the
maximal size of a literal and n, if the time complexity for comparing two IAAs
is at most polynomial, for example by using a Knuth-Bendix ordering [2].

3.2 Strategies for directly building proofs

Theorem 3.17 suggests that sequents can also be proved by directly build-
ing sound pre-proof tree-sets. For this purpose, we adapt the DRaCuLa strat-
egy [15]. Mainly, the trees from a pre-proof tree-set are developed by applying
the CLKIDωN rules, as usual, with the following exceptions:

– when applying a (Subst)-rule, the premise becomes a bud sequent, as shown
for the first transformation of the normalization procedure. The next step is
to develop a new tree rooted by the companion of the bud;

– when a bud is about to be created, several scenarios may happen. As a pre-
liminary step, if its companion is a non-root node the second transformation
of the normalization procedure is applied. If the bud candidate is part of an
n-cycle that discharges its IHs, the bud is created (scenario 1). If it is not yet
the case, either i) the strategy tries to build an n-cycle, by developing parts
from other trees (scenario 2), or ii) the n-cycle does not discharge its IHs
(scenario 3); in this case, a backtracking step is required either to redefine
the ordering at the SCC level, or to redo previous steps, or to continue to
develop the proof by applying a CLKIDωN rule on the sequent labelling the
bud candidate.
For (scenario 1), not only the current bud candidate is created, but all the
bud candidates from the n-cycle are built, hence simultaneous induction is
performed.

Example 3.19. The above strategy can build the pre-proof tree from Exam-
ple 2.2. The progression in its construction can be retraced by following the
indexes of the sequents from the digraph in Fig. 4.

This proof strategy uses heuristics based on ordering constraints, different
from the iterative depth-first search heuristics used by Cyclist.

Example 3.20. One could have built a new bud of (*) from the pre-proof tree
of Example 2.2, by developing (†) such that N0 is added as IAA, then (Subst)
applied conveniently. The new 1-cycle from its digraph is part of the SCC π′ of

13



the digraph from Example 3.15. However, it cannot discharge its IH because the
induction ordering is now <π′ instead of <π.

Sound pre-proof trees can also be directly generated to satisfy implicitly the
ordering constraints, similar to implicit induction proofs, by using a reductive
proof strategy based on a unique induction ordering <. Such strategy guarantees
that, for every two successive nodes N i and N i+1 from each path p, of the form
[N1, . . . , Nn] and occurring in the definition of some minimal cycle of its digraph,
and i ∈ [1..f − 1], we have either AS(Ni+1)[θci+1]

≡ AS(Ni)[θci ]
or S(N i+1)[θci+1]

is <-derivable from S(N i)[θci ] along p, where f is the index of the IH-node in
[N1, . . . , Nn] and θcj is the cumulative substitution for the path [N j , . . . , Nf ] (j ∈
[1..f ]). The derivability constraints are satisfied if the syntactic equality relation
is not satisfied at least once along p. Indeed, knowing that the <-derivability
relation is transitive (Lemma 3.13), we have that S(Nf ) is <-derivable from
S(N1)[θc1] along p, as required. If the rule applied at step i is different from
(= L), we have that θci ≡ θci+1. In this case, it is sufficient to ensure instead that
AS(Ni+1) ≡ AS(Ni) or S(N i+1) is <-derivable from S(N i) along p, due to the
‘stability under substitutions’ property of <-derivability (again Lemma 3.13).

Example 3.21. As a proof of concept, we define the derived rule (DCase):

S1 . . . Sn
(DCase P )

Γ, P (x) ` ∆ as

S1
(= L)

case distinction . . .
Sn

(= L)
case distinction

(Case P )
Γ, P (x), P (x) ` ∆

(contrL)
Γ, P (x) ` ∆

where x is a vector of variables. We also define the (Bud) rule:

(bud sign)
(Bud)

Γ ` ∆
as

Γ ′ ` ∆′ (bud sign)
(Subst)

Γ ′[σ] ` ∆′[σ]
(Wk)

Γ ` ∆

if Γ ′ ` ∆′ subsumes Γ ` ∆ with substitution σ, i.e., Γ ′[σ] ⊆ Γ and ∆′[σ] ⊆ ∆.
Different variants of the subsumption operation are widely employed by the
current theorem provers, Cyclist being one of them.

By using the alternative notation without parentheses, a pre-proof of
Nx,Ny ` Q(x, y) is built below by firstly trying to apply the unfold rules fol-
lowed by (Bud), then (Del) and, finally, (DCase). (Del) is a restricted version
of the (Wk) rule that deletes the IAAs of the form N(t) if none of the inductive
succedent atoms from the conclusion has t as argument. It can be noticed that
the history of every IAA occurring in each premise of any rule r from the above
rules but (Bud) has one of the IAAs from the conclusion of r.

(R.(3))
Nx,N0 ` Qx0

(R.(1))
N0 ` P0

(∗1)
(Bud)

Nsz,Nz ` Pz
(†2)

(Bud)
Nz,Nsz ` Qzsz

(R.(2))
Nsz,Nz ` Psz

(DCase N)
Nx ` Px (∗)

(Del)
Nx,Nz,Nsz ` Px

(†1)
(Bud)

Nx,Nz,Nsz ` Qxz
(R.(4))

Nx,Nz,Nsz ` Qxsz
(DCase N)

Nx,Ny ` Qxy (†)
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The proof strategy is reductive if the measure value for each sequent of the
form Γ,N(t) ` P (t) (resp., Γ,N(t1), N(t2) ` Q(t1, t2) is the multiset of IAAs
{N(t), N(t)} (resp., {N(t1), N(t1), N(t2)}) and < is defined as the multiset ex-
tension of the ordering <a over IAAs from Example 3.15. It can be checked
that the <-derivability constraints are satisfied, by taking into account that the
unique SCC with cycles of the digraph associated to its normalized pre-proof
tree-set is built from the union of two 1-cycles, [(∗), . . . , (∗1)] and [(†), . . . , (†1)],
and one 2-cycle [(∗), . . . , (†2)], [(†), . . . , copy of (∗)].

By Theorem 3.17, our approach allows to prove several conjectures simul-
taneously. This is a feature specific to formula-based Noetherian induction rea-
soning [15] as that employed by the implicit induction inference systems. It is
particularly useful when the proofs of the conjectures are mutually dependent.

Example 3.22. The normalization step for the pre-proof tree from Example 3.21
can be avoided if the pre-proof trees of Nx ` Px and Nx,Ny ` Qxy are devel-
oped simultaneously.

4 Conclusions and future work

We have presented a new method to validate a class of CLKIDω pre-proof trees
by converting them to pre-proof tree-sets, then showing that the global trace
condition is implicitly satisfied if some ordering and derivability constraints hold.
Every infinite path p from a pre-proof tree normalized to a proof (tree-set) can
be built by concatenating path segments from the definition of the minimal
cycles of its proof. These constraints ensure that there is an infinitely progressing
trace following some tail of p. Our approach allows more flexibility; a different
induction ordering can be defined for each SCC with cycles from the digraph of
the proof. This is not the case from the unique induction ordering defined over
the buds of a pre-proof tree with trace manifolds [6,7]. Also, our approach does
not require pre-proof trees to be in cycle normal form that are, in the worst case,
exponentially bigger.

The soundness check can be done in polynomial time provided that the time
complexity for comparing two IAAs is at most polynomial. We defined proof
strategies ensuring that the number of ordering constraints equals that of the
induction hypotheses that are really required in the proof. In practice, their
number is generally small even for proofs concerning real-size applications. For
example, every cyclic induction proof from [15] (see Table 1) includes at most 8
induction hypotheses and 4 minimal cycles.

The ordering constraints are implicitly satisfied by reductive proof strategies.
In the future, we plan to define new (derived) rules and proof strategies that
automatically generate more compact reductive proof derivations and provide
a better control of the proof development. The main challenge of our approach
remains to find the ‘good’ induction orderings.
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