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Abstract

In first-order logic, the formula-based instances of the Noetherian induction principle allow to
perform effectively simultaneous, mutual and lazy induction reasoning. Compared to the term-
based Noetherian induction instances, they are not directly supported by the current proof
assistants.

We provide general formal tools for certifying formula-based Noetherian induction proofs by
the Coq proof assistant, then show how to apply them to certify proofs of conjectures about
conditional specifications, built with: i) a reductive rewrite-based induction system, and ii) a
reductive-free cyclic induction system. The generation of reductive proofs and their certification
process can be easily automatised, without requiring additional definitions or proof transforma-
tions, but may involve many ordering constraints to be checked during the certification process.
On the other hand, the reductive-free proofs generate fewer ordering constraints, may involve
more general specifications and the certification process is more effective. However, their proof
generation is less automatic and the generated proofs need to be normalised before being certi-
fied. The methodology for certifying reductive-free cyclic induction proofs related to conditional
specifications extends a previous approach used for implicit induction proofs and it can be easily
adapted to certify any formula-based Noetherian induction reasoning.

In practice, the methodology has been implemented to automatically certify implicit induction
proofs generated by the SPIKE theorem prover as well as reductive-free cyclic proofs built by
the same system but in a less automatic way.
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1. Motivations

Formal verification of mathematical reasoning has recently witnessed remarkable break-
throughs, as revealed by the Flyspeck project (The Flyspeck website, 2014) and the cer-
tified proof of the Feit-Thompson theorem (Gonthier et al., 2013). Similar advances can
be noticed for the complete validation of complex and crucial systems from the everyday
life of computer scientists like compilers (The CompCert project, 2014) and kernels of
operating systems (The L4.verified project, 2014).

Induction reasoning plays a central role among the mathematical techniques employed
in formal verification as it is well-adapted to reason on recursive data structures and
algorithms. Noetherian induction is a general reasoning principle for checking whether a
property is satisfied by an unbounded set E of partially ordered elements. When checking
the property for some element, the principle grants the fact that the property holds for
smaller elements if the (induction) ordering relation is well-founded (or Noetherian), i.e.,
every non-empty subset of E has a minimal element. The checked property is referred to
as induction conclusion and the granted properties as induction hypotheses (IHs). When
applied to first-order reasoning, the elements can be (vector of) terms or (first-order)
formulas.

The term-based Noetherian induction methods build explicit induction schemas at-
taching eagerly IHs to induction conclusions. In this approach, the proof of an induction
conclusion is further developed, expecting that the IHs be applied at some proof step.
Defining the right induction schemas may need several proof attempts, especially when
some knowledge about the way the proof will be performed is lacking. In practice, it may
happen that IHs be defined but not used or that IHs be required but not defined. The
latter case is challenging especially when defining induction schemas for the management
of mutual induction reasoning where a property can help proving another property, and
conversely.

A major advantage for using explicit induction schemas is their direct implementation
into inference systems producing tree-shaped proofs by the means of induction rules. The
nodes of the proof tree are tagged with formulas, the induction reasoning being applied
locally, at the node level. Explicit induction schemas can be automatically generated from
the analysis of recursive function or datatype definitions, a feature that is implemented by
many modern formal reasoning tools like the Coq proof assistant (The Coq development
team, 2013).

On the other hand, the formula-based Noetherian induction methods can perform lazy
induction, a very useful feature that provides the IHs by need, mutual induction as well
as simultaneous induction where several induction steps are performed at the same time
and on different conjectures. However, these methods are hard to be applied at node
level in tree-shaped proofs because the formula-based Noetherian induction reasoning
may involve information from potentially any node of the proof. The lazy IHs should be
eventually discharged independently from the induction conclusion, which makes impos-
sible the mutual induction reasoning.

The formula-based induction ordering is unique during any proof session developed
by reductive induction techniques like the rewrite-based implicit induction, suggested
in (Kounalis and Rusinowitch, 1990) and defined later in (Bronsard et al., 1994). In this
case, the induction ordering can guide the proof such that the new formulas issued after
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processing any formula φ are smaller than (and sometimes equal to) φ or instances of
φ. In general, the reductive induction reasoning can be easily automatised and multiple
induction steps can be performed during a proof session, as it is witnessed by the proofs
generated with the implicit induction SPIKE prover (The SPIKE development team,
2014).

The non-trivial Noetherian induction reasoning for first-order logic is cyclic in the
sense that the proof of a formula φ depends, directly or indirectly, on (an instance of) φ.
Compared to other induction techniques, the cyclic induction methods, as those using se-
mantic orderings to reason on first-order logic with inductive definitions (FOLID) (Broth-
erston and Simpson, 2011) or based on well-founded orderings (Stratulat, 2012), put in
evidence cycles of formulas whose proofs are mutually dependent. The soundness of the
non-trivial induction reasoning is established if some ordering constraints defined over the
formulas inside a cycle are satisfied. Their number may differ, according to the employed
induction technique. In (Stratulat, 2012), it has been shown to be equal to i) 1, for cycles
built using term-based Noetherian induction methods, ii) to the number of formulas from
a cycle, for cycles using reductive formula-based Noetherian induction techniques, and
iii) to the (much smaller) number of formulas from a cycle whose instances are used as
IHs by other formulas from the cycle, for cycles built with reductive-free formula-based
Noetherian induction methods.

The manual check of the sound application of the formula-based principles may be
tedious and error-prone. For these reasons, the mechanical certification of formula-based
Noetherian induction reasoning becomes a necessity. To our knowledge, there is no formal
system that can directly certify formula-based Noetherian induction reasoning. Some
certifying proof environments based on type theory, such as Coq and Isabelle (Nipkow
et al., 2002), have a higher-order specification language that allow the definition and
application of the Noetherian induction principle but only the term-based Noetherian
induction is supported at first-order level by providing the formal tools to build explicit
induction schemas.

In Coq, the recursion-based specifications can be formalised in two ways, by the means
of: i) the functional programming style, based on pattern matching constructions, and
ii) the logic programming style, based on inductively defined predicates. Both styles
allow to encode recursion but each of them has limitations. Any function should be
total and terminating, the built-in termination criterion being supported by a structural
recursion analysis checking that one of the function arguments decreases according to
a well-founded ordering. On the other hand, any inductive predicate is defined by the
means of a set of formulas written in a ‘Horn-clause’ implication form, no termination
proof is needed but no induction principle can be derived from its definition.

It is important to notice that, from a theoretical point of view, the term-based Noethe-
rian induction principle can be trivially represented as an instance of the formula-based
Noetherian induction principle (Stratulat, 2012). In the other direction, it is not clear
that any formula-based Noetherian induction proof can be converted to a term-based
Noetherian induction proof. For example, in the setting of FOLID, it is conjectured
in (Brotherston and Simpson, 2011) that the cyclic proofs can be converted to explicit
induction proofs.

3



Contributions As an alternative way to the use of explicit induction proof methods
in Coq, we point out the possibility to certify any formula-based Noetherian induction
reasoning as it is, i.e., with no proof transformation techniques for conversion to term-
based Noetherian induction reasoning. In order to do this, we show how to build formal
tools for defining the formula-based Noetherian induction principle and the underlying
induction orderings. As a case study, we have focussed on proving properties about
conditional specifications. Two proof techniques, implementing the implicit and cyclic
induction, are presented. The implicit induction method applies only once the formula-
based Noetherian induction principle on the set of all formulas from the proof (modulo
some redundancy criteria). On the other hand, the cyclic method based on well-founded
orderings (Stratulat, 2012) may apply the formula-based Noetherian induction principle
several times and is more flexible by allowing the use of different induction orderings in
a proof session. The certification process is more effective since it deals with smaller sets
of formulas and fewer ordering constraints to be checked.

Based on these formal tools, we propose a methodology for certifying formula-based
Noetherian induction proofs by translating them into Coq script that can be validated by
the Coq’s trustworthy kernel. The practical interest of our approach is witnessed by the
Coq certification of i) a simultaneous induction proof of the ‘P and Q’ example (Wirth,
2004), and ii) a non-trivial implicit induction proof of a property over the even and odd
function symbols defined over naturals and requiring several induction steps. The implicit
induction proof was automatically generated by SPIKE and automatically translated in
Coq script using the functional programming style. The proof of the ‘P and Q’ exam-
ple was generated by hand, using a toy and simulating a not-yet implemented reductive
inference system, and certified by Coq using a logic programming style. However, the
certification methodology is general and we expect it to help implementing in Coq other
formula-based Noetherian induction methods, as the saturation-based inductionless in-
duction method (Comon, 2001) (also known as proof by consistency (Kapur and Musser,
1987)). It also opens the perspective of directly integrating the formula-based Noetherian
induction reasoning in Coq and similar systems.

Related works Since not all formula-based Noetherian induction proofs are directly rep-
resentable as term-based Noetherian induction proofs, some effort has been put into find-
ing classes of convertible formula-based Noetherian induction proofs or defining the ap-
propriate translation methods. Related to the Coq development, (Courant, 1996; Kaliszyk,
2005) proposed partial solutions for converting implicit to explicit induction proofs.
Courant (Courant, 1996) identified a class of implicit induction inference systems that
can generate such convertible proofs. The downside of this approach is the lack of certi-
fication for the conversion process, required to fully certify the implicit induction proofs.
Deplagne, C. Kirchner, H. Kirchner and Nguyen (Deplagne et al., 2003) established
sufficient conditions for identifying the implicit induction proofs that can be directly
represented as term-based Noetherian induction proofs, the induction reasoning being
embedded in a deduction modulo inference system.

In general, lazy and mutual induction reasoning can also be performed with schemata-
based induction, but in a limited way. Protzen (Protzen, 1994) proposed a solution to
generate lazily the IHs by building the induction schemas during the proof using proof
analysis and not the usual recursion analysis of data structures. On the practical side,
Voicu and Li (Voicu and Li, 2009) implemented a Coq tactic that automatically does lazy
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term-based ‘Descente Infinie’ induction reasoning, a contrapositive form of the Noethe-
rian induction reasoning. Also, the mutual induction reasoning may be tricky since it
consists in the definition of induction schemas issued from the analysis of classes of mu-
tually defined predicates/functions or data structures (Boyer and Moore, 1988; Walther,
1993; Kapur and Subramaniam, 1996; Boulton and Slind, 2000) and it is not clear that all
the necessary IHs can be generated from the application of such induction schemas (Liu
and Chang, 1987).

In Coq, induction principles can also be generated from the analysis of function defini-
tions, using the Function (Balaa and Bertot, 2000; Barthe and Courtieu, 2002; Barthe
et al., 2006) Equations (Sozeau, 2010) and Program (Sozeau, 2007) tools. These prin-
ciples are powerful as they can handle dependent pattern-matching and analyse recursion
for higher-order type theory. But, once restricted to first-order logic, they implement the
term-based Noetherian induction principle.

Stratulat and Demange (Stratulat, 2010; Stratulat and Demange, 2011) succeeded
to formalize the implicit induction reasoning directly into Coq scripts. Their goal was
to automatically certify implicit induction proofs generated by native implicit induc-
tion provers as SPIKE. In this approach, the specifications and proofs are automatically
translated into Coq scripts. At the end, the generated scripts are checked for confor-
mity with the formalised formula-based Noetherian induction principle. However, this
approach does not certify the translation process between the SPIKE proofs and Coq
scripts. It has been shown in (Stratulat and Demange, 2011) that non-trivial conjectures
can be successfully certified in an automatic way. In another direction, Henaien and
Stratulat (Henaien and Stratulat, 2013) developed Coq tactics that can prove goals by
implicit induction using SPIKE as an external tool. They firstly translate in SPIKE the
Coq specifications and goals, then call SPIKE to develop the implicit induction proofs
of the goals. Based on the previous approach, the SPIKE proofs are further converted to
Coq scripts which are finally certified as proofs of the original Coq goals.

Structure of the paper The paper is organised in 7 sections and one appendix, as fol-
lows. The basic notions and notations are introduced in Section 2. The Coq formalisation
of the formula-based Noetherian induction principle and the certification methodology
are presented in Section 3. Section 4 introduces different implicit induction inference
systems. A first attempt to certify the proof of the ‘P and Q’ example is presented, then
the certification of the implicit proof of the property on even and odd is explained using
a functional programming style. The proofs of these properties are redone in Section 5
using cyclic inference systems and showed that the certification of the cyclic proof con-
cerning the ‘P and Q’ example is successful by using a logic programming style. The
SPIKE system, the instructions for generating implicit and cyclic proofs as well as their
conversion into Coq script are presented in Section 6. Section 7 concludes and outlines
future work. Related Coq and SPIKE scripts are included in the appendix. 1

1 The full source code, including the used libraries, reasoning systems, specifications and proofs, is
provided as supplementary material at http:/lita.univ-lorraine.fr/~stratula/jsc-pas.zip and on
SPIKE’s website https://github.com/sorinica/spike-prover.
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2. Basic notions

SyntaxWe consider an alphabet of arity-fixed function symbols F and predicate symbols
P. We also consider an enumerable set of variables V and denote by T (F ,V) the set of
terms built on function symbols from F and variables from V. The expression P (t) is
an atom, where P ∈ P is an n-ary predicate and t is the vector of terms (t1, . . . , tn)
such that ti ∈ T (F ,V), for any i ∈ [1..n]. The set A(P,F ,V) denotes the set of atoms
over P, F and V. T (F) (resp., A(P,F)) is a shortcut for T (F , ∅) (resp., A(P,F , ∅))
and represents the set of ground terms (resp., ground atoms). In the following, we will
consider only quantifier-free first-order formulas over A(P,F ,V).

Given a term or formula φ, we denote by V ar(φ) the set of variables from φ. Instances
of φ are resulted by replacing some of its variables by terms, by the means of substitutions.
Any substitution is a finite set of n (> 0) mappings

⋃n
i=1{xi 7→ ti}, also denoted as

{x 7→ t}, where x ≡ (x1, . . . , xn), t ≡ (t1, . . . , tn), xi ∈ V, ti ∈ T (F ,V), for each i ∈ [1..n],
and ≡ denotes the syntactic equality. The instance of a term t built with the substitution
σ is denoted by tσ. σtid denotes the identity substitution {x 7→ x | x ∈ V ar(t)}. Similarly,
the notion of instance can be extended for atoms, formulas and (multi)sets of formulas. A
term or formula φ that includes another term s is denoted by φ〈s〉. A ground substitution
has ground all its mapping terms.

Orderings A quasi-ordering ≤ is a reflexive and transitive binary relation. Its strict
part, referred to as ordering, is denoted by < and its equivalent part by ∼. A quasi-
ordering defined over the elements of a nonempty set E is well-founded if and only if
every non-empty subset of E has a minimal element. Under some choice assumption, it
is equivalent to asking that any strictly decreasing sequence of elements of E is finite. A
binary relation R is stable under substitutions if whenever sR t then (sσ)R (tσ), for any
substitution σ and terms or formulas s and t. R is stable under contexts if, for any two
terms s and t such that sR t and any term l〈s〉, then l R r, where r can be any term built
by replacing in l occurrences of s by t. A quasi-ordering is stable under substitutions if
its strict and equivalent parts are stable under substitutions. A reduction ordering is a
transitive and irreflexive relation that is well-founded and stable under substitutions and
contexts. Given a set of formulas Ψ, by Ψ≤ψ (resp., Ψ<ψ) are denoted the instances of
formulas from Ψ that are smaller or equal (resp., strictly smaller) than ψ w.r.t. ≤ (resp.,
<).

An example of syntactic reduction ordering over terms is the recursive path ordering
(rpo) (Dershowitz, 1982; Kamin and Lévy, 1980; Lescanne, 1983). Let us assume the
status function τ for F that returns τ(f) ∈ {Lex,Mul}, foreach f ∈ F , where Lex (resp.,
Mul) stands for lexicographic (resp., multiset) status. Given a precedence over F , denoted
by the well-founded quasi-ordering ≤F , the rpo ≺rpo is recursively defined, as follows:
for all terms s, t ∈ T (F ,V), t ≺rpo s if s ≡ f(s1, . . . , sm) and i) either si ≡ t or t ≺rpo si
for some si, 1 ≤ i ≤ m, or ii) t ≡ g(t1, . . . , tn), ti ≺rpo s for all i, 1 ≤ i ≤ n and either
a) g <F f , or b) f ∼F g, f and g have the same arity and status, and (t1, . . . , tn) ≺τ(f)

rpo

(s1, . . . , sn). ≺Lex
rpo is the lexicographic extension of ≺rpo: (a1, . . . , an) ≺Lex

rpo (b1, . . . , bn) if
either i) a1 ≺rpo b1 or ii) a1 ∼rpo b1 and (a2, . . . , an) ≺Lex

rpo (b2, . . . , bn), where ∼rpo is
recursively defined as: t ∼rpo t, for any term t, and f(a1, . . . , an) ∼rpo g(b1, . . . , bn) if
f ∼F g and, for each i ∈ [1..n], ai ∼rpo bi. Two terms s and t are equivalent if s ∼rpo t.
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≺Mul
rpo , also denoted by ≺≺rpo, is the multiset extension of ≺rpo: (A ≡ )(a1, . . . , an) ≺≺rpo

(b1, . . . , bn)( ≡ B) if for any term a ∈ A′, there is a term b ∈ B′ such that a ≺rpo b,
where the multiset A′ (resp., B′) collects the terms from A (resp., B) after deleting
pairwisely the equivalent terms from A and B. Two multisets of terms are equivalent
if they are reduced to empty sets after deleting pairwisely their equivalent terms. The
multiset extension of any well-founded ordering is also well-founded (Baader and Nipkow,
1998).

Noetherian induction principles for first-order logic In its most general form, the
Noetherian induction principle is formalised as

(∀m ∈ E , (∀k ∈ E , k < m⇒ φ(k))⇒ φ(m))⇒ ∀p ∈ E , φ(p)

where (E , ≤) is a poset, < a well-founded ordering and φ the property to be checked for
any element of E . The formulas φ(k) are called induction hypotheses (IHs) and φ(m)
induction conclusion.

When E consists of an unbounded number of elements, the set of formulas to be
proved and the induction reasoning should be finitely represented, by means of vari-
ables and induction schemas. For example, let us assume that E is the set N of natural
numbers, φ is a unary predicate taking naturals as argument, and < is the ‘less than’
ordering relation over naturals. By Noetherian induction, the infinite set of conjectures
{φ(0), φ(s(0)), φ(s(s(0))), . . .} is entailed from the set of weaker formulas {φ(0), φ(0) ⇒
φ(s(0)), φ(s(0))⇒ φ(s(s(0))), . . .}. This can be factorised and finitely represented under
the form of the Peano principle: (φ(0)∧∀x ∈ N, φ(x)⇒ φ(s(x)))⇒ ∀x ∈ N, φ(x), where 0
and s (the ‘successor’ function) are the constructor symbols for naturals and the variable x
from ∀x ∈ N, φ(x) an induction variable. An induction schema is a finite description of the
set of weaker formulas. It is built from IH-free formulas, called base cases, and IH-based
formulas, called step cases. For instance, the induction schema underlying the Peano
principle consists of one base case (φ(0)) and one step case (∀x ∈ N, φ(x)⇒ φ(s(x))).

Restricted to first-order reasoning, the Noetherian induction principle can be instan-
tiated in two distinct ways (Stratulat, 2012), whether the elements of E are (vectors of)
terms or (first-order) formulas:

• term-based Noetherian induction: (∀ term vector m ∈ E , (∀ term vector k ∈ E , k <t
m⇒ φ(k))⇒ φ(m))⇒ ∀ term vector p ∈ E , φ(p).
• formula-based Noetherian induction: (∀ formula δ ∈ E , (∀ formula γ ∈ E , γ <f δ ⇒
φ(γ)) ⇒ φ(δ)) ⇒ ∀ formula ρ ∈ E , φ(ρ). Let us notice that φ is a second-order predi-
cate. In order to downgrade to first-order reasoning, φ is defined as the (second-order
identity) predicate such that φ(ρ) = ρ, ∀ first-order formula ρ. The instance of interest
becomes:

(∀ formula δ ∈ E , (∀ formula γ ∈ E , γ <f δ ⇒ γ)⇒ δ)⇒ ∀ formula ρ ∈ E , ρ

The term-based Noetherian induction principle can be trivially represented as an in-
stance of the formula-based Noetherian induction principle for which i) all elements from
E are instances of the same formula φ, and ii) for any two instances φ(k) and φ(m) from
E , we have φ(k) <f φ(m) if k <t m.
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Let us consider the ‘P and Q’ example, presented in (Wirth, 2004) and concerning the
mutually dependent inductive definitions of the predicates P and Q:

⇒ P (0) (1)

P (x) ∧Q(x, s(x))⇒ P (s(x)) (2)

⇒ Q(x, 0) (3)

P (x) ∧Q(x, y)⇒ Q(x, s(y)) (4)

Both P andQ have naturals as arguments. Assuming the conjectures P (u) andQ(x, y),
the direct application of the Peano principle on any of them, whatever is the induction
variable, will fail to finish the proof. This is because the proof of P (u) needs an instance
of Q(x, y), and vice versa. However, a successful proof can be built indirectly by firstly
proving as additional lemma the conjunction P (x)∧Q(x, y) of the two initial conjectures
when the variable x is shared. It can be noticed that the proof of each initial conjecture
can be trivially derived from the lemma. The difficulty of this approach is to build such
lemmas as well as successful induction schemas for their proof. For example, the proof
attempts for similar conjunctions, as P (y) ∧Q(x, y) (when the variable y is shared) and
P (u) ∧Q(x, y) (when no variable is shared), will fail.

A more natural proof, based only on variable instantiations and unrolls of the defini-
tions of P and Q, can result from using the lazy and mutual induction reasoning featured
by the formula-based Noetherian induction methods to stop the proof development of
some formulas, in particular for formulas that are instances of previously generated for-
mulas. For example, the proof of Q(x, y) starts by instantiating y by 0 and s(y′). Q(x, 0)
is true by (3). The instance Q(x, s(y′)) is also true if P (x) and Q(x, y′) are true, by (4).
No transformation is supported by Q(x, y′), as an instance of the initial conjecture and
used as IH. The variable x of P (x) is further instantiated by 0 and s(x′). P (0) is true
by (1), while P (s(x′)) is true if both Q(x′, s(x′)) and P (x′) are true, by (2). P (x′) is an
instance of P (x) while Q(x′, s(x′)) is an instance of the initial conjecture. The proof is
illustrated in Fig. 1 as a graph. The formula from any node p holds if the formulas from
the nodes pointed out by the downward arrows starting from p also hold. The arrows
are labelled by the corresponding instantiating substitutions when these formulas are in-
stances of the formula from p. There are also upward (dashed) arrows that link a formula
φ to another formula to which φ is an instance. They are labelled by the instantiating
substitutions written in boldface style.

This proof is simpler, due to the lack of additional lemmas and the lazy employment
of the IHs. The variable instantiation schema is that used by the Peano principle, i.e.,
a natural variable is instantiated by 0 and s(x′), where x′ is a fresh natural variable.
On the other hand, the induction ordering over formulas should be defined and has to
ensure that the IHs are soundly used. In Sections 4 and 5, we will show different ways
to apply the formula-based Noetherian induction principle in order to validate the use
of IHs. However, the mechanical certification of the formula-based Noetherian induction
reasoning is non-trivial. We will present in the next section the formal tools for formalising
and certifying it using Coq.

3. Formalising formula-based Noetherian induction proofs

The Coq formalisation of formula-based Noetherian induction proofs is based on ideas
presented in (Stratulat, 2010; Stratulat and Demange, 2011), initially developed for cer-
tifying implicit induction proofs. Mainly, we associate to each formula a measure value
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Q(x, y)

{y 7→0}

||

{y 7→s(y′)}

""
Q(x, 0) Q(x, s(y′))

|| ��
Q(x, y′)

{y 7→y′}{y 7→y′}{y 7→y′}

WW

P (x)

{x 7→0}

��

{x 7→s(x′)}

||
P (s(x′))

|| ""

P (0)

Q(x′, s(x′))

{x 7→x′;y 7→s(x′)}{x 7→x′;y 7→s(x′)}{x 7→x′;y 7→s(x′)}

EE

P (x′)

{x 7→x′}{x 7→x′}{x 7→x′}

WW

Fig. 1. The lazy and mutual induction proof of Q(x, y).

that will help to compare formulas, hence to define the induction ordering <f . Given
a list LF of pairs of the form (φ, µφ) including the formulas to be proved and their
corresponding measure values, the formula-based Noetherian induction principle can be
reformulated as follows:

(∀p ∈ LF, (∀p′ ∈ LF, snd(p′) <f snd(p)⇒ fst(p′))⇒ fst(p))⇒ ∀p ∈ E , fst(p),

where the fst (resp., snd) function returns the first (resp., second) projection of a pair.

In Coq, the conditional part of the outermost implication can be formalised as:

Lemma main : ∀ F, In F LF → (∀ F’, In F’ LF → less (snd F’ ) (snd F ) → fst F’ ) → fst F.

We assume that the induction ordering, denoted by less, is well-founded and stable
under substitutions. In the following, less is assumed to implement ≺≺rpo. In this case,
the measure value of a formula can be represented as the multiset of terms occurring in it.
Given two pairs (φ1, µφ1

) and (φ2, µφ2
), we say that φ1 is smaller than φ2 if less µφ1

µφ2

holds.

The main induction steps for proving the validity of the formula φ from each pair of
LF are:

(1) the deduction part: choose the (instances of) formulas from LF as IHs that help
proving φ;

(2) the ordering part: show that the chosen IHs in the deduction part are smaller than
φ.

The ordering part can be omitted if the deduction part does not involve induction
reasoning. The deduction part can be performed with different inference systems, as it
will be shown in Sections 4, 5, and 6.
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The less ordering has to be defined explicitly, for example, using the syntactic repre-
sentations of terms provided by the COCCINELLE library (Contejean et al., 2007, 2010),
a Coq library modelling mathematical notions for rewriting such as term algebras and
induction orderings, or using the more general CoLoR library (Blanqui and Koprowski,
2011). Both libraries can be used independently or combined, but in the subsequent
examples only COCCINELLE will be used.

3.1. Formalising the induction ordering and measure values with COCCINELLE

Formalising the induction ordering A COCCINELLE abstract term is recursively
defined as:

Inductive term : Set :=
| Var : variable → term
| Term : symbol → list term → term.

COCCINELLE mutually defines ≺rpo and ≺≺rpo (denoted by rpo and rpo mul, re-
spectively), together with other inductive predicates:

Inductive rpo (bb : nat) : term → term → Prop :=
| Subterm : ∀ f l t s, mem equiv s l → rpo eq bb t s → rpo bb t (Term f l)
| Top gt :

∀ f g l l’, prec g f → (∀ s’, mem equiv s’ l’ → rpo bb s’ (Term f l)) →
rpo bb (Term g l’ ) (Term f l)

| Top eq lex :
∀ f g l l’, status f = Lex → status g = Lex → prec eq f g → (length l = length l’

∨ (length l’ ≤ bb ∧ length l ≤ bb)) → rpo lex bb l’ l →
(∀ s’, mem equiv s’ l’ → rpo bb s’ (Term g l)) →
rpo bb (Term f l’ ) (Term g l)

| Top eq mul :
∀ f g l l’, status f = Mul → status g = Mul → prec eq f g → rpo mul bb l’ l →

rpo bb (Term f l’ ) (Term g l)

with rpo eq (bb : nat) : term → term → Prop :=
| Equiv : ∀ t t’, equiv t t’ → rpo eq bb t t’
| Lt : ∀ s t, rpo bb s t → rpo eq bb s t

with rpo lex (bb : nat) : list term → list term → Prop :=
| List gt : ∀ s t l l’, rpo bb s t → rpo lex bb (s :: l) (t :: l’ )
| List eq : ∀ s s’ l l’, equiv s s’ → rpo lex bb l l’ → rpo lex bb (s :: l) (s’ :: l’ )
| List nil : ∀ s l, rpo lex bb nil (s :: l)

with rpo mul ( bb : nat) : list term → list term → Prop :=
| List mul : ∀ a lg ls lc l l’,

permut0 equiv l’ (ls ++ lc) → permut0 equiv l (a :: lg ++ lc) →
(∀ b, mem equiv b ls → ∃ a’, mem equiv a’ (a :: lg) ∧ rpo bb b a’ ) →
rpo mul bb l’ l.
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Both rpo and rpo mul take a natural argument bb representing the maximal number
of arguments of a function and used for proving its termination. equiv (resp., permut0)
is the inductive predicate that checks if two terms are equivalent (resp. two lists of terms
are permutable). length (resp., mem) is the usual function computing the length of a list
(resp., whether a term is member of a list of terms).

The definitions of the status, prec and prec eq functions are problem dependent. For
the ‘P and Q’ example, they (and other intermediary functions) are defined as:

Inductive symb : Set :=
| id 0
| id S
| id P
| id Q

Definition status (f :symb) :=
match f with
| id 0 ⇒ Mul
| id S ⇒ Mul
| id P ⇒ Mul
| id Q ⇒ Mul

end.
Definition index (f :symb) :=

match f with
| id 0 ⇒ 2
| id S ⇒ 3
| id P ⇒ 9
| id Q ⇒ 9

end.

Definition prec bool (x y :A) : bool :=
blt nat (index x ) (index y).

Definition prec (x y :A) :=
prec bool x y = true.

Definition prec eq (x y :A) : Prop :=
index x = index y.

The abstract COCCINELLE terms become concrete by defining the inductive set for
function symbols (symbol), denoted above by symb. The precedence prec defined over
symb is based on a (index) function that associates a natural value to each function
symbol. Two symbols are equivalent if and only if they have the same indexes. The
well-foundedness property of prec can now be formalised as:

Theorem prec wf: well founded prec.

The ‘stability under substitutions’ and well-foundedness properties of rpo mul are
scripted as:

Theorem rpo mul subst : ∀ A B : (list term), ∀ bb:nat, rpo mul bb A B →
∀ σ, rpo mul bb (map (apply subst σ) A) (map (apply subst σ) B).

Theorem wf rpo mul : well founded prec → ∀ bb, well founded (rpo mul bb).

Finally, the less induction ordering is defined as an instance of rpo mul initialising
some internal data structures. For example, the value given as argument to rpo and
rpo mul is set to the constant max size (usually a big natural value):

Notation less := (rpo mul (bb (empty rpo infos max size))).

Formalising the measure values Formulas and their measure values should share
variables such that whenever a formula φ changes by instantiation, its measure value

11



µφ changes accordingly. The pair (φ, µφ) can be represented as the anonymous function
fun x ⇒ (φ, µφ), where µφ is the measure of φ formalised as a list of COCCINELLE
terms and x is the vector of universally quantified variables shared between µφ and φ.

The process for converting terms from the LF formulas into COCCINELLE terms can
be fully automatised, as follows:
• for each inductive set representing a sort employed in the specification, a new model
function translating its constructor terms can be defined. For the ‘P and Q’ example,
the translation function defined for the nat sort is:

Fixpoint model nat (v : nat): term :=
match v with
| O ⇒ (Term id 0 nil)
| (S x ) ⇒ let r := model nat x in

(Term id S (r ::nil))
end.

• the COCCINELLE counterpart of any function or predicate symbol f will be denoted
by the symbol id f prefixed by Term. The arguments of id f are represented as a Coq
list;
• the COCCINELLE counterpart of any variable x of sort s will be represented by the
term (model s x).

Example 3.1. The measure value used for (Q x 0) in the formula-based Noetherian
induction proof from Fig. 1 can be represented as the following COCCINELLE term list:
(model nat x :: model nat x :: (Term id 0 nil) :: nil), corresponding to the literate
translation of the multiset {x, x, 0}.

3.2. Proving formulas from LF

The LF list from the main lemma should be adapted to include anonymous functions
instead of pairs. The new LF should have the type of the form:

Definition type LF := argument sort → (Prop × (List.list term)),

where argument sort is the sort written in a curried form of the most general version of
the vector of shared variables allowing to define each anonymous function from LF.

By using the new LF definition, the main lemma becomes:

Lemma main : ∀ F, In F LF → ∀ u, (∀ F’, In F’ LF → ∀ u′, less (snd (F’ u′)) (snd (F u))
→ fst (F’ u′)) → fst (F u).

All formulas from the LF list can be automatically certified by proving the all true
theorem, based on the main lemma and the general Noetherian induction principle built
in Coq:

Theorem all true: ∀ F, In F LF → ∀ u: nat, fst (F u).

As a case study, the methodology will be used in Sections 4 and 5 for certifying proofs
of conjectures about conditional specifications.
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3.3. Conditional specifications

Syntax We consider many-sorted conditional specifications consisting of a set of axioms
Ax representing equalities of the form

∧
i li = ri ⇒ l = r , where ‘=’ is the only predicate

symbol and l and r, as well as li and ri (i ≥ 0), are two terms of same sort from T (F ,V).
In addition, (V ar(li) ∪ V ar(ri)) ⊆ (V ar(l) ∪ V ar(r)), for any i. The conjectures to be
proved are also equalities. When i = 0, the equality is unconditional and the ⇒ symbol
is omitted, otherwise it is conditional and the equalities from the lhs of ⇒ are called
conditions. An equality

∧
i li = ri ⇒ l = r is a tautology if l = r is either of the form

t = t, for some term t, or has a condition syntactically equal to l = r or r = l. In the
following, ≤ will denote a well-founded and ‘stable under substitutions’ quasi-ordering
over instances of equalities.

Semantics We consider term-based (Herbrand) models and denote by M the unique
initial (minimal) model of Ax (Baader and Nipkow, 1998). We say that an equality e is
true, or it is an (initial) consequence of Ax and written as Ax |= e, if it is valid in M . A
counterexample is any ground equality e such that Ax 6|= e. An equality is false or has a
counterexample if there is a ground instance of it that is a counterexample. Extended to
a set of equalities Φ, we say that Φ has a counterexample if there is an equality from Φ
that has a counterexample.

4. Certifying implicit induction proofs

4.1. Implicit induction inference systems

An implicit induction inference system consists of inference rules representing tran-
sitions between pairs of sets of equalities of the form (E,H) called states, where E are
conjectures and H are premises. By applying an inference rule, one of the conjectures,
called processed conjecture, is firstly transformed into a (potentially empty) set of new
conjectures, then it may be added to the set of premises in order to participate to fur-
ther transformations. An I-derivation of a set of equalities E0 is built from the list of
states generated by a successive application of the rules of an inference system I, of
the form (E0, ∅) `I (E1, H1) `I . . .. An I-proof of a set of equalities E0 is a finite
(n+1)-state derivation that ends in a state with an empty set of conjectures, of the form
(E0, ∅) `I (E1, H1) `I . . . `I (∅, Hn). We assume that, during the construction of a
proof derivation, ≤ is unique and defined over the instances of equalities from the proof
derivation.

The implicit induction inference systems are reductive, i.e., at every derivation step,
any new conjecture should be smaller, and sometimes smaller or equal, than some in-
stance of the processed conjecture. Different sound reductive systems are presented in an
abstract form because the way the new conjectures are created is ignored, for example,
the inference system A (Stratulat, 2001). It has been shown that A generalizes many
of the existing implicit induction procedures, for example the Implicit Induction proce-
dure from (Bronsard et al., 1994), which is a generalization of the hierarchical induction
procedure from (Reddy, 1990) and of the inductive procedures for conditional equali-
ties from (Kounalis and Rusinowitch, 1990; Bronsard and Reddy, 1991; Bouhoula et al.,
1995).
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In the following, we will consider only instances of the inference system A′, which is
a simplified version of A.

AddPremise: (E ∪ {φ}, H) `A′ (E ∪ Φ, H ∪ {φ}),
if, for any counterexample φτ of φ, there is a counterexample ψ in
i) E ∪ Φ such that ψ < φτ , or
ii) H such that ψ ≤ φτ .

Simplify: (E ∪ {φ}, H) `A′ (E ∪ Φ, H),
if, for any counterexample φτ of φ, there is a counterexample ψ in
E ∪ Φ ∪H such that ψ ≤ φτ .

A′ consists of two rules, AddPremise and Simplify, that replace the processed con-
jecture φ by the set of new conjectures Φ. Moreover, AddPremise adds φ to the set
of premises if some ordering constraints are satisfied between counterexamples of φ and
counterexamples in Φ and other equalities from the current state. On the other hand,
Simplify does not add φ as a premise but allows for less restrictive ordering constraints.

Theorem 4.1 (soundness of A′). For any proof (E0, ∅) `A′ . . . `A′ (∅, Hn) using a set
of axioms Ax, we have Ax |= E0.

Proof. Let n be an arbitrary but fixed natural number, (E0, ∅) `A′ . . . `A′ (∅, Hn) a
proof and assume by contradiction that E0 has a false equality, hence a counterexample.
By the well-foundedness property of the quasi-ordering ≤, there exists a minimal
counterexample in the set of equalities generated during the proof. Since the proof ends
with an empty set of conjectures, there is a last state (E ∪ {φ}, H) in the proof such
that φ has a minimal counterexample φτ . Some rule should be applied on φ, hence we
perform a case analysis on the kind of this rule to show that no rule can be applied on
φ, which contradicts the fact that the proof ends with an empty set of conjectures.

• Case 1 Let us assume that the rule is AddPremise. By considering the applicability
conditions of AddPremise for the particular case of φτ , it can be noticed that the
only possible solution is when H has a minimal counterexample ψ such that ψ ∼ φτ .
Since there proof started with an empty set of premises, there should be a step in
the proof when AddPremise was applied on a state of the form (E′ ∪ {φ′}, H ′),
where H ′ has no minimal counterexamples equivalent to φτ but φ′ has a minimal
counterexample equivalent to φτ . As previously, from the applicability conditions of
AddPremise, there should be a premise in H ′ having a minimal counterexample ψ′
such that ψ′ ∼ φτ , hence contradiction.
• Case 2 Let us assume that the rule is Simplify. By analysing the applicability condi-
tions of Simplify for φτ and the fact that E∪Φ can not have minimal counterexamples
equivalent to φτ , we conclude that H should have a premise with a minimal counterex-
ample ψ such that ψ ∼ φτ . This leads to a contradiction as in the previous case.
2

An abstract inference system becomes concrete by defining how the new conjectures
from every proof step are built by the means of different reasoning techniques. Any
concrete rule should satisfy the ordering constraints defined by some abstract rule.
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We can define now a minimalistic and concrete implicit induction inference system,
denoted by Ib, able to prove the conjecture from the ‘P and Q’ example, presented at
the end of Section 2.

InstNat (I ): (E ∪ {φ〈x〉}, H) `Ib (E ∪ {φ{x 7→ 0}, φ{x 7→ s(x′)}}, H),
where x′ is a fresh variable.

DelInst (D): (E ∪ {φ}, H) `Ib (E, H),
if ∃ψ ∈ H ∪Ax and a substitution σ such that φ ≡ ψσ.

RedEq (R): (E ∪ {φ}, H) `Ib (E ∪
⋃
i{liσ = riσ}, H ∪ {φ}),

if there is an axiom
∧
i li = ri ⇒ l = r and a substitution σ such that φ ≡ (lσ = rσ).

InstNat replaces an equality φ with a natural variable x by two equalities derived from
φ by instantiating φ with 0 and the successor of a fresh natural variable, respectively.
DelInst deletes the processed conjecture if it is an instance of a premise or axiom.
Finally, RedEq replaces any unconditional equality that matches the conclusion of a
conditional axiom with the set of the corresponding instances of the conditions of the
conditional axiom. In addition, the processed conjecture is added as premise.

The equational axioms for the ‘P and Q example’ are built from the translation of
the inductive definitions of the predicates P and Q, by considering them as the boolean
functions p and q, respectively, and defined as:

p(0) = true (5)

p(x) = true ∧ q(x, s(x)) = true⇒ p(s(x)) = true (6)

p(x) = false⇒ p(s(x)) = false (7)

q(x, s(x)) = false⇒ p(s(x)) = false (8)

q(x, 0) = true (9)

p(x) = true ∧ q(x, y) = true⇒ q(x, s(y)) = true (10)

p(x) = false⇒ q(x, s(y)) = false (11)

q(x, y) = false⇒ q(x, s(y)) = false (12)

where false and true are the usual boolean constants.

In order to define the ordering < for this example, the measure value of an equality of
the form

∧
i li = ri ⇒ l = r is defined as the multiset of terms

⋃
i |li| ∪

⋃
i |ri| ∪ |l| ∪ |r|,

where |t| is defined as

• {x, x} if t is of the form p(x),
• {x, x, y} if t is of the form q(x, y),
• {t}, otherwise.
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The ordering used for comparing multisets of terms is the multiset extension of the
rpo using the precedence false <F true <F 0 <F s. It can be noticed that for any
conditional axiom defining p and q, of the form

∧
i ei ⇒ e, we have that ei < e. This

property will be useful for the sound application of the RedEq rule.

The Ib-proof of the equality q(x, y) = true is:

({q(x, y) = true}, ∅) `IIb
({q(x, 0) = true, q(x, s(y′)) = true}, ∅) `DIb
({q(x, s(y′)) = true}, ∅) `RIb
({p(x) = true, q(x, y′) = true}, {q(x, s(y′)) = true}) `IIb
({p(0) = true, p(s(x′)) = true, q(x, y′) = true}, {q(x, s(y′)) = true}) `DIb
({p(s(x′)) = true, q(x, y′) = true}, {q(x, s(y′)) = true}) `RIb
({p(x′) = true, q(x′, s(x′)) = true, q(x, y′) = true},

{p(s(x′)) = true, q(x, s(y′)) = true}) `DIb
({p(x′) = true, q(x, y′) = true}, {p(s(x′)) = true, q(x, s(y′)) = true}) `IIb
({p(0) = true, p(s(x′′)) = true, q(x, y′) = true},

{p(s(x′)) = true, q(x, s(y′)) = true}) `DIb
({p(s(x′′)) = true, q(x, y′) = true}, {p(s(x′)) = true, q(x, s(y′)) = true}) `DIb
({q(x, y′) = true}, {p(s(x′)) = true, q(x, s(y′)) = true}) `IIb
({q(x, 0) = true, q(x, s(y′′)) = true}, {p(s(x′)) = true, q(x, s(y′)) = true}) `DIb
({q(x, s(y′′)) = true}, {p(s(x′)) = true, q(x, s(y′)) = true}) `DIb
(∅, {p(s(x′)) = true, q(x, s(y′)) = true})

where the underlined equalities are the processed conjectures from each proof state.

Theorem 4.2 (soundness of Ib). The inference system Ib is sound.

Proof. It follows directly from Theorem 4.1 if we prove that each Ib-rule is the instance
of an A′-rule.

• InstNat is an instance of Simplify because if the processed conjecture φ〈x〉 has a
counterexample then it should be in the set of new conjectures {φ{x 7→ 0}, φ{x 7→
s(x′)}}
• DelInst is an instance of Simplify because whenever the equality instantiated by
the processed conjecture φ is
· an axiom, then φ has no counterexamples, or
· a premise ψ from the current state, then any counterexample φτ is an instance of ψ.
• RedEq, using the conditional axiom

∧
i li = ri ⇒ l = r for which there is a substitution

σ such that the processed conjecture φ is (lσ = rσ), is an instance of AddPremise
because whenever φ has a counterexample φτ , one of the equalities from the multiset⋃
i{liστ = riστ} is a counterexample smaller than φτ(≡ (lστ = rστ)), by the fact

that li = ri < l = r, for each i, and the ‘stability under substitutions’ property of <.
2
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Thanks to Theorem 4.2, we can conclude that q(x, y) = true is a consequence of the
axioms defining p and q.

4.2. A first attempt to certify the proof of q(x, y) = true

A translation of the functions p and q in Coq, using a functional programming style,
can be

Fixpoint p (u:nat) : bool :=
match u with
| 0 ⇒ true
| (S u’ ) ⇒ if andb (p u’ ) (q u’ (S u’ )) then true else false

end
with
q (x y : nat): bool :=
match y with
| 0 ⇒ true
| (S y’ ) ⇒ if andb (p x ) (q x y’ ) then true else false

end.

Unfortunately, the version of Coq used for certification, labelled as 8.4pl4, is not
able to prove automatically the termination of the P and Q functions, yielding the
message Error: Cannot guess decreasing argument of fix. Moreover, specifying
user-defined well-founded orderings for proving that an argument is decreasing is not
allowed for mutually recursive functions, as it is clearly stated by the message Error:
Cannot use mutual definition with well-founded recursion or measure. We
will show in Subsection 5.3 how to handle this situation using the logic programming
style.

4.3. Certifying implicit induction proofs concerning specifications that are convertible
into valid Coq script

In the rest of the section, we will stick to certifying implicit induction proofs that
involve equational specifications convertible into valid Coq script, by using a functional
programming style. Let us consider the function symbols even and odd, recursively defined
over naturals, as:

even(0) = true (13)

even(s(x)) = odd(x) (14)

odd(0) = false (15)

odd(s(x)) = even(x) (16)

as well as the addition over naturals, denoted by ‘+’ and defined by the axioms:

0 + x = x (17) s(x) + y = s(x+ y) (18)

The Coq translation of the equational definitions yields functions whose termination
can be automatically checked:
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Fixpoint plus (x y : nat): nat :=
match x with
| O ⇒ y
| S x’ ⇒ S (plus x’ y)
end.

Fixpoint even (x : nat): bool :=
match x with
| 0 ⇒ true
| S x’ ⇒ odd x’
end

with odd (x : nat): bool := match x with
| 0 ⇒ false
| S x’ ⇒ even x’
end.

We can go further and try to prove the more complex conjecture

odd(u1 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u1 + u3) = true (19)

by using reductive reasoning techniques. Rewriting is a most effective reductive
technique for reasoning on equational specifications. When dealing with equality
reasoning, the reductive constraints between (instances of) the processed conjecture
and new conjectures can be implicitly satisfied if the equational specifications are
represented in terms of rewrite systems and the IHs are orientable. In some cases, the
constraints related to IHs can be partially weakened. For example, (Stratulat, 2008)
proposes a method allowing for relaxed rewriting (Bouhoula et al., 1995) to deal with
unorientable IHs by integrating explicit induction schemas. It covers the term (Reddy,
1990), ordered (Dershowitz and Reddy, 1993), enhanced and incremental (Aoto, 2006)
rewriting induction procedures.

Given a reduction ordering ≺ over terms, any equality l = r can be oriented into the
rewrite rule l → r if r ≺ l. Let us assume a set ρ of rewrite rules. A term u can be
rewritten to u′ by the rewrite operation u→ρ u

′ if there are a rewrite rule l = r ∈ ρ and
a substitution σ such that lσ is a subterm of u. The rewrite operation builds u′ from
u by replacing the subterm lσ by rσ. By abuse of notation, →ρ is extended to rewrite
conditional equalities: if a conditional equality e′ of the form

∧
i li = ri ⇒ l = r has a

term s ∈
⋃
i{li, ri}∪{l, r} that is rewritten to s′ using rewrite rules from ρ then we write

e→ρ e
′, where e′ derives from e by replacing s with s′.

Example 4.3. The axioms (13)-(18) can be oriented from left to right using as reduc-
tion ordering the rpo built from the precedence over the function symbols stating that
false <F true <F 0 <F s <F + <F even and even ∼F odd.

Let ≤ be the well-founded and ‘stable under substitutions’ quasi-ordering over the
equalities whose strict part is the multiset extension ≺≺ of the reduction ordering ≺. The
measure value of an equality of the form

∧
i li = ri ⇒ l = r is defined for this example

as the multiset of terms
⋃
i{li, ri} ∪ {l, r}.

Theorem 4.4 (reductiveness of rewriting). Let ρ be a set of rewrite rules and e, e′ two
equalities. If e→ρ e

′, then e′ ≺≺ e.

Proof. Let us assume that e is of the form
∧
i li = ri ⇒ l = r and that s ∈

⋃
i{li, ri} ∪

{l, r} was rewritten to s′ by a rewrite rule g → d from ρ. Then, there is a substitution σ
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such that gσ is a subterm of s. By the ‘stability under substitutions’ property of ≺, we
have that dσ ≺ gσ, and by the ‘stability under contexts’ property, s′ ≺ s holds.

On the other hand, the measure value of
∧
i li = ri ⇒ l = r is the multiset

⋃
i{li, ri}∪

{l, r}, s being one of its elements. By the definition of the multiset extension relation,
the replacement of s by s′ in this multiset yields a smaller multiset, hence e′ ≺≺ e. 2

Proofs of the conjecture (19) can be built using the inference system If :

GenNat (G): (E ∪ {φ〈x〉}, H) `If (E ∪ {φ1, φ2}, H ∪ {φ}),
where φ{x 7→ 0} →Ax φ1, φ{x 7→ s(x′)} →Ax φ2 and x′ is a fresh variable.

SimpEq (S): (E ∪ {φ}, H) `If (E ∪ Φ, H),
if either i) φ is a tautology; in this case Φ is empty;
or, ii) φ→Ax∪(E∪Φ∪H)≤φ ψ; in this case, Φ is {ψ}.

Subsumption (E): (E ∪ {φ}, H) `If (E, H),
if φ is an instance of an equality from H.

Negative Clash (N ): (E ∪ {φ}, H) `If (E, H),
if φ is a conditional equality and true = false or false = true is a condition of φ.

GenNat firstly instantiates a natural variable of the processed conjecture by 0 and
the successor of a fresh natural variable, then rewrites the two instances with axioms,
the results of the rewriting operations being stored as new conjectures. At the end, the
processed conjecture is saved as a new premise. SimpEq either deletes the tautologies
or performs rewrite operations on the processed conjecture with axioms or instances of
equalities from the current state. Subsumption deletes the processed conjecture if it is
an instance of a premise. Finally, Negative Clash deletes the conditional equalities
having a false condition of the form true = false or false = true.

The If -proof of (19) is more complex than that of the conjecture q(x, y) = true.
For lack of space, the conditional equalities from this proof will be presented in a more
compact way, as atoms. The list of atoms and their corresponding conditional equalities
are:

e 13(u1, u2, u3) : odd(u1 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u1 + u3) = true

e 23(u2, u3) : odd(0 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e 29(u4, u2, u3) : odd(s(u4) + u2) = true ∧ even(u2 + u3) = true⇒
odd(s(u4 + u3)) = true

e 36(u2, u3) : odd(u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e 49(u4, u2, u3) : even(u4 + u2) = true ∧ even(u2 + u3) = true⇒ even(u4 + u3) = true

e 67(u3) : odd(0) = true ∧ even(u3) = true⇒ odd(u3) = true

e 73(u4, u3) : odd(s(u4)) = true ∧ even(s(u4 + u3)) = true⇒ odd(u3) = true

e 81(u3) : false = true ∧ even(u3) = true⇒ odd(u3) = true

e 91(u4, u3) : even(u4) = true ∧ odd(u4 + u3) = true⇒ odd(u3) = true

e 113(u2, u3) : even(0 + u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true
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e 119(u5, u2, u3) : even(s(u5) + u2) = true ∧ even(u2 + u3) = true⇒
even(s(u5 + u3)) = true

e 138(u2, u3) : even(u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true

e 189(u3) : even(0) = true ∧ odd(u3) = true⇒ odd(u3) = true

e 195(u5, u3) : even(s(u5)) = true ∧ odd(s(u5 + u3)) = true⇒ odd(u3) = true

e 237(u3) : even(0) = true ∧ even(u3) = true⇒ even(u3) = true

e 243(u5, u3) : even(s(u5)) = true ∧ even(s(u5 + u3)) = true⇒ even(u3) = true

e 267(u5, u3) : odd(u5) = true ∧ odd(u5 + u3) = true⇒ even(u3) = true

e 275(u3) : false = true ∧ odd(0 + u3) = true⇒ even(u3) = true

e 295(u3) : odd(0) = true ∧ odd(u3) = true⇒ even(u3) = true

e 301(u6, u3) : odd(s(u6)) = true ∧ odd(s(u6 + u3)) = true⇒ even(u3) = true

e 317(u3) : false = true ∧ odd(u3) = true⇒ even(u3) = true

Using the notation with atoms, the proof can be represented as:

({e 13(u1, u2, u3)}, ∅) `G
Ic
f

({e 23(u2, u3), e 29(u4, u2, u3)}, {e 13(u1, u2, u3)}) `∗SIc
f

({e 36(u2, u3), e 49(u4, u2, u3)}, {e 13(u1, u2, u3)}) `G
Ic
f

({e 67(u3), e 73(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
If

({e 81(u3), e 91(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `N
If

({e 73(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `S
If

({e 91(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `G
If

({e 91(u4, u3), e 113(u2, u3), e 119(u5, u2, u3)}, {e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
If

({e 91(u4, u3), e 138(u2, u3), e 13(u5, u2, u3)}, {e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `E
If

({e 91(u4, u3), e 138(u2, u3)}, {e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `G
If

({e 189(u3), e 195(u5, u3), e 138(u2, u3)},
{e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `S

If

({e 195(u5, u3), e 138(u2, u3)}, {e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
If

({e 36(u5, u3), e 138(u2, u3)}, {e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `E
If

({e 138(u2, u3)}, {e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `G
If

({e 237(u3), e 243(u5, u3)},
{e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `S

If

({e 243(u5, u3)}, {e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
If

({e 267(u5, u3)}, {e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `G
If

({e 295(u3), e 301(u6, u3)},
{e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗SIf

({e 317(u3), e 138(u6, u3)},
{e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `N

If

({e 138(u6, u3)},
{e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `E

If

({∅, {e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)})

As for the Ib-proof of the equality q(x, y) = true, the processed conjectures from each
state are underlined. `∗SIf means that SimpEq was applied several times. The induction
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reasoning occurs while executing the Subsumption rule, the instances of premises used
as IHs being built by need.

Theorem 4.5 (soundness of If ). The inference system If is sound.

Proof. As for the proof of Theorem 4.2, we show that each If -rule is the instance of an
A′-rule.
• GenNat is an instance of AddPremise. If the processed conjecture φ〈x〉 has a

counterexample φτ then it should be in the set of intermediary conjectures {φ{x 7→
0}, φ{x 7→ s(x′)}}. Since the two intermediary conjectures are rewritten with axioms,
the set of new conjectures has a counterexample smaller than φτ , by the reductiveness
property of rewriting and the ‘stability under substitutions’ property of ≤.
• SimpEq is an instance of Simplify. If the processed conjecture φ has a counterexample
φτ , then φ should be rewritten to ψ with i) axioms, or ii) other equalities from the
current state or from the new set of conjectures which are smaller or equal than φ.
We have that ψ < φ by the reductiveness property of rewriting and ψτ < φτ by the
‘stability under substitutions’ property of <. If ψτ is false, then ψτ is a counterexample
from the new set of conjectures which is smaller than φτ . If ψτ is true, it means that
the rewrite rule e was selected from the current state and satisfies e ≤ φ. By the
‘stability under substitutions’ property of ≤, we have that eτ ≤ φτ . Moreover, eτ is a
counterexample since φτ is false but ψτ is true.
• Subsumption is an instance of Simplify because whenever the processed conjecture
φ is an instance of a premise, any counterexample of φ is also a counterexample of that
premise.
• Negative Clash is an instance of Simplify because the processed conjecture has no

counterexamples.
2

By Theorem 4.5, we conclude that the conjecture (19) is a consequence of the axioms
defining even, odd and ‘+’.

4.4. Coq formalization and certification of implicit induction proofs based on functional
programming style

The induction ordering is built similarly as for the ‘P and Q’ example, shown in
Subsection 3.1, excepting that the precedence over the function symbols changes, as
follows:

Inductive symb : Set :=
| id 0
| id S
| id true
| id false
| id even
| id odd
| id plus.

Definition index (f : symb) :=
match f with
| id 0 ⇒ 2
| id S ⇒ 3
| id true ⇒ 4
| id false ⇒ 5
| id even ⇒ 10
| id odd ⇒ 10
| id plus ⇒ 7
end.
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The formula-based Noetherian induction principle will be applied on the set of all
equalities encountered in the implicit induction proof of e 13(u1, u2, u3). The LF list
type LF 13 and its type LF 13 are:

Definition type LF 13 := nat → nat → nat → Prop × List.list term.
Definition LF 13 := [F 13, . . . ,F 317], (* all equalities from the proof *)

where the anonymous functions from LF 13 are:

Definition F 13 : type LF 13 :=
fun u1 u2 u3 ⇒
( e 13(u1,u2,u3 ),
Term id odd (Term

id plus (model nat u1 :: model nat u2 :: nil) :: nil)
:: Term id true nil

:: Term id even
(Term id plus

(model nat u2 :: model nat u3 :: nil) :: nil)
:: Term id true nil

:: Term id odd
(Term id plus (

model nat u1 :: model nat u3 :: nil) :: nil)
:: Term id true nil :: nil).

...

Definition F 317 : type LF 13 :=
fun u3 ⇒
( e 317(u3 ),
Term id false nil
:: Term id true nil

:: Term id odd (model nat u3 :: nil)
:: Term id true nil

:: Term id even (model nat u3 :: nil) :: Term id true nil :: nil).

The measure value attached to any equality e in the corresponding anonymous function
is the list of the literate representation in COCCINELLE of the terms from e.

The main lemma becomes:

Lemma main 13 : ∀ F, In F LF 13 → ∀ u1 u2 u3, (∀ F’, In F’ LF 13 → ∀ e1 e2 e3,
less (snd (F’ e1 e2 e3 )) (snd (F u1 u2 u3 )) → fst (F’ e1 e2 e3 )) → fst (F u1 u2

u3 ).

The proof of the main 13 lemma starts with a case analysis on the anonymous functions
from LF 13. We describe the scenarios for building the Coq script by translating every
single implicit induction inference step. Given an anonymous function F ∈ LF 13,
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• the main steps for generating the Coq script for the case when a GenNat rule is
applied on an equality e from F are:

(1) generation and application of the instantiation schema. The instantiation schema of
variables from e consists in replacing a variable v of natural sort with 0 and successor
of a fresh variable. In Coq, this can be easily performed with the destruct tactic
applied on v. However, an instantiation schema reproduced by the means of functional
schemes (Barthe and Courtieu, 2002) is more flexible than the instantiation schemas
issued from the definitions of inductive sets on which the destruct tactic are based:

Fixpoint f (u1: nat) {struct u1} : nat :=
match u1 with
| 0 ⇒ 0
| (S u2) ⇒ 0

end.

Functional Scheme f ind:= Induction for f Sort Prop.

The functional scheme can be applied on any natural variable u1, as follows:

pattern u1, (f u1). apply f ind.

(2) validation of each instance and ordering constraint. For each equality instance φ
generated during the application of GenNat, we assign to F ′ the anonymous func-
tion from LF 13 that corresponds to the equality resulted from the rewriting of φ in
the If -proof. If the axioms are put in the Coq rewrite base, the logical equivalence
between φ and the rewritten instance can be automatically checked by the auto tac-
tic. The ordering constraints requiring that the measure value of the equality from
F ′ be smaller than µφ are also automatically checked by user-defined tactics. The
rewrite model tactic simplifies µφ by unfolding the model nat translation functions
on the subterms of φ of the form (model nat (S u)). The solve rpo mul tactic i) re-
places the terms of the form (model nat u) by COCCINELLE variables, ii) performs
the comparison test, representing a test case for checking Theorem 4.4, and iii) by the
‘stability under substitutions’ property of rpo mul, preserves the comparison result
for the instance built with the substitution mapping the COCCINELLE variables to
the corresponding (model nat u) terms.

• the scenario corresponding to the application of a SimpEq rule using rewriting is simi-
lar to that presented at the step (2) of the scenario built for GenNat. The tautologies
are eliminated by the auto tactic;
• the application of a Negative Clash corresponds to the application of the
discriminate tactic;
• the Subsumption steps are ignored because the equality from the anonymous function
F is an instance of an equality from another anonymous function from LF 13.

Next, we show that any formula from LF 13 is true:

Theorem all true 13 : ∀ F, In F LF 13’ →
∀ (u1 : nat) (u2 : nat) (u3 : nat), fst (F u1 u2 u3 ).
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Finally, our property is certified:

Theorem true 13 : ∀ (u1 : nat) (u2 : nat) (u3 : nat), odd (plus u1 u2 ) = true →
even (plus u2 u3 ) = true → odd (plus u1 u3 ) = true.

5. Certifying cyclic proofs

In the previous section, we have shown that the computational cost for certifying im-
plicit induction proofs also depends on the number of equalities encountered in the proofs.
In practice, it is common that implicit induction provers (automatically) generate large
proofs, with hundreds or thousands of equalities (Barthe and Stratulat, 2003; Rusinow-
itch et al., 2003). In this case, the proof certification effort becomes non-negligeable. We
present a different method for proving conjectures about conditional specifications, based
on a reductive-free cyclic induction approach proposed in (Stratulat, 2012) for which the
certification process is more effective. The proofs are built by outlining the non-trivial
induction reasoning in terms of cycles of equalities. Compared to the validation process
of implicit induction proofs from Section 4, the validation of cyclic proofs needs fewer
ordering constraints and shorter LF lists.

5.1. Cyclic induction inference systems

We introduce the abstract inference system D′, similar to the system D (Stratulat,
2012), which consists of the following three rules:

Deduction: E ∪ {φ} `D′ E ∪ Φ,
if Φ has a counterexample whenever φ has a counterexample.

Split: E ∪ {φ} `D′ E ∪ Φ,
if Φ is a set of instances of φ such that Φ has a counterexample whenever
φ has a counterexample.

Induction: E ∪ {φ} `D′ E ∪ Φ,
if there exists an equality ψ previously generated in the derivation such that
Φ or ψ have a counterexample whenever φ has a counterexample.

Compared to the implicit induction inference rules, the D′-rules are transitions be-
tween multisets of equalities that transform an equality (i.e., the processed conjecture)
into a set of new equalities (i.e., new conjectures). Deduction ensures that for any
counterexample of the processed conjecture there is a counterexample in the set of new
conjectures. Split is a particular case of Deduction, requiring that the set of new con-
jectures consists of instances of the processed conjecture. Finally, Induction is the only
rule that performs induction reasoning, by allowing instances of previously generated
equalities in the derivation to be used as IHs when transforming the processed conjec-
ture. It can be seen as a generalisation of Deduction since for any counterexample
of the processed conjecture we may not require for a counterexample in the set of new
conjectures if the equality used as IH has already a counterexample.

Definition 5.1 (D′−preproof). Given a multiset of equalities E0, any finite derivation
of the form E0 `D′ . . . `D′ ∅ is a D′-preproof of E0.
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Concrete inference rules can be built by showing how the new conjectures from the D′-
rules are generated using specific reasoning techniques. Based on the reasoning techniques
employed by the inference system Ib from Section 4, we can build the inference system
Ibc :

DelInst’ (Dc): E ∪ {φ} `Ibc E,
if there are ψ ∈ Ax and a substitution σ such that φ ≡ ψσ.

RedEq’ (Rc): E ∪ {φ} `Ibc E ∪
⋃
i{liσ = riσ},

if
∧
i li = ri ⇒ l = r ∈ Ax and ∃σ such that φ ≡ (lσ = rσ) or φ ≡ (rσ = lσ).

SplitNat (Sc): E ∪ {φ〈x〉} `Ibc E ∪ {φ{x 7→ 0}, φ{x 7→ s(x′)}},
where x′ is a fresh variable.

IndNat (Ic): E ∪ {φ} `Ibc E,
if there are a previously generated equality ψ and a substitution σ such that φ ≡ ψσ.

DelInst’ deletes the processed conjecture if it is an instance of an axiom. RedEq’
firstly checks whether the processed conjecture is an instance of the conclusion of some
axiom, then adds as new conjectures the set of corresponding instances of the conditions
of the axiom. SplitNat applies on conjectures with natural variables and replaces them
by their instances resulted by replacing some natural variable with 0 and successor of a
new variable. Finally, IndNat deletes the processed conjecture if it is an instance of a
previous conjecture in the derivation.

Theorem 5.2. Any Ibc -rule is an instance of a D′-rule.

Proof. We perform a case analysis on the Ibc -rules:
• DelInst’ is an instance of Deduction for the case when the set of new conjectures
is empty since the processed conjecture has no counterexamples;
• RedEq’ is an instance of Deduction because for any counterexample of the processed

conjecture φ there is one in the set of corresponding instances of the equality conditions
of the axiom whose conclusion was instantiated by φ;
• SplitNat is an instance of Split since any counterexample of the processed conjecture
is also a counterexample in the set of new conjectures;
• IndNat is an instance of Induction because any counterexample of the processed
conjecture is also a counterexample of the previous equality whose instance was used
as IH.
2

An Ibc -preproof of a multiset of equalities E0 is any finite Ibc -derivation that starts
with E0 and finishes with an empty set of equalities.

Example 5.3. The following Ibc -preproof of {q(x, y) = true} can be built by using the
axioms (5)-(12) and the proof scenario given at the end of Section 2:
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{q(x, y) = true} `Sc
Ibc
{q(x, 0) = true, q(x, s(y′)) = true} `Dc

Ibc
{q(x, s(y′)) = true} `Rc

Ibc

{q(x, y′) = true, p(x) = true} `Ic
Ibc
{p(x) = true} `Sc

Ibc
{p(0) = true, p(s(x′)) = true} `Dc

Ibc

{p(s(x′)) = true} `Rc
Ibc
{p(x′) = true, q(x′, s(x′)) = true} `Ic

Ibc
{q(x′, s(x′)) = true} `Ic

Ibc
∅,

where the processed conjectures are underlined.

q(x, y) = true

{y 7→0}

ww

{y 7→s(y′)}

''
q(x, 0) = true q(x, s(y′)) = true

ww ��
q(x, y′) = true

{y 7→y′}{y 7→y′}{y 7→y′}

WW

p(x) = true

{x 7→0}

&&

{x 7→s(x′)}

ww
p(s(x′)) = true

ww ''

p(0) = true

q(x′, s(x′)) = true

{x 7→x′;y 7→s(x′)}{x7→x′;y 7→s(x′)}{x 7→x′;y 7→s(x′)}

AA

p(x′) = true

{x 7→x′}{x 7→x′}{x 7→x′}

WW

Fig. 2. The Ibc -preproof of {q(x, y) = true} as an oriented graph.

In order to check the soundness of the induction reasoning employed in D′-preproofs,
we will illustrate the D′-preproofs as oriented graphs for which the nodes are equalities
from the preproof and the arrows are of two kinds: i) downward arrows that link a
processed conjecture to any new conjecture, and ii) upward (dashed) arrows that connect
a processed conjecture to the previous conjecture whose instance was used as IH in an
induction step. The instantiating substitutions used in split and induction steps annotate
the corresponding arrows, those from the induction steps being written in boldface style.
We denote a node by R node if R is the name of the D′-rule applied on the equality
labelling the node. Also, an IH-node is any node labelled by an equality whose instance
was used as IH.

Example 5.4. The Ibc -preproof from Example 5.3 is illustrated as the oriented graph
from Fig. 2.

A cycle of a D′-preproof can be represented as a circular list of paths such that
each path has nodes from only one tree derivation of the preproof. Oriented graphs may
have minimal cycles, i.e., cycles that do not contain other cycles, and strongly connected
components. A strongly connected component p is a maximal sub-graph such that, given
any two different nodes in p, there is a path in p between them in each direction.

Example 5.5. The oriented graph from Fig. 2 has 3 minimal cycles:
• [q(x, y) = true, q(x, s(y′)) = true, q(x, y′) = true],
• [p(x) = true, p(s(x′)) = true, p(x′) = true], and
• [q(x, y) = true, q(x, s(y′) = true, p(x) = true, p(s(x′)) = true, q(x′, s(x′)) = true]
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and one strongly connected component representing the sub-graph built from the nodes of
these minimal cycles. By abuse of notation, the nodes from the paths have been denoted
by the labelling equalities. This is possible only for preproofs for which no equality labels
distinct nodes in a tree derivation.

We can build a well-founded partial ordering <C over the set of strongly connected
components C of any D′-preproof. Given two strongly connected components p1 and p2,
we write p1 <C p2 if there is a path in the cyclic graph of the D′-preproof leading any
node of p2 to any node of p1.

5.2. Cyclic proofs

A D′-preproof of a multiset of equalities E0, built using a set of axioms Ax, is sound
if Ax |= E0. Any sound preproof is also called a proof. In order to prove the soundness of
a preproof, it is enough to show that any of its strongly connected components soundly
uses the IHs.

Definition 5.6 (sound strongly connected components). A strongly connected compo-
nent p of a D′-preproof is sound if the IHs, representing instances of equalities labelling
IH-nodes from p and used to process equalities labelling Induction nodes from p, are
true.

Ordering constraints that guarantee the soundness of D′-preproof can be defined for
normalised cycles for which each path starts with an equality labelling a root of some
tree derivation from the graph of p. This property can be achieved if any non-root IH-
node is transformed into a root IH-node, as illustrated in Fig. 3 and referred to as the
normalisation operation. Any transformation detaches the subtree rooted by the non-root
IH-node, labelled by φ, from the graph to become a new tree, by preserving a copy of
the IH-node. Next, an upward arrow is added to link the copy node with the root node
of the new tree. By labelling it with the identity substitution σφid, the transformation
simulates the application of Induction on the formula labelling the copy node, using as
IH-node the root node of the new tree. It can be noticed that the transformation does
not generate new strongly connected components.

��
φ

��

77 gg becomes ��

(root node)

φ

��
φ

(copy node)

σφ
id
σφ
idσ
φ
id

22 :: dd

Fig. 3. The transformation of a non-root IH-node.

A strongly connected component is normalised if each of its minimal cycles is nor-
malised. A D′-preproof is normalised if each of its strongly connected components is
normalised. Since the number of non-root IH-nodes of a D′-preproof is finite, the nor-
malisation process is finite. Moreover, the normal form is unique, independent from the
order of processing the non-root IH-nodes.
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Example 5.7. The Ibc -preproof from Fig. 2 has one non-root IH-node, labelled by p(x) =
true. The result of the transformation applied on it is illustrated in Fig. 4. The minimal
cycles of the strongly connected component are all normalised:
• first cycle: [q(x, u) = true, q(x, s(y′)) = true, q(x, y′) = true],
• second cycle: [p(x) = true, p(s(x′)) = true, p(x′) = true], and
• third cycle: [q(x, y) = true, q(x, s(y′)) = true, p(x) = true],

[p(x) = true, p(s(x′)) = true, q(x′, s(x′)) = true].

q(x, y) = true

{y 7→0}

xx

{y 7→s(y′)}

''

p(x) = true

{x7→0}

&&
{x 7→s(x′)}

��
q(x, 0) = true q(x, s(y′)) = true

ww ��

p(s(x′)) = true

&&��

p(0) = true

q(x, y′) = true

{y 7→y′}{y 7→y′}{y 7→y′}

PP

p(x) = true

{x7→x}{x 7→x}{x 7→x}

??

q(x′, s(x′)) = true

{x 7→x′;y 7→s(x′)}{x7→x′;y 7→s(x′)}{x 7→x′;y 7→s(x′)}

bb

p(x′) = true

{x 7→x′}{x 7→x′}{x 7→x′}

]]

Fig. 4. The normalised Ibc -preproof of {q(x, y) = true}.

Lemma 5.8. The normalisation of a D′-preproof of a multiset S of equalities is a new
D′-preproof of a multiset S′ of equalities such that S ⊆ S′.

Proof. The normalisation process may generate new tree derivations. If S′′ is the set of
the equalities labelling their root nodes, then S′ is S ∪ S′′. 2

Example 5.9. The Ibc -preproof in Fig. 4 is also a Ibc -preproof of {p(x) = true, q(x, y) =
true}.

We can associate a substitution σ to each node n of a D′-preproof. If n is a direct
offspring of a Split node, then σ is the instantiating substitution used by the Split
operation to generate n, otherwise σ is the identity substitution. To each path in a tree
derivation, of the form [n1, . . . , nk], we can also associate the cumulative substitution
represented by the composition of substitutions §σ1 · · ·σk, where each σi (i ∈ [1..k]) is
the substitution associated to the node ni. We denote by φ(n) the equality labelling the
node n.

Definition 5.10 (n-cycle discharging IHs). An n-cycle, made of a circular list of n(>0)
paths [n1

1, . . . n
p1
1 ], . . . , [n1

n, . . . , n
pn
n ] from a strongly connected component p, discharges

the IHs φ(n1
j )δj (j ∈ [1..n]) if, for any i ∈ [1..n], we have that φ(n1

next(i))δnext(i) <p

φ(n1
i )θi, where θi is the cumulative substitution for the path [φ(n1

i ), . . . , φ(npii )], next(i) =
1 + (i mod n) and <p is a well-founded and ‘stable under substitutions’ ordering defined
over the instances of the equalities labelling the root nodes of p.

Example 5.11. The IHs used in the minimal cycles from Fig. 4 and detailed in Exam-
ple 5.7 are discharged if:
• (q(x, y) = true){x 7→ x; y 7→ y′} <p (q(x, y) = true){x 7→ x; y 7→ s(y′)} in the first
cycle,
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• (p(x) = true){x 7→ x′} <p (p(x) = true){x 7→ s(x′)} in the second cycle, and
• (q(x, y) = true){x 7→ x′; y 7→ s(x′)} <p (p(x) = true){x 7→ s(x′)} and (p(x) =
true){x 7→ x} <p (q(x, y) = true){x 7→ x; y 7→ s(y′)} in the third cycle,

where p denotes the strongly connected component of the Ibc -preproof in Fig. 4. The
ordering <p has to be defined such that the following four ordering constraints are
satisfied: q(x, y′) = true <p q(x, s(y′)) = true, p(x′) = true <p p(s(x′)) = true,
q(x′, s(x′)) = true <p p(s(x′)) = true and p(x) = true <p q(x, s(y′)) = true. By
proceeding similarly as in Section 4, we can define the measure value of an equality l = r
as the multiset of terms |l| ∪ |r|, where |t| is defined as
• {x, x} if t is of the form p(x),
• {x, x, y} if t is of the form q(x, y), and
• {t}, otherwise.
The ordering constraints are satisfied if the induction ordering used for comparing mul-
tisets of terms is the multiset extension of the rpo based on the precedence false <F
true <F 0 <F s.

Theorem 5.12. [soundness of D′-preproofs] Any D′-preproof is sound if the minimal
cycles from its normal form discharge their IHs.

Proof. The non-trivial induction reasoning is performed inside a strongly connected com-
ponent. We say that the proof of an equality labelling a node n requires non-trivial in-
duction reasoning if the sub-tree rooted by n has Induction nodes whose corresponding
IH-nodes are in the same strongly connected component as n. We will firstly prove the
following soundness property of strongly connected components: the IHs discharged by
the minimal cycles from any strongly connected component p of a normalised D′ preproof
are true if the other IHs used by the Induction applications on nodes of p are true and
the equalities from the direct offsprings of leaf nodes of p, if any, are true.

By contradiction, we assume that p has a false IH discharged by one of its minimal
cycles. Since the number of minimal cycles in p is finite, we perform a classical induction
reasoning on the number of minimal cycles discharging false IHs in p.

The base case. We assume that there is only one minimal cycle in p, denoted by
[n1

1, . . . n
p1
1 ], . . . , [n1

n, . . . , n
pn
n ], that discharges the IHs φ(n1

j )δj (j ∈ [1..n]). So, for any i ∈
[1..n], we have that φ(n1

next(i))δnext(i) <p φ(n1
i )θi, where θi is the cumulative substitution

for the path [n1
i , . . . , n

pi
i ], next(i) = 1 + (i mod n) and <p is a well-founded and ‘stable

under substitutions’ ordering defined over the instances of the equalities labelling the
root nodes of p. W.l.o.g., we assume that the equality φ(n1

n) has an instance used as a
false IH in that minimal cycle.

Since <p is well-founded and no false instance of φ(n1
n) can be proved outside the

cycle, there is a <p-minimal counterexample of φ(n1
n)θn, denoted by φ(n1

n)θnτ . It can
be noticed that φ(npnn ) can also be generated by applying the split-free operations
along the path [n1

n, . . . , n
pn
n ]. The equalities φ(n1

n)θτ, . . . , φ(npnn )τ are all false because
no extra minimal cycles using false IHs have been involved in any reasoning along the
path [n1

n, . . . , n
pn
n ]. Moreover, the IH φ(n1

1)δ1τ should be false, as the new equalities
resulting after the application of Induction on φ(npnn ) are all true. By the ‘stability
under substitutions’ property of <p and the relation φ(n1

1)δ1 <p φ(n1
n)θn, we have that

φ(n1
1)δ1τ <p φ(n1

n)θnτ . This also holds for any counterexample φ(n1
1)δ1τε of φ(n1

1)δ1τ
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because φ(n1
n)θnτ is ground, hence φ(n1

1)δ1τε <p φ(n1
n)θnτ . In addition, φ(n1

1)δ1τε
cannot be proved outside the cycle, so it should be an instance of φ(n1

1)θ1. So there
exists a substitution τ1 such that φ(n1

1)δ1ε1 ≡ φ(n1
1)θ1τ1, where ε1 ≡ τε. Similarly, we

show that there is a counterexample φ(n1
2)δ2ε2 smaller than φ(n1

1)θ1τ1. And so on, we
end the visit of all the root nodes of the minimal cycle by building a counterexample
φ(n1

n)θnτn which is smaller than φ(n1
n−1)δn−1εn−1. By the transitivity of <p, we derive

the contradiction that φ(n1
n)θnτn is a counterexample smaller than φ(n1

n)θnτ .

The step case. We consider the case when p has m (>1) minimal cycles that soundly
discharge false IHs. By induction hypothesis, we assume that any subproof involving ‘less
than m’ minimal cycles in p and soundly discharging false IHs is sound.

Let us assume that there is a minimal cycle in p, denoted by
[n1

1, . . . , n
p1
1 ], . . . , [n1

n, . . . , n
pn
n ], that discharges the IHs φ(n1

j )δj (j ∈ [1..n]). It means
that, for any i ∈ [1..n], we have that φ(n1

next(i))δnext(i) <p φ(n1
i )θi, where θi is the

cumulative substitution for the path [n1
i , . . . , n

pi
i ]. As for the base case, we assume that

the equality φ(n1
n) has an instance used as a false IH in the cycle. Moreover, it is an

instance of φ(n1
n)θn, otherwise it should be true since its proof involves ‘less than m’

minimal cycles soundly discharging false IHs, as assumed by induction hypothesis.
We denote by φ(n1

n)θnτ a <p-minimal counterexample of φ(n1
n)θn. φ(npnn )τ is also

a counterexample because the IHs used during the Induction steps along the path
[n1
n, . . . , n

pn
n ] are true, as their subproofs involve ‘less than m’ minimal cycles soundly

discharging false IHs. Moreover, φ(n1
1)δ1τ is false because all the direct offsprings of

npnn are labelled with true equalities requiring ‘less than m’ minimal cycles soundly
discharging false IHs. By the ‘stability under substitutions’ property of <p and the
relation φ(n1

1)δ1 <p φ(n1
n)θn, we have that φ(n1

1)δ1τ <p φ(n1
n)θnτ . As for the base, there

is a counterexample φ(n1
1)δ1ε1 of φ(n1

1)δ1τ such that φ(n1
1)δ1ε1 <p φ(n1

n)θnτ . φ(n1
1)δ1ε1

is also a counterexample of φ(n1
1)θ1, so it can be treated similarly as φ(n1

n)θnτ . By
traversing all the nodes in the cycle, we can build a strictly decreasing chain of coun-
terexamples of equalities labelling the root nodes of the cycle, starting with φ(n1

n)θnτ
and ending with a counterexample of φ(n1

n)θn, contradicting the <p-minimality property
of φ(n1

n)θnτ .

This ends the proof of the property.

Next, we assume by contradiction that the minimal cycles of the normal form of a
D′-preproof discharge their IHs but there is an equality proved by the D′-preproof which
is false. By Lemma 5.8, this equality labels one of the root nodes of the normal form of
the D′-preproof.

Let C denote the set of strongly connected components of the normalised D′-preproof,
<C the well-founded ordering over C, and assume that there is a strongly connected
component p in C such that the false equality labels one of its root nodes, denoted by n.
We perform a classical induction reasoning on the elements of C.

The base case. p is a <C-minimal strongly connected component for which the
equalities from the direct offsprings of leaf nodes of p are true since no induction
reasoning is required in their subproofs. The IHs used by the Induction applications
on nodes of p and representing instances of equalities labelling nodes outside p are
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true because their proofs do not require non-trivial induction reasoning, thanks to the
<C-minimality of p. Therefore, the above property can be applied to conclude that all
IHs used in the tree derivation rooted by n are true, which means that equality labelling
n is true, so contradiction.

The step case. Let n be the root of some strongly connected component p from C and,
by induction hypothesis, we assume that all the root nodes of any strongly connected
component of C, <C-smaller than p, are labelled by true equalities. The IHs used by the
Induction applications on nodes of p and representing instances of equalities labelling
nodes outside p are true because they are instances of equalities labelling either i) root
nodes of strongly connected components of C <C-smaller than p, or ii) root nodes of tree
derivations that are not in any strongly connected component of C but whose proofs
may require non-trivial induction reasoning captured only inside strongly connected
components <C-smaller than p. From the above property, all IHs used in the tree
derivation rooted by n are true. Hence, the equality labelling n is true, which leads to a
contradiction.

We conclude that all root nodes of any strongly connected component of C are
labelled with true equalities.

Therefore, n is a root node that is not the member of any strongly connected com-
ponent from C. We can build an ordering <R on the set R of root nodes that are not
part of any strongly connected component from C, as follows: n1 <R n2 if there is an
Induction step in the tree rooted by n2 for which n1 is the IH-node. The <R ordering
is well-founded, otherwise it would include a cycle which contradicts the fact that the
nodes from R are not members of any strongly connected component of C. We reason by
induction on the nodes of R. If n is a <R-minimal node, then its equality is true since
the IHs used in the tree derivation rooted by n, if any, are true, as instances of equalities
labelling root nodes from C. If n is not a <R-minimal node, then we assume by induction
hypothesis that all nodes from R, <R-smaller than n, are labelled by true equalities. The
equality labelling n is true because the IHs used in the tree derivation rooted by n are
true, as instances of equalities labelling root nodes from C or nodes from R, <R-smaller
than n. This leads again to a contradiction. 2

Example 5.13 (cont. Example 5.11). The Ibc -preproof from Fig. 4 is sound because all
the IHs from its minimal cycles are discharged. Therefore, q(x, y) = true and p(x) = true
are true.

5.3. Coq formalisation and certification of cyclic proofs using the logic programming
style

The p and q functions can be defined using the inductive predicates P and Q, respec-
tively, by following the logic programming style:

Inductive P : nat → Prop :=
| p0 : P 0
| p1 : ∀ x : nat, P x → Q x (S x ) → P (S x )

with Q : nat → nat → Prop :=
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| q0 : ∀ x, Q x 0
| q1 : ∀ x y : nat, Q x y → P x → Q x (S y).

Any equality of the form t = true is translated to the atom t. The variables from
the equational specifications and cyclic proofs are either universally quantified or free
variables in the corresponding Coq specifications and proofs.

The formula-based Noetherian induction principle will be applied on the set built
only from the equalities whose instances are used as induction hypotheses in the cycles,
in our case, the two atoms labelling the root nodes. The LF list LF PandQ and its type
type LF PandQ are:

Definition type LF PandQ := nat → nat → Prop × List.list term.
Definition LF PandQ:= [Pu, Qxy].

where the anonymous functions Pu and Qxy associate to the root atoms the measure
values defined at Example 5.11:

Definition Pu : type LF PandQ :=
fun u ⇒ (P u, (model nat u :: model nat u :: nil)).

Definition Qxy : type LF PandQ :=
fun x y ⇒ (Q x y, (model nat x :: model nat x :: model nat y :: nil)).

The main lemma becomes:

Lemma main PandQ : ∀ F, In F LF PandQ → ∀ u, (∀ F’, In F’ LF PandQ → ∀ u′, less
(snd (F’ u′)) (snd (F u)) → fst (F’ u′)) → fst (F u).

Its proof starts by a case analysis on the possible values of F, which can be either Pu
or Qxy. The generation of the Coq script for each case starts by a split rule instantiating
a natural variable with 0 and the successor of a fresh variable. In Coq, this can be easily
performed with the destruct tactic or by the means of functional schemes, as shown in
the proof of Lemma main 13 at the end of Section 4.

The proof of each resulted case follows some path from a root node to a leaf node
in the cyclic graph from Figure 4. The generation of the Coq script can be automatised
since there is a direct Coq translation of the non-split inference rules, as follows:

• DelInst’ is translated to the apply tactic parameterised by the name of the used
axiom;
• RedEq’ is translated by unfolding the definition of the processed conjecture, using
again the apply tactic parameterised by the name of the used axiom;
• the application of IndNat using an induction hypothesis from LF PandQ is translated
to

pose proof (HFabs0 F ) as Hind. clear HFabs0.
assert (fst (F u1 0)) as HFabs0.
apply Hind. trivial in n.
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The user-defined tactic trivial in is applied on an index n and checks that F is the
(n+ 1) element of the LF PandQ list.

Next, any formula defining the anonymous functions of LF PandQ is proved:

Theorem all true PandQ: ∀ F, In F LF PandQ → ∀ u1: nat, fst (F u1).

Finally, ∀u, P (u) and ∀x y,Q(x, y) are certified by the following theorems:

Theorem true Pu : ∀ u : nat, P u.

Theorem true Qxy : ∀ (x : nat) (y : nat), Q x y.

The details of the Coq proof can be found in Appendix A.1.

5.4. Coq formalisation and certification of cyclic proofs using the functional program-
ming style

Conjecture (19) can also be proved using the cyclic inference system Ifc , based on the
reasoning techniques underlying If , presented in Section 4:

SplitNat’ (S′c): E ∪ {φ〈x〉} `Ifc E ∪ {φ{x 7→ 0}, φ{x 7→ s(x′)}},
where x′ is a fresh variable.

DelTaut (Tc): E ∪ {φ} `Ifc E,
if φ is a tautology.

NegClash (Nc): E ∪ {φ} `Ifc E
if true = false or false = true is in the condition part of φ.

RedAx (Ac): E ∪ {φ} `Ifc E ∪ {ψ},
if φ→Ax ψ.

DelSub (Ec): E ∪ {φ} `Ifc E
if φ is an instance of a previously generated equality.

The SplitNat’ rule is similar to the Ibc -rule SplitNat. DelTaut and NegClash
delete tautologies and conditional equalities with false conditions, respectively. RedAx
rewrites the processed conjecture with axioms. Finally, DelSub deletes the processed
conjecture if it is an instance of a previous equality from the Ifc -preproof.

Theorem 5.14. Every Ifc -rule instantiates a D′-rule.

Proof. We perform a case analysis on the Ifc -rules:
• SplitNat’ is an instance of Split, for the same reasons given for SplitNat in the

proof of Theorem 5.2;
• DelTaut and NegClash are instances of Deduction when the set of new con-

jectures is empty. This situation is acceptable because the processed conjectures are
valid;
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• RedAx is an instance of Deduction because for any counterexample φτ of the pro-
cessed conjecture φ, ψτ is a counterexample of the new conjecture ψ;
• DelSub is an instance of Induction for similar reasons given for IndNat in the proof
of Theorem 5.2.
2

In the following, we denote by GenNat’ the derived Ifc -rule that abbreviates the
application of SplitNat’ rule on the processed conjecture, followed by the application
of RedAx on each of the two new conjectures:

GenNat’ (Gc): E ∪ {φ〈x〉} `Ifc E ∪ {φ1, φ2},
where φ{x 7→ 0} →Ax φ1, φ{x 7→ s(x′)} →Ax φ2 and x′ is a fresh variable.

By defining the atoms:

e′13(u1, u2, u3) : odd(u1 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u1 + u3) = true

e′23(u2, u3) : odd(0 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e′29(u4, u2, u3) : odd((s(u4)) + u2) = true ∧ even(u2 + u3) = true⇒ odd(s(u4 + u3)) = true

e′36(u2, u3) : odd(u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e′49(u4, u2, u3) : even(u4 + u2) = true ∧ even(u2 + u3) = true⇒ even(u4 + u3) = true

e′67(u3) : odd(0) = true ∧ even(u3) = true⇒ odd(u3) = true

e′73(u4, u3) : odd(s(u4)) = true ∧ even(s(u4 + u3)) = true⇒ odd(u3) = true

e′81(u3) : false = true ∧ even(u3) = true⇒ odd(u3) = true

e′91(u4, u3) : even(u4) = true ∧ odd(u4 + u3) = true⇒ odd(u3) = true

e′113(u2, u3) : even(0 + u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true

e′119(u5, u2, u3) : even((s(u5)) + u2) = true ∧ even(u2 + u3) = true⇒
even(s(u5 + u3)) = true

e′138(u2, u3) : even(u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true

e′197(u3) : even(0) = true ∧ odd(u3) = true⇒ odd(u3) = true

e′203(u5, u3) : even(s(u5)) = true ∧ odd(s(u5 + u3)) = true⇒ odd(u3) = true

e′253(u3) : even(0) = true ∧ even(u3) = true⇒ even(u3) = true

e′259(u5, u3) : even(s(u5)) = true ∧ even(s(u5 + u3)) = true⇒ even(u3) = true

e′283(u5, u3) : odd(u5) = true ∧ odd(u5 + u3) = true⇒ even(u3) = true

e′311(u3) : odd(0) = true ∧ odd(u3) = true⇒ even(u3) = true

e′317(u6, u3) : odd(s(u6)) = true ∧ odd(s(u6 + u3)) = true⇒ even(u3) = true

e′333(u3) : false = true ∧ odd(u3) = true⇒ even(u3) = true

one can build the following Ifc -preproof of the conjecture (19), represented as a linear
derivation:

{e′13(u1, u2, u3)} `Gc
Ifc
{e′23(u2, u3), e′29(u4, u2, u3)} `Ac

Ifc
{e′36(u2, u3), e′29(u4, u2, u3)} `∗Ac

Ifc

{e′36(u2, u3), e′49(u4, u2, u3)} `Gc
Ifc

{e′67(u3), e′73(u4, u3), e′49(u4, u2, u3)} `Ac
Ifc

{e′81(u3), e′73(u4, u3), e′49(u4, u2, u3)} `Nc
Ifc

{e′73(u4, u3), e′49(u4, u2, u3)} `∗Ac
Ifc
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{e′91(u4, u3), e′49(u4, u2, u3)} `Gc
Ifc

{e′197(u3), e′203(u5, u3), e′49(u4, u2, u3)} `Tc
Ifc

{e′203(u5, u3), e′49(u4, u2, u3)} `∗Ac
Ifc
{e′36(u5, u3), e′49(u4, u2, u3)} `Ec

Ifc
{e′49(u4, u2, u3)} `Gc

Ifc

{e′113(u2, u3), e′119(u5, u2, u3)} `∗Ac
Ifc
{e′113(u2, u3), e′13(u5, u2, u3)} `Ec

Ifc
{e′113(u2, u3)} `Ac

Ifc

{e′138(u2, u3)} `Gc
Ifc
{e′253(u3), e′259(u5, u3)} `Tc

Ifc
{e′259(u5, u3)} `∗Ac

Ifc
{e′283(u5, u3)} `Gc

Ifc

{e′311(u3), e′317(u6, u3)} `Ac
Ifc

{e′333(u3), e′317(u6, u3)} `Nc
Ifc

{e′317(u6, u3)} `∗Ac
Ifc

{e′138(u6, u3)} `Ec
Ifc
∅

Fig. 5 illustrates the above preproof as an oriented graph. We can distinguish three
strongly connected components, denoted by p1, p2 and p3, each of them made of only
one minimal cycle, as follows:
• [e′13(u1, u2, u3), e′29(u4, u2, u3), e′49(u4, u2, u3), e′119(u5, u2, u3), e′13(u5, u2, u3)] for p1,
• [e′36(u2, u3), e′73(u4, u3), e′91(u4, u3), e′203(u5, u3), e′36(u5, u3)] for p2, and
• [e′138(u2, u3), e′259(u5, u3), e′283(u5, u3), e′317(u6, u3), e′138(u6, u3)] for p3.
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tt
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��
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��
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��
e′36(u2, u3)

{u2 7→0}

}}

{u2 7→s(u4)}

$$

e′49(u4, u2, u3)

{u4 7→0}
��

{u4 7→s(u5)}

&&
e′67(u3)

��
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��

e′119(u5, u2, u3)
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e′81(u3) e′91(u4, u3)
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zz
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e′138(u2, u3)
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ff
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{u2 7→u5}{u2 7→u5}{u2 7→u5}
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e′333(u3) e′138(u6, u3)
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Fig. 5. The graph representation of the Ifc -preproof of {e′13(u1, u2, u3)}.

The normalisation process of the Ifc -preproof applies the transformation from Fig. 3
to the two non-root IH-nodes labelled by e′36(u2, u3) and e′138(u2, u3). The normal form
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of the Ifc -preproof consists in three derivation trees, rooted by the nodes labelled by
e′13(u1, u2, u3), e′36(u2, u3) and e′138(u2, u3).

The soundness of the Ifc -preproof is ensured if the following three constraints are satis-
fied: e′13(u1, u2, u3){u1 7→ s(s(u5));u2 7→ u2;u3 7→ u3} <p1 e′13(u1, u2, u3){u1 7→ u5;u2 7→
u2;u3 7→ u3}, e′36(u2, u3){u2 7→ u5;u3 7→ u3} <p2 e′36(u2, u3){u2 7→ s(s(u5));u3 7→ u3},
and e′138(u2, u3){u2 7→ u6;u3 7→ u3} <p3 e′138(u2, u3){u2 7→ s(s(u6));u3 7→ u3}. Different
well-founded and ‘stable under substitutions’ orderings over multisets of terms can be
used to implement <p1 , <p2 and <p3 , for example the multiset extension of the rpo using
any precedence.

The strategy for certifying a normalised D′-preproof integrating a (potentially empty)
set C of strongly connected components is based on a partial ordering defined on the
components of some partition P over the root nodes of the normalised D′-preproof. P is
built such that two nodes are in the same component if they belong to the same strongly
connected component of C. The partial ordering, denoted by <P , extends <C in such a
way that, for any two components c1 and c2, we have c1 <P c2 if there is an Induction
node in the trees rooted by nodes from c2 whose corresponding IH-node is a root node
from c1. The strategy is to certify the proofs of the multisets of equalities labelling the
root nodes of each component from P , in distinctive steps and in increasing ordering
w.r.t. <P .

Example 5.15. The certification of the normalised Ifc -preproof of {e′13(u1, u2, u3)} starts
with the certification of the proofs of the equalities labelling the root nodes of the <C-
minimal strongly connected components, i.e., p2 and p3, followed by the certification of
the proof of the equality labelling the root node of p1.

The certification process for the proof of the multiset of equalities labelling the root
nodes of a component c of P is similar to that given for implicit induction proofs in
Subsection 4.4. First, we define the LF list as the set of anonymous functions built for
the equalities labelling the root nodes from c. Second, the instantiation schemas from the
GenNat’ steps are defined using functional schemes, or the destruct tactic. Third, the
proof of the main lemma is built by translating in Coq script the Ifc -steps encountered
by following the paths from root to leaf nodes in the trees rooted by the nodes of c,
using similar translations as shown in Subsection 4.4. In addition, the application as
IH of any instance of some equation e′n not labelling any node from c is translated to
apply true n. The proposed certification strategy ensures that the proof of the theorem
true n is certified before its use by the apply tactic. Multiple rewrite steps can be
performed with the simpl tactic. Finally, the theorem all true is certified, followed by
the certification of the true theorems about the equalities labelling each node of c.

As example, we will only detail the certification process for the proof of e′13(u1, u2, u3),
knowing that the certification of the proofs for e′36(u2, u3) and e′138(u2, u3) was already
completed and done in a similar way. The LF list for p1 is defined as:

Definition LF 13 := [F 13 ].

where F 13 is defined as F 13 from Subsection 4.4.

The functional schemes associated to the GenNat’ steps are defined as:
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Fixpoint f 13 (u1 : nat) (u3 : nat) {struct u1}: nat :=
match u1, u3 with
| 0, ⇒ 0
| S u4, ⇒ 0
end.

Functional Scheme f 13 ind := Induction for f 13 Sort Prop.

Fixpoint f 49 (u4 : nat) (u3 : nat) {struct u4}: nat :=
match u4, u3 with
| 0, ⇒ 0
| S u5, ⇒ 0
end.

Functional Scheme f 49 ind := Induction for f 49 Sort Prop.

The Coq script of the main 13 lemma is:

Lemma main 13 : ∀ F, In F LF 13 → ∀ u1 u2 u3, (∀ F’, In F’ LF 13 → ∀ e1 e2 e3,
less (snd (F’ e1 e2 e3 )) (snd (F u1 u2 u3 )) → fst (F’ e1 e2 e3 )) → fst (F u1 u2

u3 ).
Proof.
intros F HF u1 u2 u3 ; case In HF ; intro Hind.

(* GenNat’ on e′13 *)

rename u1 into u1. rename u2 into u2. rename u3 into u3.
rename u1 into u1. rename u2 into u2. rename u3 into u3.

revert Hind.

pattern u1, u3, (f 13 u1 u3 ). apply f 13 ind.

(* case e′23 *)

intros u1 u3. intro. intro HFabs0.
simpl. apply true 36.

(* case e′29 *)

intros u1 u3. intro u4. intro. intro HFabs0.
simpl.

(* GenNat’ on e′49 *)

destruct u4. (* we could have used instead the functional scheme f 49 ind *)

(* case e′113 *)

simpl. apply true 138.

(* case e′119 *)

pose proof (HFabs0 F 13 ) as Hind. clear HFabs0.
assert (fst (F 13 u4 u2 u3 )) as HFabs0.
apply Hind. trivial in 0.
unfold snd. unfold F 13. rewrite model. abstract solve rpo mul.
simpl. simpl in HFabs0. trivial.
Qed.
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The Coq script for the proofs of the remaining theorems is omitted, but it is available
online as supplementary material.

Theorem all true 13 :
∀ F,
In F LF 13 → ∀ (u1 : nat) (u2 : nat) (u3 : nat), fst (F u1 u2 u3 ).

Theorem true 13 :
∀ (u1 : nat) (u2 : nat) (u3 : nat),
odd (plus u1 u2 ) = true →
even (plus u2 u3 ) = true → odd (plus u1 u3 ) = true.

6. Automatic certification of SPIKE proofs

General presentation of SPIKE The automatic theorem prover SPIKE was created in
a period when several formula-based Noetherian induction methods issued from Musser’s
completion-based inductionless induction (or proof-by-consistency) technique (Musser,
1980) have been devised. Some of them have been implemented into theorem provers,
for example, the RRL (Kapur and Zhang, 1988) and Focus (Bronsard and Reddy, 1991)
systems integrated the test-set induction method (Kapur et al., 1986) and a general-
ization of the term-rewriting induction (Bronsard et al., 1994) for conditional theories,
respectively. Inspired by the rewriting techniques previously tested with the ORME sys-
tem (Lescanne, 1990), SPIKE (Bouhoula et al., 1992) implemented an implicit induction
method (Kounalis and Rusinowitch, 1990; Bouhoula et al., 1995) that combines features
from explicit induction and inductive completion techniques. It mainly served as a pro-
totype for proving conjectures about (extensions of) conditional specifications and for
testing induction-based reasoning techniques that led to many successful proof experi-
ments on non-trivial applications.

SPIKE can reason on conditional specifications that should satisfy some crucial prop-
erties, like the ground convergence and completeness, that ensure the coherence of the
axioms and the validity of the variable instantiation schemas, respectively. They can
be checked more easily if the specification is many-sorted and the set of function sym-
bols is split into constructors and defined function symbols. SPIKE was initially de-
signed to deal with free constructors for which no equality relation can be established
between any two different constructor symbols. Several extensions have been operated
on SPIKE since (Bouhoula et al., 1992) in order to deal with: i) non-free construc-
tors (Bouhoula and Jouannaud, 2001), ii) parameterised specifications (Bouhoula, 1994,
1996), iii) associative-commutative theories (Berregeb et al., 1996), iv) observational
proofs (Berregeb et al., 1998; Bouhoula and Rusinowitch, 2002), and v) simultaneous
check of the completeness and ground convergence properties of a specification (Bouhoula,
2009). Most of them led to distinct proof systems that are no longer maintained in spite
of their theoretical and practical interests.

The inference system Each inference rule is the implementation of one of the three
rules of the abstract inference system A, based on contextual cover sets (CSSs) (Stratulat,
2001): AddPremise, Simplify, and Delete. The first two rules are the representation
with CCSs of the corresponding A′-rules from Section 4.1. The last rule is a particular
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case of Simplify that generates an empty set of new conjectures. Thanks to a strategy
language (Alouini and Bouhoula, 1997), new rules can be defined by the user to combine
existing reasoning techniques. It also controls the way the proofs are built and allows the
prover to automatically generate large proofs and to deal with non-trivial applications.
Other reasoning techniques are implemented in built-in rules that are activated without
the help of the strategy language, e.g., the combination between a decision procedure for
linear arithmetic and a congruence closure algorithm (Stratulat, 2000; Armando et al.,
2002; Stratulat, 2014). The arithmetic reasoning permitted to validate the MJRTY al-
gorithm (Boyer and Moore, 1991) using a lemma proposed by N. Shankar (according
to (Howe, 1993)); also, more than 60% of the conjectures required to certify the confor-
mity algorithm for a telecommunication protocol (Rusinowitch et al., 2003) have been
automatically proved.

The validation of the JavaCard platform (Barthe and Stratulat, 2003) was the most
challenging case study ever experienced by SPIKE. The inference system has been
adapted to manage variables of parameterised sorts as well as existential variables. New
inference rules have been designed to better handle the information from the conditional
part of (conditional) conjectures. The efficiency of the implementation has been improved
for dealing with specifications counting more than 400 defined function symbols and 2200
axioms, for example by recording the failure context at the conjecture level in order to
avoid useless computation.

Recently (Stratulat, 2012), the inference system of SPIKE has been extended to im-
plement reductive-free cyclic proofs by keeping the best features of explicit and implicit
induction reasoning. The induction reasoning may not be rewrite-based and axioms are
no longer required to be oriented into rewrite rules, hence allowing for more general spec-
ifications. The prover integrates the DRaCuLa strategy to build cycles by need. Mainly,
the induction steps from a cycle are blocked until any involved IH is either proved or
discharged by cycles. When a cycle is built, its induction steps are unblocked if they are
discharged by the cycle, allowing for simultaneous induction.

Layout of a specification file The structure of a standard SPIKE specification, in-
cluded in a file name.spike, is:

specification: name
% the axiomatic definition of a many-sorted constructor-based specification
sorts: list of sorts
constructors: list of constructor symbols
defined functions: list of defined function symbols
axioms: list of axioms for each defined function symbols
% the induction ordering
greater: list of precedences over the function symbols
equiv: list of equivalent function symbols
% the completeness and ground convergence properties
properties: list of properties
% the proof strategies
strategy: list of inference rules and proof strategies
% the conjectures to be proved
conjectures: list of conjectures
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The employed induction ordering is the multiset extension of the mpo ordering (Baader
and Nipkow, 1998) using the precedence over the function symbols defined at the sections
greater and equiv from the specification file. The mpo ordering also serves to orient
the axioms into rewrite rules.

In Appendix A.2, we provide the SPIKE specification for the even and odd example
from Section 4.

Proving properties The implicit induction proof for a conjecture from a specification
file name.spike is generated by the command spike bc name.spike. Its generation
is highly automatic, following a push-button approach, but the user may influence the
process of proof construction before launching the proof by defining i) the precedence
used by the mpo ordering, ii) the inference rules and the proof strategy, iii) the precedence
over the head symbols of the (sub)terms to which the new instantiation technique can be
applied, and iv) lemmas. Once a conjecture has been proved, it can participate as lemma
in the proof of further conjectures listed in the conjectures section.

The user can also interact with the prover by the means of i) extra sections, for
example use: nats; 2 for activating the combination of the decision procedure for linear
arithmetic and the congruence closure procedure, and ii) command-line arguments given
to spike bc. Some of the useful arguments are:

-coqc spec: generate the preambule, including the definition of the ordering and the
Coq specification, and save the result in the Coq file name spec.v;
-coqc: translate the implicit induction proof and save the result in the Coq file name.v;
-dracula: generate cyclic proofs using the DRaCuLa strategy.

In an automatic way, SPIKE can prove the conjecture (19) from Section 4 by both
implicit and cyclic induction. The numerical annotations of the atoms from the presented
proofs correspond to numbers labelling conjectures in the SPIKE proofs. SPIKE can also
automatically translate the implicit induction proof into valid Coq script. In order to do
this, the Coq script translating the axioms and model functions is inlined in the SPIKE
specification and should be provided by the user. It is prefixed by $ and ignored by
SPIKE during the proof development. On the other hand, the cyclic proof was manu-
ally translated into Coq script by modifying the Coq script generated for the implicit
induction proof.

7. Conclusions and future work

We have provided the formal tools to certify formula-based Noetherian induction rea-
soning with Coq. As an alternative to the built-in explicit induction techniques, we have
opened the perspective to directly implement in Coq formula-based Noetherian induction
methods that effectively manage the lazy, simultaneous and mutual induction reasoning.
Compared to the methods consisting in translating particular classes of formula-based
Noetherian induction proofs to an explicit induction form, our approach can generate a

2 To be added just after the specification section.
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constructive Coq proof from any formula-based Noetherian induction proof. The main
challenges to face are i) the explicit representation of the underlying induction ordering
that is not built-in in Coq and that should be supported by external libraries, and ii) the
automatisation of the certification process. Classical Coq proofs can also be built using
the ‘Descente Infinie’ induction principle (Stratulat, 2010).

The formal tools have been used to automatically certify implicit induction and cyclic
proofs. The implicit induction reasoning is reductive and can be easily automatised,
while the cyclic reasoning is reductive-free, requires fewer ordering constraints and allows
for more general specifications, but is less automatisable (Stratulat, 2012). In practice,
the Coq script translating cyclic proofs may be (much) shorter than that for implicit
induction proofs, hence easier to certify. The number of ordering constraints and the size
of the LF lists has a strong impact on the complexity of the generated Coq script. For
instance, the script generated from the implicit induction proof of the conjecture (19)
deals with a unique LF list of 28 anonymous functions and certifies 30 ordering constraints,
while the Coq script translating the cyclic proof has only three singleton LF lists and 3
ordering constraints to be checked.

The certification methodology has been tested with SPIKE on different other exam-
ples, among which the validation of a conformity algorithm for a telecommunication
protocol (Rusinowitch et al., 2003). As shown in (Stratulat and Demange, 2011), most of
the lemmas have been automatically certified by Coq. On the other hand, the methodol-
ogy is limited for several reasons. SPIKE cannot translate the proof steps built with some
of its inference rules, e.g., those requiring arithmetic reasoning due to the complexity of
the underlying decision procedures, or some rules are correctly translated only under
certain conditions. In fact, the translation process does not guarantee the conversion of
any SPIKE proof to a valid Coq script. Also, an inconvenient for the potential users is
represented by the necessity to inline Coq code in the SPIKE specification.

In a future line of research, we intend to avoid the translation drawbacks by di-
rectly generating the formula-based Noetherian induction proofs with the Coq infer-
ence system. In another direction, we plan to apply the formal tools for certifying other
formula-based Noetherian induction techniques, e.g., the inductionless induction reason-
ing and other saturation-based reductive reasoning, as those based on ordered paramod-
ulation (Nieuwenhuis and Rubio, 2001) and resolution (Bachmair and Ganzinger, 2001).
Last but not least, we intend to build similar formal tools for other certifying proof
assistants, like Isabelle.
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A. Coq script and SPIKE specification

A.1. The ‘P and Q’ proof script in Coq

(* importing the COCCINELLE term algebra and the defined tactics for automatic
ordering reasoning *)

Require Import pandq predicate spec.

Definition type LF PandQ := nat → nat → Prop × List.list term.

Definition Pu : type LF PandQ :=
fun u ⇒ (P u, (model nat u :: model nat u :: nil)).

Definition Qxy : type LF PandQ :=
fun x y ⇒ (Q x y, (model nat x :: model nat x :: model nat y :: nil)).

Definition LF PandQ := [Pu, Qxy].

Fixpoint f P (u1 : nat): bool := match u1 with
| 0 ⇒ true
| S u2 ⇒ true
end.

Functional Scheme f P ind := Induction for f P Sort Prop.

Fixpoint f Q (u2 : nat) (u1 : nat) {struct u2}: bool :=
match u2, u1 with
| 0, ⇒ true
| S u4, ⇒ true
end.

Functional Scheme f Q ind := Induction for f Q Sort Prop.

Lemma main PandQ :
∀ F,
In F LF PandQ →
∀ u1 u2,
(∀ F’,
In F’ LF PandQ →
∀ e1 e2, less (snd (F’ e1 e2 )) (snd (F u1 u2 )) → fst (F’ e1 e2 )) →
fst (F u1 u2 ).
Proof.

(* the case analysis on the content of LF *)
intros F HF u1 u2 ; case In HF ; intro Hind.

(* split on P *)
rename u1 into u1. rename u2 into d u2.
rename u1 into u1. revert Hind.
pattern u1, (f P u1 ). apply f P ind.
(* case 0 *)
intros u1. intro. intro HFabs0.
unfold Pu. unfold fst. apply p0.
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(* case S *)
intros u2 u1. intro. intro HFabs0.
unfold Pu. unfold fst.
apply p1.
(* applying Pu as IH *)
pose proof (HFabs0 Pu) as Hind. clear HFabs0.
assert (fst (Pu u1 0)) as HFabs0.
apply Hind. trivial in 0.
unfold fst. unfold Pu.
unfold snd. rewrite model. abstract solve rpo mul. (* solving the ordering part *)
unfold fst in HFabs0. unfold Pu in HFabs0. trivial. (* solving the deduction part *)
(* applying Qxy as IH *)
pose proof (HFabs0 Qxy) as Hind. clear HFabs0.
assert (fst (Qxy u1 (S u1 ))) as HFabs0.
apply Hind. trivial in 1.
unfold fst. unfold Qxy. unfold Pu.
unfold snd. rewrite model. abstract solve rpo mul. (* solving the ordering part *)
unfold fst in HFabs0. unfold Qxy in HFabs0. trivial.(* solving the deduction part *)

(* split on Q *)
rename u1 into u1. rename u2 into u2.
rename u1 into u1. rename u2 into u2. revert Hind.
pattern u2, u1, (f Q u2 u1 ). apply f Q ind.
(* case 0 *)
intros.
unfold Qxy. unfold fst. apply q0.
(* case S *)
intros u2 u1 u3 e. intro HFabs0.
unfold Qxy. unfold fst. apply q1.
(* applying Qxy as IH *)
pose proof (HFabs0 Qxy) as Hind. clear HFabs0.
assert (fst (Qxy u1 u3 )) as HFabs0.
apply Hind. trivial in 1.
unfold fst. unfold Qxy.
unfold snd. rewrite model. abstract solve rpo mul. (* solving the ordering part *)
unfold fst in HFabs0. unfold Qxy in HFabs0. trivial.(* solving the deduction part *)
(* applying Pu as IH *)
pose proof (HFabs0 Pu) as Hind. clear HFabs0.
assert (fst (Pu u1 0)) as HFabs0.
apply Hind. trivial in 0.
unfold fst. unfold Pu. unfold Qxy.
unfold snd. rewrite model. abstract solve rpo mul. (* solving the ordering part *)
unfold fst in HFabs0. unfold Pu in HFabs0. trivial.(* solving the deduction part *)

Qed.

Definition S PandQ :=
fun f ⇒ ∃ F, In F LF PandQ ∧ (∃ e1, ∃ e2, f = F e1 e2 ).
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Theorem all true PandQ :
∀ F, In F LF PandQ → ∀ (u1 : nat) (u2 : nat), fst (F u1 u2 ).
Proof.
(* automatically generated *)
Qed.

Theorem true Qxy : ∀ (x : nat) (y : nat), Q x y.
Proof.
do 2 intro.
apply (all true PandQ Qxy); trivial in 1 || (repeat constructor).
Qed.

A.2. The SPIKE specification of the ‘even’ and ‘odd’ example

specification : even

sorts : nat bool;

$
$Fixpoint model_nat (v: nat): term :=
$match v with
$| O => (Term id_0 nil)
$| (S x) => let r := model_nat x in (Term id_S (r::nil))
$ end.
$
$Fixpoint model_bool (v: bool): term :=
$match v with
$|true => (Term id_true nil)
$|false => (Term id_false nil)
$end.
$

constructors :

0 : -> nat;
S_ : nat -> nat;
true : bool;
false : bool;

defined functions:

even_ : nat -> bool;
odd_ : nat -> bool;
_+_ : nat nat -> nat;

axioms:

0 + x = x;
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S(x) + y = S(x + y);

$
$Fixpoint plus (x y:nat): nat :=
$match x with
$| O => y
$| (S x’) => S (plus x’ y)
$end.
$

even (0) = true;
even (S(x)) = odd (x);

odd(0) =false;
odd (S(x)) = even (x);

$
$Fixpoint even (x: nat): bool :=
$match x with
$| 0 => true
$| (S x’) => odd x’
$end
$with
$odd (x: nat): bool :=
$match x with
$| 0 => false
$| (S x’) => even x’
$end.
$

greater:
even : + S 0 true false;
+ : S 0;

equiv:
even odd;

properties:

system_is_sufficiently_complete ;
system_is_ground_convergent ;

Strategy:

% instances of Delete
tautology_rule = delete(id, [tautology]);
subsumption_rule = delete(id, [subsumption (L|C)]);
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negative_clash_rule = Delete(id, [negative_clash]);

% instances of Simplify
rewriting_rule = simplify(id,[rewriting(rewrite, L|R|C, *)]);

% instances of AddPremise
inst_var_rule = add_premise(generate,[id]);

stra = repeat (try (
tautology_rule,
negative_clash_rule,
subsumption_rule,
rewriting_rule,
print_goals_with_history(t)

));

fullind = (repeat(stra, inst_var_rule), print_goals_with_history);

start_with: fullind

conjectures:

odd (x + y) = true, even (y + z) = true => odd (x + z) = true ;

50


	Motivations
	Basic notions
	Formalising formula-based Noetherian induction proofs
	Formalising the induction ordering and measure values with COCCINELLE
	Proving formulas from LF
	Conditional specifications

	Certifying implicit induction proofs
	Implicit induction inference systems
	A first attempt to certify the proof of q(x,y)=true
	Certifying implicit induction proofs concerning specifications that are convertible into valid Coq script
	Coq formalization and certification of implicit induction proofs based on functional programming style

	Certifying cyclic proofs
	Cyclic induction inference systems
	Cyclic proofs
	Coq formalisation and certification of cyclic proofs using the logic programming style
	Coq formalisation and certification of cyclic proofs using the functional programming style

	Automatic certification of SPIKE proofs
	Conclusions and future work
	Coq script and SPIKE specification
	The `P and Q' proof script in Coq
	The SPIKE specification of the `even' and `odd' example


