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In first-order logic, the formula-based instances of the Noetherian induction principle allow to perform effectively simultaneous, mutual and lazy induction reasoning. Compared to the termbased Noetherian induction instances, they are not directly supported by the current proof assistants.

We provide general formal tools for certifying formula-based Noetherian induction proofs by the Coq proof assistant, then show how to apply them to certify proofs of conjectures about conditional specifications, built with: i) a reductive rewrite-based induction system, and ii) a reductive-free cyclic induction system. The generation of reductive proofs and their certification process can be easily automatised, without requiring additional definitions or proof transformations, but may involve many ordering constraints to be checked during the certification process. On the other hand, the reductive-free proofs generate fewer ordering constraints, may involve more general specifications and the certification process is more effective. However, their proof generation is less automatic and the generated proofs need to be normalised before being certified. The methodology for certifying reductive-free cyclic induction proofs related to conditional specifications extends a previous approach used for implicit induction proofs and it can be easily adapted to certify any formula-based Noetherian induction reasoning.

In practice, the methodology has been implemented to automatically certify implicit induction proofs generated by the SPIKE theorem prover as well as reductive-free cyclic proofs built by the same system but in a less automatic way.

Motivations

Formal verification of mathematical reasoning has recently witnessed remarkable breakthroughs, as revealed by the Flyspeck project (The Flyspeck website, 2014) and the certified proof of the Feit-Thompson theorem [START_REF] Gonthier | A machine-checked proof of the Odd Order Theorem[END_REF]. Similar advances can be noticed for the complete validation of complex and crucial systems from the everyday life of computer scientists like compilers (The CompCert project, 2014) and kernels of operating systems (The L4.verified project, 2014).

Induction reasoning plays a central role among the mathematical techniques employed in formal verification as it is well-adapted to reason on recursive data structures and algorithms. Noetherian induction is a general reasoning principle for checking whether a property is satisfied by an unbounded set E of partially ordered elements. When checking the property for some element, the principle grants the fact that the property holds for smaller elements if the (induction) ordering relation is well-founded (or Noetherian), i.e., every non-empty subset of E has a minimal element. The checked property is referred to as induction conclusion and the granted properties as induction hypotheses (IHs). When applied to first-order reasoning, the elements can be (vector of) terms or (first-order) formulas.

The term-based Noetherian induction methods build explicit induction schemas attaching eagerly IHs to induction conclusions. In this approach, the proof of an induction conclusion is further developed, expecting that the IHs be applied at some proof step. Defining the right induction schemas may need several proof attempts, especially when some knowledge about the way the proof will be performed is lacking. In practice, it may happen that IHs be defined but not used or that IHs be required but not defined. The latter case is challenging especially when defining induction schemas for the management of mutual induction reasoning where a property can help proving another property, and conversely.

A major advantage for using explicit induction schemas is their direct implementation into inference systems producing tree-shaped proofs by the means of induction rules. The nodes of the proof tree are tagged with formulas, the induction reasoning being applied locally, at the node level. Explicit induction schemas can be automatically generated from the analysis of recursive function or datatype definitions, a feature that is implemented by many modern formal reasoning tools like the Coq proof assistant (The Coq development team, 2013).

On the other hand, the formula-based Noetherian induction methods can perform lazy induction, a very useful feature that provides the IHs by need, mutual induction as well as simultaneous induction where several induction steps are performed at the same time and on different conjectures. However, these methods are hard to be applied at node level in tree-shaped proofs because the formula-based Noetherian induction reasoning may involve information from potentially any node of the proof. The lazy IHs should be eventually discharged independently from the induction conclusion, which makes impossible the mutual induction reasoning.

The formula-based induction ordering is unique during any proof session developed by reductive induction techniques like the rewrite-based implicit induction, suggested in [START_REF] Kounalis | Mechanizing inductive reasoning[END_REF] and defined later in [START_REF] Bronsard | Induction using term orderings[END_REF]. In this case, the induction ordering can guide the proof such that the new formulas issued after processing any formula φ are smaller than (and sometimes equal to) φ or instances of φ. In general, the reductive induction reasoning can be easily automatised and multiple induction steps can be performed during a proof session, as it is witnessed by the proofs generated with the implicit induction SPIKE prover (The SPIKE development team, 2014).

The non-trivial Noetherian induction reasoning for first-order logic is cyclic in the sense that the proof of a formula φ depends, directly or indirectly, on (an instance of) φ. Compared to other induction techniques, the cyclic induction methods, as those using semantic orderings to reason on first-order logic with inductive definitions (FOL ID ) [START_REF] Brotherston | Sequent calculi for induction and infinite descent[END_REF] or based on well-founded orderings [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF], put in evidence cycles of formulas whose proofs are mutually dependent. The soundness of the non-trivial induction reasoning is established if some ordering constraints defined over the formulas inside a cycle are satisfied. Their number may differ, according to the employed induction technique. In [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF], it has been shown to be equal to i) 1, for cycles built using term-based Noetherian induction methods, ii) to the number of formulas from a cycle, for cycles using reductive formula-based Noetherian induction techniques, and iii) to the (much smaller) number of formulas from a cycle whose instances are used as IHs by other formulas from the cycle, for cycles built with reductive-free formula-based Noetherian induction methods.

The manual check of the sound application of the formula-based principles may be tedious and error-prone. For these reasons, the mechanical certification of formula-based Noetherian induction reasoning becomes a necessity. To our knowledge, there is no formal system that can directly certify formula-based Noetherian induction reasoning. Some certifying proof environments based on type theory, such as Coq and Isabelle [START_REF] Nipkow | Isabelle/HOL -A Proof Assistant for Higher-Order Logic[END_REF], have a higher-order specification language that allow the definition and application of the Noetherian induction principle but only the term-based Noetherian induction is supported at first-order level by providing the formal tools to build explicit induction schemas.

In Coq, the recursion-based specifications can be formalised in two ways, by the means of: i) the functional programming style, based on pattern matching constructions, and ii) the logic programming style, based on inductively defined predicates. Both styles allow to encode recursion but each of them has limitations. Any function should be total and terminating, the built-in termination criterion being supported by a structural recursion analysis checking that one of the function arguments decreases according to a well-founded ordering. On the other hand, any inductive predicate is defined by the means of a set of formulas written in a 'Horn-clause' implication form, no termination proof is needed but no induction principle can be derived from its definition.

It is important to notice that, from a theoretical point of view, the term-based Noetherian induction principle can be trivially represented as an instance of the formula-based Noetherian induction principle [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF]. In the other direction, it is not clear that any formula-based Noetherian induction proof can be converted to a term-based Noetherian induction proof. For example, in the setting of FOL ID , it is conjectured in [START_REF] Brotherston | Sequent calculi for induction and infinite descent[END_REF]) that the cyclic proofs can be converted to explicit induction proofs.

Contributions As an alternative way to the use of explicit induction proof methods in Coq, we point out the possibility to certify any formula-based Noetherian induction reasoning as it is, i.e., with no proof transformation techniques for conversion to termbased Noetherian induction reasoning. In order to do this, we show how to build formal tools for defining the formula-based Noetherian induction principle and the underlying induction orderings. As a case study, we have focussed on proving properties about conditional specifications. Two proof techniques, implementing the implicit and cyclic induction, are presented. The implicit induction method applies only once the formulabased Noetherian induction principle on the set of all formulas from the proof (modulo some redundancy criteria). On the other hand, the cyclic method based on well-founded orderings [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF] may apply the formula-based Noetherian induction principle several times and is more flexible by allowing the use of different induction orderings in a proof session. The certification process is more effective since it deals with smaller sets of formulas and fewer ordering constraints to be checked.

Based on these formal tools, we propose a methodology for certifying formula-based Noetherian induction proofs by translating them into Coq script that can be validated by the Coq's trustworthy kernel. The practical interest of our approach is witnessed by the Coq certification of i) a simultaneous induction proof of the 'P and Q' example [START_REF] Wirth | Descente infinie + Deduction[END_REF], and ii) a non-trivial implicit induction proof of a property over the even and odd function symbols defined over naturals and requiring several induction steps. The implicit induction proof was automatically generated by SPIKE and automatically translated in Coq script using the functional programming style. The proof of the 'P and Q' example was generated by hand, using a toy and simulating a not-yet implemented reductive inference system, and certified by Coq using a logic programming style. However, the certification methodology is general and we expect it to help implementing in Coq other formula-based Noetherian induction methods, as the saturation-based inductionless induction method [START_REF] Comon | Inductionless induction[END_REF] (also known as proof by consistency [START_REF] Kapur | Proof by consistency[END_REF]). It also opens the perspective of directly integrating the formula-based Noetherian induction reasoning in Coq and similar systems.

Related works

Since not all formula-based Noetherian induction proofs are directly representable as term-based Noetherian induction proofs, some effort has been put into finding classes of convertible formula-based Noetherian induction proofs or defining the appropriate translation methods. Related to the Coq development, [START_REF] Courant | Proof reconstruction[END_REF][START_REF] Kaliszyk | Validation des preuves par récurrence implicite avec des outils basés sur le calcul des constructions inductives[END_REF] proposed partial solutions for converting implicit to explicit induction proofs. Courant [START_REF] Courant | Proof reconstruction[END_REF] identified a class of implicit induction inference systems that can generate such convertible proofs. The downside of this approach is the lack of certification for the conversion process, required to fully certify the implicit induction proofs. [START_REF] Deplagne | Proof search and proof check for equational and inductive theorems[END_REF] established sufficient conditions for identifying the implicit induction proofs that can be directly represented as term-based Noetherian induction proofs, the induction reasoning being embedded in a deduction modulo inference system.

In general, lazy and mutual induction reasoning can also be performed with schematabased induction, but in a limited way. Protzen [START_REF] Protzen | Lazy generation of induction hypotheses[END_REF] proposed a solution to generate lazily the IHs by building the induction schemas during the proof using proof analysis and not the usual recursion analysis of data structures. On the practical side, Voicu and Li [START_REF] Voicu | Descente Infinie proofs in Coq[END_REF] implemented a Coq tactic that automatically does lazy term-based 'Descente Infinie' induction reasoning, a contrapositive form of the Noetherian induction reasoning. Also, the mutual induction reasoning may be tricky since it consists in the definition of induction schemas issued from the analysis of classes of mutually defined predicates/functions or data structures [START_REF] Boyer | A computational logic handbook[END_REF][START_REF] Walther | Combining induction axioms by machine[END_REF][START_REF] Kapur | Automating induction over mutually recursive functions[END_REF][START_REF] Boulton | Automatic derivation and application of induction schemes for mutually recursive functions[END_REF] and it is not clear that all the necessary IHs can be generated from the application of such induction schemas [START_REF] Liu | A new structural induction scheme for proving properties of mutually recursive concepts[END_REF].

In Coq, induction principles can also be generated from the analysis of function definitions, using the Function [START_REF] Balaa | Fix-point equations for well-founded recursion in type theory[END_REF][START_REF] Barthe | Efficient reasoning about executable specifications in Coq[END_REF][START_REF] Barthe | Defining and reasoning about recursive functions: A practical tool for the Coq proof assistant[END_REF] Equations [START_REF] Sozeau | Equations: A dependent pattern-matching compiler[END_REF] and Program [START_REF] Sozeau | Program-ing finger trees in Coq[END_REF] tools. These principles are powerful as they can handle dependent pattern-matching and analyse recursion for higher-order type theory. But, once restricted to first-order logic, they implement the term-based Noetherian induction principle.

Stratulat and Demange [START_REF] Stratulat | Integrating implicit induction proofs into certified proof environments[END_REF][START_REF] Stratulat | Automated certification of implicit induction proofs[END_REF] succeeded to formalize the implicit induction reasoning directly into Coq scripts. Their goal was to automatically certify implicit induction proofs generated by native implicit induction provers as SPIKE. In this approach, the specifications and proofs are automatically translated into Coq scripts. At the end, the generated scripts are checked for conformity with the formalised formula-based Noetherian induction principle. However, this approach does not certify the translation process between the SPIKE proofs and Coq scripts. It has been shown in [START_REF] Stratulat | Automated certification of implicit induction proofs[END_REF] that non-trivial conjectures can be successfully certified in an automatic way. In another direction, Henaien and Stratulat [START_REF] Henaien | Performing implicit induction reasoning with certifying proof environments[END_REF] developed Coq tactics that can prove goals by implicit induction using SPIKE as an external tool. They firstly translate in SPIKE the Coq specifications and goals, then call SPIKE to develop the implicit induction proofs of the goals. Based on the previous approach, the SPIKE proofs are further converted to Coq scripts which are finally certified as proofs of the original Coq goals.

Structure of the paper

The paper is organised in 7 sections and one appendix, as follows. The basic notions and notations are introduced in Section 2. The Coq formalisation of the formula-based Noetherian induction principle and the certification methodology are presented in Section 3. Section 4 introduces different implicit induction inference systems. A first attempt to certify the proof of the 'P and Q' example is presented, then the certification of the implicit proof of the property on even and odd is explained using a functional programming style. The proofs of these properties are redone in Section 5 using cyclic inference systems and showed that the certification of the cyclic proof concerning the 'P and Q' example is successful by using a logic programming style. The SPIKE system, the instructions for generating implicit and cyclic proofs as well as their conversion into Coq script are presented in Section 6. Section 7 concludes and outlines future work. Related Coq and SPIKE scripts are included in the appendix.1 

Basic notions

Syntax We consider an alphabet of arity-fixed function symbols F and predicate symbols P. We also consider an enumerable set of variables V and denote by T (F, V) the set of terms built on function symbols from F and variables from V. The expression P (t) is an atom, where P ∈ P is an n-ary predicate and t is the vector of terms (t 1 , . . . , t n ) such that t i ∈ T (F, V), for any i ∈ [1..n]. The set A(P, F, V) denotes the set of atoms over P, F and V. T (F) (resp., A(P, F)) is a shortcut for T (F, ∅) (resp., A(P, F, ∅)) and represents the set of ground terms (resp., ground atoms). In the following, we will consider only quantifier-free first-order formulas over A(P, F, V).

Given a term or formula φ, we denote by V ar(φ) the set of variables from φ. Instances of φ are resulted by replacing some of its variables by terms, by the means of substitutions. Any substitution is a finite set of n (> 0) mappings

n i=1 {x i → t i }, also denoted as {x → t}, where x ≡ (x 1 , . . . , x n ), t ≡ (t 1 , . . . , t n ), x i ∈ V, t i ∈ T (F, V), for each i ∈ [1..n],
and ≡ denotes the syntactic equality. The instance of a term t built with the substitution σ is denoted by tσ. σ t id denotes the identity substitution {x → x | x ∈ V ar(t)}. Similarly, the notion of instance can be extended for atoms, formulas and (multi)sets of formulas. A term or formula φ that includes another term s is denoted by φ s . A ground substitution has ground all its mapping terms.

Orderings A quasi-ordering ≤ is a reflexive and transitive binary relation. Its strict part, referred to as ordering, is denoted by < and its equivalent part by ∼. A quasiordering defined over the elements of a nonempty set E is well-founded if and only if every non-empty subset of E has a minimal element. Under some choice assumption, it is equivalent to asking that any strictly decreasing sequence of elements of E is finite. A binary relation R is stable under substitutions if whenever s R t then (sσ) R (tσ), for any substitution σ and terms or formulas s and t. R is stable under contexts if, for any two terms s and t such that s R t and any term l s , then l R r, where r can be any term built by replacing in l occurrences of s by t. A quasi-ordering is stable under substitutions if its strict and equivalent parts are stable under substitutions. A reduction ordering is a transitive and irreflexive relation that is well-founded and stable under substitutions and contexts. Given a set of formulas Ψ, by Ψ ≤ψ (resp., Ψ <ψ ) are denoted the instances of formulas from Ψ that are smaller or equal (resp., strictly smaller) than ψ w.r.t. ≤ (resp., <).

An example of syntactic reduction ordering over terms is the recursive path ordering (rpo) [START_REF] Dershowitz | Orderings for term-rewriting systems[END_REF][START_REF] Kamin | Two generalizations of the recursive path ordering[END_REF][START_REF] Lescanne | Computer experiments with the REVE term rewriting system generator[END_REF]. Let us assume the status function τ for F that returns τ (f ) ∈ {Lex, Mul}, foreach f ∈ F, where Lex (resp., Mul) stands for lexicographic (resp., multiset) status. Given a precedence over F, denoted by the well-founded quasi-ordering ≤ F , the rpo ≺ rpo is recursively defined, as follows: for all terms s, t ∈ T (F, V), t ≺ rpo s if s ≡ f (s 1 , . . . , s m ) and i) either s i ≡ t or t ≺ rpo s i for some s i , 1 ≤ i ≤ m, or ii) t ≡ g(t 1 , . . . , t n ), t i ≺ rpo s for all i, 1 ≤ i ≤ n and either a) g < F f , or b) f ∼ F g, f and g have the same arity and status, and

(t 1 , . . . , t n ) ≺ τ (f ) rpo (s 1 , . . . , s n ). ≺ Lex rpo is the lexicographic extension of ≺ rpo : (a 1 , . . . , a n ) ≺ Lex rpo (b 1 , . . . , b n ) if either i) a 1 ≺ rpo b 1 or ii) a 1 ∼ rpo b 1 and (a 2 , . . . , a n ) ≺ Lex rpo (b 2 , . . . , b n )
, where ∼ rpo is recursively defined as: t ∼ rpo t, for any term t, and

f (a 1 , . . . , a n ) ∼ rpo g(b 1 , . . . , b n ) if f ∼ F g and, for each i ∈ [1..n], a i ∼ rpo b i . Two terms s and t are equivalent if s ∼ rpo t.

≺ Mul

rpo , also denoted by ≺≺ rpo , is the multiset extension of ≺ rpo : (A ≡ )(a 1 , . . . , a n ) ≺ ≺ rpo (b 1 , . . . , b n )( ≡ B) if for any term a ∈ A , there is a term b ∈ B such that a ≺ rpo b, where the multiset A (resp., B ) collects the terms from A (resp., B) after deleting pairwisely the equivalent terms from A and B. Two multisets of terms are equivalent if they are reduced to empty sets after deleting pairwisely their equivalent terms. The multiset extension of any well-founded ordering is also well-founded [START_REF] Baader | Term Rewriting and All That[END_REF].

Noetherian induction principles for first-order logic In its most general form, the Noetherian induction principle is formalised as

(∀m ∈ E, (∀k ∈ E, k < m ⇒ φ(k)) ⇒ φ(m)) ⇒ ∀p ∈ E, φ(p)
where (E, ≤) is a poset, < a well-founded ordering and φ the property to be checked for any element of E. The formulas φ(k) are called induction hypotheses (IHs) and φ(m) induction conclusion.

When E consists of an unbounded number of elements, the set of formulas to be proved and the induction reasoning should be finitely represented, by means of variables and induction schemas. For example, let us assume that E is the set N of natural numbers, φ is a unary predicate taking naturals as argument, and < is the 'less than' ordering relation over naturals. By Noetherian induction, the infinite set of conjectures {φ(0), φ(s(0)), φ(s(s(0))), . . .} is entailed from the set of weaker formulas {φ(0), φ(0) ⇒ φ(s(0)), φ(s(0)) ⇒ φ(s(s(0))), . . .}. This can be factorised and finitely represented under the form of the Peano principle:

(φ(0)∧∀x ∈ N, φ(x) ⇒ φ(s(x))) ⇒ ∀x ∈ N, φ(x)
, where 0 and s (the 'successor' function) are the constructor symbols for naturals and the variable x from ∀x ∈ N, φ(x) an induction variable. An induction schema is a finite description of the set of weaker formulas. It is built from IH-free formulas, called base cases, and IH-based formulas, called step cases. For instance, the induction schema underlying the Peano principle consists of one base case (φ(0)) and one step case (∀x ∈ N, φ(x) ⇒ φ(s(x))).

Restricted to first-order reasoning, the Noetherian induction principle can be instantiated in two distinct ways [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF], whether the elements of E are (vectors of) terms or (first-order) formulas:

• term-based Noetherian induction:

(∀ term vector m ∈ E, (∀ term vector k ∈ E, k < t m ⇒ φ(k)) ⇒ φ(m)) ⇒ ∀ term vector p ∈ E, φ(p). • formula-based Noetherian induction: (∀ formula δ ∈ E, (∀ formula γ ∈ E, γ < f δ ⇒ φ(γ)) ⇒ φ(δ)) ⇒ ∀ formula ρ ∈ E, φ(ρ).
Let us notice that φ is a second-order predicate. In order to downgrade to first-order reasoning, φ is defined as the (second-order identity) predicate such that φ(ρ) = ρ, ∀ first-order formula ρ. The instance of interest becomes:

(∀ formula δ ∈ E, (∀ formula γ ∈ E, γ < f δ ⇒ γ) ⇒ δ) ⇒ ∀ formula ρ ∈ E, ρ
The term-based Noetherian induction principle can be trivially represented as an instance of the formula-based Noetherian induction principle for which i) all elements from E are instances of the same formula φ, and ii) for any two instances φ(k) and φ(m) from E, we have φ

(k) < f φ(m) if k < t m.
Let us consider the 'P and Q' example, presented in [START_REF] Wirth | Descente infinie + Deduction[END_REF] and concerning the mutually dependent inductive definitions of the predicates P and Q: ⇒ P (0)

(1)

P (x) ∧ Q(x, s(x)) ⇒ P (s(x)) (2) ⇒ Q(x, 0) (3) P (x) ∧ Q(x, y) ⇒ Q(x, s(y)) (4) 
Both P and Q have naturals as arguments. Assuming the conjectures P (u) and Q(x, y), the direct application of the Peano principle on any of them, whatever is the induction variable, will fail to finish the proof. This is because the proof of P (u) needs an instance of Q(x, y), and vice versa. However, a successful proof can be built indirectly by firstly proving as additional lemma the conjunction P (x) ∧ Q(x, y) of the two initial conjectures when the variable x is shared. It can be noticed that the proof of each initial conjecture can be trivially derived from the lemma. The difficulty of this approach is to build such lemmas as well as successful induction schemas for their proof. For example, the proof attempts for similar conjunctions, as P (y) ∧ Q(x, y) (when the variable y is shared) and P (u) ∧ Q(x, y) (when no variable is shared), will fail.

A more natural proof, based only on variable instantiations and unrolls of the definitions of P and Q, can result from using the lazy and mutual induction reasoning featured by the formula-based Noetherian induction methods to stop the proof development of some formulas, in particular for formulas that are instances of previously generated formulas. For example, the proof of Q(x, y) starts by instantiating y by 0 and s(y ). Q(x, 0) is true by (3). The instance Q(x, s(y )) is also true if P (x) and Q(x, y ) are true, by [START_REF]The SPIKE prover[END_REF]. No transformation is supported by Q(x, y ), as an instance of the initial conjecture and used as IH. The variable x of P (x) is further instantiated by 0 and s(x ). P (0) is true by (1), while P (s(x )) is true if both Q(x , s(x )) and P (x ) are true, by (2). P (x ) is an instance of P (x) while Q(x , s(x )) is an instance of the initial conjecture. The proof is illustrated in Fig. 1 as a graph. The formula from any node p holds if the formulas from the nodes pointed out by the downward arrows starting from p also hold. The arrows are labelled by the corresponding instantiating substitutions when these formulas are instances of the formula from p. There are also upward (dashed) arrows that link a formula φ to another formula to which φ is an instance. They are labelled by the instantiating substitutions written in boldface style.

This proof is simpler, due to the lack of additional lemmas and the lazy employment of the IHs. The variable instantiation schema is that used by the Peano principle, i.e., a natural variable is instantiated by 0 and s(x ), where x is a fresh natural variable. On the other hand, the induction ordering over formulas should be defined and has to ensure that the IHs are soundly used. In Sections 4 and 5, we will show different ways to apply the formula-based Noetherian induction principle in order to validate the use of IHs. However, the mechanical certification of the formula-based Noetherian induction reasoning is non-trivial. We will present in the next section the formal tools for formalising and certifying it using Coq.

Formalising formula-based Noetherian induction proofs

The Coq formalisation of formula-based Noetherian induction proofs is based on ideas presented in [START_REF] Stratulat | Integrating implicit induction proofs into certified proof environments[END_REF][START_REF] Stratulat | Automated certification of implicit induction proofs[END_REF], initially developed for certifying implicit induction proofs. Mainly, we associate to each formula a measure value that will help to compare formulas, hence to define the induction ordering < f . Given a list LF of pairs of the form (φ, µ φ ) including the formulas to be proved and their corresponding measure values, the formula-based Noetherian induction principle can be reformulated as follows:

Q(x, y) {y →0} | | {y →s(y )} " " Q(x, 0) Q(x, s(y )) | | Q(x, y ) {y →y } {y →y } {y →y } W W P (x) {x →0} {x →s(x )} | | P (s(x )) | | " " P (0) Q(x , s(x )) {x →x ;y →s(x )} {x →x ;y →s(x )} {x →x ;y →s(x )} E E P (x ) {x →x } {x →x } {x →x } W W
(∀p ∈ LF, (∀p ∈ LF, snd(p ) < f snd(p) ⇒ f st(p )) ⇒ f st(p)) ⇒ ∀p ∈ E, f st(p),
where the f st (resp., snd) function returns the first (resp., second) projection of a pair.

In Coq, the conditional part of the outermost implication can be formalised as:

Lemma main : ∀ F, In F LF → (∀ F', In F' LF → less (snd F' ) (snd F ) → fst F' ) → fst F.
We assume that the induction ordering, denoted by less, is well-founded and stable under substitutions. In the following, less is assumed to implement ≺ ≺ rpo . In this case, the measure value of a formula can be represented as the multiset of terms occurring in it. Given two pairs (φ 1 , µ φ1 ) and (φ 2 , µ φ2 ), we say that φ 1 is smaller than φ 2 if less µ φ1 µ φ2 holds.

The main induction steps for proving the validity of the formula φ from each pair of LF are:

(1) the deduction part: choose the (instances of) formulas from LF as IHs that help proving φ;

(2) the ordering part: show that the chosen IHs in the deduction part are smaller than φ.

The ordering part can be omitted if the deduction part does not involve induction reasoning. The deduction part can be performed with different inference systems, as it will be shown in Sections 4, 5, and 6.

The less ordering has to be defined explicitly, for example, using the syntactic representations of terms provided by the COCCINELLE library [START_REF] Contejean | Certification of automated termination proofs[END_REF][START_REF] Contejean | A3PAT, an approach for certified automated termination proofs[END_REF], a Coq library modelling mathematical notions for rewriting such as term algebras and induction orderings, or using the more general CoLoR library [START_REF] Blanqui | CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates[END_REF]. Both libraries can be used independently or combined, but in the subsequent examples only COCCINELLE will be used.

Formalising the induction ordering and measure values with COCCINELLE

Formalising the induction ordering A COCCINELLE abstract term is recursively defined as:

Inductive term : Set := | Var : variable → term | Term : symbol → list term → term.
COCCINELLE mutually defines ≺ rpo and ≺ ≺ rpo (denoted by rpo and rpo mul, respectively), together with other inductive predicates:

Inductive rpo (bb : nat) : term → term → Prop := | Subterm : ∀ f l t s, mem equiv s l → rpo eq bb t s → rpo bb t (Term f l ) | Top gt : ∀ f g l l', prec g f → (∀ s', mem equiv s' l' → rpo bb s' (Term f l )) → rpo bb (Term g l' ) (Term f l ) | Top eq lex : ∀ f g l l', status f = Lex → status g = Lex → prec eq f g → (length l = length l' ∨ (length l' ≤ bb ∧ length l ≤ bb)) → rpo lex bb l' l → (∀ s', mem equiv s' l' → rpo bb s' (Term g l )) → rpo bb (Term f l' ) (Term g l ) | Top eq mul : ∀ f g l l', status f = Mul → status g = Mul → prec eq f g → rpo mul bb l' l → rpo bb (Term f l' ) (Term g l )
with rpo eq (bb : nat) : term → term → Prop := | Equiv : ∀ t t', equiv t t' → rpo eq bb t t' | Lt : ∀ s t, rpo bb s t → rpo eq bb s t

with rpo lex (bb : nat) : list term → list term → Prop := | List gt : ∀ s t l l', rpo bb s t → rpo lex bb (s :: l ) (t :: l' ) | List eq : ∀ s s' l l', equiv s s' → rpo lex bb l l' → rpo lex bb (s :: l ) (s' :: l' ) | List nil : ∀ s l, rpo lex bb nil (s :: l )

with rpo mul ( bb : nat) : list term → list term → Prop := | List mul : ∀ a lg ls lc l l', permut0 equiv l' (ls ++ lc) → permut0 equiv l (a :: lg ++ lc) → (∀ b, mem equiv b ls → ∃ a', mem equiv a' (a :: lg) ∧ rpo bb b a' ) → rpo mul bb l' l.
Both rpo and rpo mul take a natural argument bb representing the maximal number of arguments of a function and used for proving its termination. equiv (resp., permut0) is the inductive predicate that checks if two terms are equivalent (resp. two lists of terms are permutable). length (resp., mem) is the usual function computing the length of a list (resp., whether a term is member of a list of terms).

The definitions of the status, prec and prec eq functions are problem dependent. For the 'P and Q' example, they (and other intermediary functions) are defined as:

Inductive symb : Set := | id 0 | id S | id P | id Q Definition status (f :symb) := match f with | id 0 ⇒ Mul | id S ⇒ Mul | id P ⇒ Mul | id Q ⇒ Mul end. Definition index (f :symb) := match f with | id 0 ⇒ 2 | id S ⇒ 3 | id P ⇒ 9 | id Q ⇒ 9 end. Definition prec bool (x y:A) : bool := blt nat (index x ) (index y).
Definition prec (x y:A) := prec bool x y = true.

Definition prec eq (x y:A) : Prop := index x = index y.

The abstract COCCINELLE terms become concrete by defining the inductive set for function symbols (symbol), denoted above by symb. The precedence prec defined over symb is based on a (index) function that associates a natural value to each function symbol. Two symbols are equivalent if and only if they have the same indexes. The well-foundedness property of prec can now be formalised as:

Theorem prec wf: well founded prec.

The 'stability under substitutions' and well-foundedness properties of rpo mul are scripted as:

Theorem rpo mul subst : ∀ A B : (list term), ∀ bb:nat, rpo mul bb A B → ∀ σ, rpo mul bb (map (apply subst σ) A) (map (apply subst σ) B ).

Theorem wf rpo mul : well founded prec → ∀ bb, well founded (rpo mul bb).

Finally, the less induction ordering is defined as an instance of rpo mul initialising some internal data structures. For example, the value given as argument to rpo and rpo mul is set to the constant max size (usually a big natural value):

Notation less := (rpo mul (bb (empty rpo infos max size))).

Formalising the measure values Formulas and their measure values should share variables such that whenever a formula φ changes by instantiation, its measure value µ φ changes accordingly. The pair (φ, µ φ ) can be represented as the anonymous function fun x ⇒ (φ, µ φ ), where µ φ is the measure of φ formalised as a list of COCCINELLE terms and x is the vector of universally quantified variables shared between µ φ and φ.

The process for converting terms from the LF formulas into COCCINELLE terms can be fully automatised, as follows:

• for each inductive set representing a sort employed in the specification, a new model function translating its constructor terms can be defined. For the 'P and Q' example, the translation function defined for the nat sort is:

Fixpoint model nat (v : nat): term := match v with | O ⇒ (Term id 0 nil) | (S x ) ⇒ let r := model nat x in (Term id S (r ::nil)) end.
• the COCCINELLE counterpart of any function or predicate symbol f will be denoted by the symbol id f prefixed by Term. The arguments of id f are represented as a Coq list; • the COCCINELLE counterpart of any variable x of sort s will be represented by the term (model s x). 

Proving formulas from LF

The LF list from the main lemma should be adapted to include anonymous functions instead of pairs. The new LF should have the type of the form:

Definition type LF := argument sort → (Prop × (List.list term)),
where argument sort is the sort written in a curried form of the most general version of the vector of shared variables allowing to define each anonymous function from LF.

By using the new LF definition, the main lemma becomes:

Lemma main : ∀ F, In F LF → ∀ u, (∀ F', In F' LF → ∀ u , less (snd (F' u )) (snd (F u)) → fst (F' u )) → fst (F u).
All formulas from the LF list can be automatically certified by proving the all true theorem, based on the main lemma and the general Noetherian induction principle built in Coq:

Theorem all true: ∀ F, In F LF → ∀ u: nat, fst (F u).
As a case study, the methodology will be used in Sections 4 and 5 for certifying proofs of conjectures about conditional specifications.

Conditional specifications

Syntax We consider many-sorted conditional specifications consisting of a set of axioms Ax representing equalities of the form i l i = r i ⇒ l = r , where '=' is the only predicate symbol and l and r, as well as l i and r i (i ≥ 0), are two terms of same sort from T (F, V). In addition, (V ar(l i ) ∪ V ar(r i )) ⊆ (V ar(l) ∪ V ar(r)), for any i. The conjectures to be proved are also equalities. When i = 0, the equality is unconditional and the ⇒ symbol is omitted, otherwise it is conditional and the equalities from the lhs of ⇒ are called conditions. An equality i l i = r i ⇒ l = r is a tautology if l = r is either of the form t = t, for some term t, or has a condition syntactically equal to l = r or r = l. In the following, ≤ will denote a well-founded and 'stable under substitutions' quasi-ordering over instances of equalities.

Semantics We consider term-based (Herbrand) models and denote by M the unique initial (minimal) model of Ax [START_REF] Baader | Term Rewriting and All That[END_REF]. We say that an equality e is true, or it is an (initial) consequence of Ax and written as Ax |= e, if it is valid in M . A counterexample is any ground equality e such that Ax |= e. An equality is false or has a counterexample if there is a ground instance of it that is a counterexample. Extended to a set of equalities Φ, we say that Φ has a counterexample if there is an equality from Φ that has a counterexample.

Certifying implicit induction proofs

Implicit induction inference systems

An implicit induction inference system consists of inference rules representing transitions between pairs of sets of equalities of the form (E, H) called states, where E are conjectures and H are premises. By applying an inference rule, one of the conjectures, called processed conjecture, is firstly transformed into a (potentially empty) set of new conjectures, then it may be added to the set of premises in order to participate to further transformations. An I-derivation of a set of equalities E 0 is built from the list of states generated by a successive application of the rules of an inference system I, of the form (E 0 , ∅) I (E 1 , H 1 ) I . . .. An I-proof of a set of equalities E 0 is a finite (n + 1)-state derivation that ends in a state with an empty set of conjectures, of the form (E 0 , ∅) I (E 1 , H 1 ) I . . . I (∅, H n ). We assume that, during the construction of a proof derivation, ≤ is unique and defined over the instances of equalities from the proof derivation.

The implicit induction inference systems are reductive, i.e., at every derivation step, any new conjecture should be smaller, and sometimes smaller or equal, than some instance of the processed conjecture. Different sound reductive systems are presented in an abstract form because the way the new conjectures are created is ignored, for example, the inference system A [START_REF] Stratulat | A general framework to build contextual cover set induction provers[END_REF]. It has been shown that A generalizes many of the existing implicit induction procedures, for example the Implicit Induction procedure from [START_REF] Bronsard | Induction using term orderings[END_REF], which is a generalization of the hierarchical induction procedure from [START_REF] Reddy | Term Rewriting Induction[END_REF]) and of the inductive procedures for conditional equalities from [START_REF] Kounalis | Mechanizing inductive reasoning[END_REF][START_REF] Bronsard | Conditional rewriting in Focus[END_REF][START_REF] Bouhoula | Automated mathematical induction[END_REF].

In the following, we will consider only instances of the inference system A , which is a simplified version of A.

AddPremise:

(E ∪ {φ}, H) A (E ∪ Φ, H ∪ {φ}),
if, for any counterexample φτ of φ, there is a counterexample ψ in i) E ∪ Φ such that ψ < φτ , or ii) H such that ψ ≤ φτ .

Simplify:

(E ∪ {φ}, H) A (E ∪ Φ, H), if, for any counterexample φτ of φ, there is a counterexample ψ in E ∪ Φ ∪ H such that ψ ≤ φτ .
A consists of two rules, AddPremise and Simplify, that replace the processed conjecture φ by the set of new conjectures Φ. Moreover, AddPremise adds φ to the set of premises if some ordering constraints are satisfied between counterexamples of φ and counterexamples in Φ and other equalities from the current state. On the other hand, Simplify does not add φ as a premise but allows for less restrictive ordering constraints.

Theorem 4.1 (soundness of A ). For any proof (E 0 , ∅) A . . . A (∅, H n ) using a set of axioms Ax, we have Ax |= E 0 .

Proof. Let n be an arbitrary but fixed natural number, (E 0 , ∅) A . . . A (∅, H n ) a proof and assume by contradiction that E 0 has a false equality, hence a counterexample. By the well-foundedness property of the quasi-ordering ≤, there exists a minimal counterexample in the set of equalities generated during the proof. Since the proof ends with an empty set of conjectures, there is a last state (E ∪ {φ}, H) in the proof such that φ has a minimal counterexample φτ . Some rule should be applied on φ, hence we perform a case analysis on the kind of this rule to show that no rule can be applied on φ, which contradicts the fact that the proof ends with an empty set of conjectures.

• Case 1 Let us assume that the rule is AddPremise. By considering the applicability conditions of AddPremise for the particular case of φτ , it can be noticed that the only possible solution is when H has a minimal counterexample ψ such that ψ ∼ φτ . Since there proof started with an empty set of premises, there should be a step in the proof when AddPremise was applied on a state of the form (E ∪ {φ }, H ), where H has no minimal counterexamples equivalent to φτ but φ has a minimal counterexample equivalent to φτ . As previously, from the applicability conditions of AddPremise, there should be a premise in H having a minimal counterexample ψ such that ψ ∼ φτ , hence contradiction. • Case 2 Let us assume that the rule is Simplify. By analysing the applicability conditions of Simplify for φτ and the fact that E ∪Φ can not have minimal counterexamples equivalent to φτ , we conclude that H should have a premise with a minimal counterexample ψ such that ψ ∼ φτ . This leads to a contradiction as in the previous case. 2

An abstract inference system becomes concrete by defining how the new conjectures from every proof step are built by the means of different reasoning techniques. Any concrete rule should satisfy the ordering constraints defined by some abstract rule.

We can define now a minimalistic and concrete implicit induction inference system, denoted by I b , able to prove the conjecture from the 'P and Q' example, presented at the end of Section 2.

InstNat (I ): (E ∪ {φ x }, H) I b (E ∪ {φ{x → 0}, φ{x → s(x )}}, H),
where x is a fresh variable.

DelInst (D): (E ∪ {φ}, H) I b (E, H), if ∃ψ ∈ H ∪ Ax and a substitution σ such that φ ≡ ψσ. RedEq (R): (E ∪ {φ}, H) I b (E ∪ i {l i σ = r i σ}, H ∪ {φ}),
if there is an axiom i l i = r i ⇒ l = r and a substitution σ such that φ ≡ (lσ = rσ).

InstNat replaces an equality φ with a natural variable x by two equalities derived from φ by instantiating φ with 0 and the successor of a fresh natural variable, respectively. DelInst deletes the processed conjecture if it is an instance of a premise or axiom. Finally, RedEq replaces any unconditional equality that matches the conclusion of a conditional axiom with the set of the corresponding instances of the conditions of the conditional axiom. In addition, the processed conjecture is added as premise.

The equational axioms for the 'P and Q example' are built from the translation of the inductive definitions of the predicates P and Q, by considering them as the boolean functions p and q, respectively, and defined as:

p(0) = true (5) p(x) = true ∧ q(x, s(x)) = true ⇒ p(s(x)) = true (6) p(x) = f alse ⇒ p(s(x)) = f alse (7) q(x, s(x)) = f alse ⇒ p(s(x)) = f alse (8) 
q(x, 0) = true (9) p(x) = true ∧ q(x, y) = true ⇒ q(x, s(y)) = true (10)

p(x) = f alse ⇒ q(x, s(y)) = f alse (11) q(x, y) = f alse ⇒ q(x, s(y)) = f alse (12)
where f alse and true are the usual boolean constants.

In order to define the ordering < for this example, the measure value of an equality of the form i l i = r i ⇒ l = r is defined as the multiset of terms

i |l i | ∪ i |r i | ∪ |l| ∪ |r|,
where |t| is defined as

• {x, x} if t is of the form p(x), • {x, x, y} if t is of the form q(x, y), • {t}, otherwise.
The ordering used for comparing multisets of terms is the multiset extension of the rpo using the precedence f alse < F true < F 0 < F s. It can be noticed that for any conditional axiom defining p and q, of the form i e i ⇒ e, we have that e i < e. This property will be useful for the sound application of the RedEq rule.

The I b -proof of the equality q(x, y) = true is:

({q(x, y) = true}, ∅) I I b ({q(x, 0) = true, q(x, s(y )) = true}, ∅) D I b ({q(x, s(y )) = true}, ∅) R I b ({p(x) = true, q(x, y ) = true}, {q(x, s(y )) = true}) I I b ({p(0) = true, p(s(x )) = true, q(x, y ) = true}, {q(x, s(y )) = true}) D I b ({p(s(x )) = true, q(x, y ) = true}, {q(x, s(y )) = true}) R I b ({p(x ) = true, q(x , s(x )) = true, q(x, y ) = true}, {p(s(x )) = true, q(x, s(y )) = true}) D I b
({p(x ) = true, q(x, y ) = true}, {p(s(x )) = true, q(x, s(y )) = true})

I I b ({p(0) = true, p(s(x )) = true, q(x, y ) = true}, {p(s(x )) = true, q(x, s(y )) = true}) D I b ({p(s(x )) = true, q(x, y ) = true}, {p(s(x )) = true, q(x, s(y )) = true}) D I b ({q(x, y ) = true}, {p(s(x )) = true, q(x, s(y )) = true}) I I b ({q(x, 0) = true, q(x, s(y )) = true}, {p(s(x )) = true, q(x, s(y )) = true}) D I b ({q(x, s(y )) = true}, {p(s(x )) = true, q(x, s(y )) = true}) D I b (∅, {p(s(x )) = true, q(x, s(y )) = true})
where the underlined equalities are the processed conjectures from each proof state. Proof. It follows directly from Theorem 4.1 if we prove that each I b -rule is the instance of an A -rule.

• InstNat is an instance of Simplify because if the processed conjecture φ x has a counterexample then it should be in the set of new conjectures {φ{x → 0}, φ{x → s(x )}} • DelInst is an instance of Simplify because whenever the equality instantiated by the processed conjecture φ is • an axiom, then φ has no counterexamples, or • a premise ψ from the current state, then any counterexample φτ is an instance of ψ. • RedEq, using the conditional axiom i l i = r i ⇒ l = r for which there is a substitution σ such that the processed conjecture φ is (lσ = rσ), is an instance of AddPremise because whenever φ has a counterexample φτ , one of the equalities from the multiset i {l i στ = r i στ } is a counterexample smaller than φτ (≡ (lστ = rστ )), by the fact that l i = r i < l = r, for each i, and the 'stability under substitutions' property of <. 2 Thanks to Theorem 4.2, we can conclude that q(x, y) = true is a consequence of the axioms defining p and q.

4.2. A first attempt to certify the proof of q(x, y) = true A translation of the functions p and q in Coq, using a functional programming style, can be

Fixpoint p (u:nat) : bool := match u with | 0 ⇒ true | (S u' ) ⇒ if andb (p u' ) (q u' (S u' )) then true else false end with q (x y: nat): bool := match y with | 0 ⇒ true | (S y' ) ⇒ if andb (p x ) (q x y' ) then true else false end.
Unfortunately, the version of Coq used for certification, labelled as 8.4pl4, is not able to prove automatically the termination of the P and Q functions, yielding the message Error: Cannot guess decreasing argument of fix. Moreover, specifying user-defined well-founded orderings for proving that an argument is decreasing is not allowed for mutually recursive functions, as it is clearly stated by the message Error: Cannot use mutual definition with well-founded recursion or measure.

We will show in Subsection 5.3 how to handle this situation using the logic programming style.

Certifying implicit induction proofs concerning specifications that are convertible into valid Coq script

In the rest of the section, we will stick to certifying implicit induction proofs that involve equational specifications convertible into valid Coq script, by using a functional programming style. Let us consider the function symbols even and odd, recursively defined over naturals, as:

even(0) = true (13) even(s(x)) = odd(x) (14) odd(0) = f alse (15) odd(s(x)) = even(x) (16) 
as well as the addition over naturals, denoted by '+' and defined by the axioms:

0 + x = x (17) s(x) + y = s(x + y) (18) 
The Coq translation of the equational definitions yields functions whose termination can be automatically checked: We can go further and try to prove the more complex conjecture

odd(u 1 + u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ odd(u 1 + u 3 ) = true (19) 
by using reductive reasoning techniques. Rewriting is a most effective reductive technique for reasoning on equational specifications. When dealing with equality reasoning, the reductive constraints between (instances of) the processed conjecture and new conjectures can be implicitly satisfied if the equational specifications are represented in terms of rewrite systems and the IHs are orientable. In some cases, the constraints related to IHs can be partially weakened. For example, [START_REF] Stratulat | Combining rewriting with Noetherian induction to reason on nonorientable equalities[END_REF] proposes a method allowing for relaxed rewriting [START_REF] Bouhoula | Automated mathematical induction[END_REF] to deal with unorientable IHs by integrating explicit induction schemas. It covers the term [START_REF] Reddy | Term Rewriting Induction[END_REF], ordered [START_REF] Dershowitz | Deductive and inductive synthesis of equational programs[END_REF], enhanced and incremental [START_REF] Aoto | Dealing with non-orientable equations in rewriting induction[END_REF] rewriting induction procedures.

Given a reduction ordering ≺ over terms, any equality l = r can be oriented into the rewrite rule l → r if r ≺ l. Let us assume a set ρ of rewrite rules. A term u can be rewritten to u by the rewrite operation u → ρ u if there are a rewrite rule l = r ∈ ρ and a substitution σ such that lσ is a subterm of u. The rewrite operation builds u from u by replacing the subterm lσ by rσ. By abuse of notation, → ρ is extended to rewrite conditional equalities: if a conditional equality e of the form i l i = r i ⇒ l = r has a term s ∈ i {l i , r i } ∪ {l, r} that is rewritten to s using rewrite rules from ρ then we write e → ρ e , where e derives from e by replacing s with s .

Example 4.3. The axioms ( 13)-( 18) can be oriented from left to right using as reduction ordering the rpo built from the precedence over the function symbols stating that f alse < F true < F 0 < F s < F + < F even and even ∼ F odd.

Let ≤ be the well-founded and 'stable under substitutions' quasi-ordering over the equalities whose strict part is the multiset extension ≺ ≺ of the reduction ordering ≺. The measure value of an equality of the form i l i = r i ⇒ l = r is defined for this example as the multiset of terms i {l i , r i } ∪ {l, r}. Proof. Let us assume that e is of the form i l i = r i ⇒ l = r and that s ∈ i {l i , r i } ∪ {l, r} was rewritten to s by a rewrite rule g → d from ρ. Then, there is a substitution σ such that gσ is a subterm of s. By the 'stability under substitutions' property of ≺, we have that dσ ≺ gσ, and by the 'stability under contexts' property, s ≺ s holds.

On the other hand, the measure value of i l i = r i ⇒ l = r is the multiset i {l i , r i } ∪ {l, r}, s being one of its elements. By the definition of the multiset extension relation, the replacement of s by s in this multiset yields a smaller multiset, hence e ≺ ≺ e. 2 Proofs of the conjecture (19) can be built using the inference system I f :

GenNat (G): (E ∪ {φ x }, H) I f (E ∪ {φ 1 , φ 2 }, H ∪ {φ}),
where φ{x → 0} → Ax φ 1 , φ{x → s(x )} → Ax φ 2 and x is a fresh variable.

SimpEq (S ):

(E ∪ {φ}, H) I f (E ∪ Φ, H), if either i) φ is a tautology; in this case Φ is empty; or, ii) φ → Ax∪(E∪Φ∪H) ≤φ ψ; in this case, Φ is {ψ}. Subsumption (E ): (E ∪ {φ}, H) I f (E, H),
if φ is an instance of an equality from H.

Negative Clash (N ):

(E ∪ {φ}, H) I f (E, H),
if φ is a conditional equality and true = f alse or f alse = true is a condition of φ.

GenNat firstly instantiates a natural variable of the processed conjecture by 0 and the successor of a fresh natural variable, then rewrites the two instances with axioms, the results of the rewriting operations being stored as new conjectures. At the end, the processed conjecture is saved as a new premise. SimpEq either deletes the tautologies or performs rewrite operations on the processed conjecture with axioms or instances of equalities from the current state. Subsumption deletes the processed conjecture if it is an instance of a premise. Finally, Negative Clash deletes the conditional equalities having a false condition of the form true = f alse or f alse = true.

The I f -proof of ( 19) is more complex than that of the conjecture q(x, y) = true. For lack of space, the conditional equalities from this proof will be presented in a more compact way, as atoms. The list of atoms and their corresponding conditional equalities are:

e 13(u 1 , u 2 , u 3 ) : odd(u 1 + u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ odd(u 1 + u 3 ) = true e 23(u 2 , u 3 ) : odd(0 + u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ odd(u 3 ) = true e 29(u 4 , u 2 , u 3 ) : odd(s(u 4 ) + u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ odd(s(u 4 + u 3 )) = true e 36(u 2 , u 3 ) : odd(u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ odd(u 3 ) = true e 49(u 4 , u 2 , u 3 ) : even(u 4 + u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ even(u 4 + u 3 ) = true e 67(u 3 ) : odd(0) = true ∧ even(u 3 ) = true ⇒ odd(u 3 ) = true e 73(u 4 , u 3 ) : odd(s(u 4 )) = true ∧ even(s(u 4 + u 3 )) = true ⇒ odd(u 3 ) = true e 81(u 3 ) : f alse = true ∧ even(u 3 ) = true ⇒ odd(u 3 ) = true e 91(u 4 , u 3 ) : even(u 4 ) = true ∧ odd(u 4 + u 3 ) = true ⇒ odd(u 3 ) = true e 113(u 2 , u 3 ) : even(0 + u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ even(u 3 ) = true e 119(u 5 , u 2 , u 3 ) : even(s(u 5 ) + u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ even(s(u 5 + u 3 )) = true e 138(u 2 , u 3 ) : even(u 2 ) = true ∧ even(u 2 + u 3 ) = true ⇒ even(u 3 ) = true e 189(u 3 ) : even(0) = true ∧ odd(u 3 ) = true ⇒ odd(u 3 ) = true e 195(u 5 , u 3 ) : even(s(u 5 )) = true ∧ odd(s(u 5 + u 3 )) = true ⇒ odd(u 3 ) = true e 237(u 3 ) : even(0) = true ∧ even(u 3 ) = true ⇒ even(u 3 ) = true e 243(u 5 , u 3 ) : even(s(u 5 )) = true ∧ even(s(u 5 + u 3 )) = true ⇒ even(u 3 ) = true e 267(u 5 , u 3 ) : odd(u 5 ) = true ∧ odd(u 5 + u 3 ) = true ⇒ even(u 3 ) = true e 275(u 3 ) : f alse = true ∧ odd(0 + u 3 ) = true ⇒ even(u 3 ) = true e 295(u 3 ) : odd(0) = true ∧ odd(u 3 ) = true ⇒ even(u 3 ) = true e 301(u 6 , u 3 ) : odd(s(u 6 )) = true ∧ odd(s(u 6 + u 3 )) = true ⇒ even(u 3 ) = true e 317(u 3 ) : f alse = true ∧ odd(u 3 ) = true ⇒ even(u 3 ) = true Using the notation with atoms, the proof can be represented as:

({e 13(u 1 , u 2 , u 3 )}, ∅) G I c f ({e 23(u 2 , u 3 ), e 29(u 4 , u 2 , u 3 )}, {e 13(u 1 , u 2 , u 3 )}) * S I c f ({e 36(u 2 , u 3 ), e 49(u 4 , u 2 , u 3 )}, {e 13(u 1 , u 2 , u 3 )}) G I c f
({e 67(u 3 ), e 73(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 )}, {e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) * S I f

({e 81(u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 )}, {e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )})

N I f ({e 73(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 )}, {e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) S I f ({e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 )}, {e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) G I f
({e 91(u 4 , u 3 ), e 113(u 2 , u 3 ), e 119(u 5 , u 2 , u 3 )}, {e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) * S I f ({e 91(u 4 , u 3 ), e 138(u 2 , u 3 ), e 13(u 5 , u 2 , u 3 )}, {e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )})

E I f ({e 91(u 4 , u 3 ), e 138(u 2 , u 3 )}, {e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) G I f
({e 189(u 3 ), e 195(u 5 , u 3 ), e 138(u 2 , u 3 )}, {e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) S I f

({e 195(u 5 , u 3 ), e 138(u 2 , u 3 )}, {e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) * S I f

({e 36(u 5 , u 3 ), e 138(u 2 , u 3 )}, {e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )})

E I f
({e 138(u 2 , u 3 )}, {e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )})

G I f
({e 237(u 3 ), e 243(u 5 , u 3 )}, {e 138(u 2 , u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) S I f

({e 243(u 5 , u 3 )}, {e 138(u 2 , u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) * S I f ({e 267(u 5 , u 3 )}, {e 138(u 2 , u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )})

G I f
({e 295(u 3 ), e 301(u 6 , u 3 )}, {e 267(u 5 , u 3 ), e 138(u 2 , u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) * S I f

({e 317(u 3 ), e 138(u 6 , u 3 )}, {e 267(u 5 , u 3 ), e 138(u 2 , u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) N I f ({e 138(u 6 , u 3 )}, {e 267(u 5 , u 3 ), e 138(u 2 , u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )}) E I f ({∅, {e 267(u 5 , u 3 ), e 138(u 2 , u 3 ), e 91(u 4 , u 3 ), e 49(u 4 , u 2 , u 3 ), e 36(u 2 , u 3 ), e 13(u 1 , u 2 , u 3 )})

As for the I b -proof of the equality q(x, y) = true, the processed conjectures from each state are underlined. * S I f means that SimpEq was applied several times. The induction reasoning occurs while executing the Subsumption rule, the instances of premises used as IHs being built by need.

Theorem 4.5 (soundness of I f ). The inference system I f is sound.

Proof. As for the proof of Theorem 4.2, we show that each I f -rule is the instance of an A -rule.

• GenNat is an instance of AddPremise. If the processed conjecture φ x has a counterexample φτ then it should be in the set of intermediary conjectures {φ{x → 0}, φ{x → s(x )}}. Since the two intermediary conjectures are rewritten with axioms, the set of new conjectures has a counterexample smaller than φτ , by the reductiveness property of rewriting and the 'stability under substitutions' property of ≤. • SimpEq is an instance of Simplify. If the processed conjecture φ has a counterexample φτ , then φ should be rewritten to ψ with i) axioms, or ii) other equalities from the current state or from the new set of conjectures which are smaller or equal than φ.

We have that ψ < φ by the reductiveness property of rewriting and ψτ < φτ by the 'stability under substitutions' property of <. If ψτ is false, then ψτ is a counterexample from the new set of conjectures which is smaller than φτ . If ψτ is true, it means that the rewrite rule e was selected from the current state and satisfies e ≤ φ. By the 'stability under substitutions' property of ≤, we have that eτ ≤ φτ . Moreover, eτ is a counterexample since φτ is false but ψτ is true. • Subsumption is an instance of Simplify because whenever the processed conjecture φ is an instance of a premise, any counterexample of φ is also a counterexample of that premise. • Negative Clash is an instance of Simplify because the processed conjecture has no counterexamples. 2 By Theorem 4.5, we conclude that the conjecture ( 19) is a consequence of the axioms defining even, odd and '+'.

Coq formalization and certification of implicit induction proofs based on functional programming style

The induction ordering is built similarly as for the 'P and Q' example, shown in Subsection 3.1, excepting that the precedence over the function symbols changes, as follows:

Inductive symb : Set := | id 0 | id S | id true | id false | id even | id odd | id plus. Definition index (f : symb) := match f with | id 0 ⇒ 2 | id S ⇒ 3 | id true ⇒ 4 | id false ⇒ 5 | id even ⇒ 10 | id odd ⇒ 10 | id plus ⇒ 7 end.
The formula-based Noetherian induction principle will be applied on the set of all equalities encountered in the implicit induction proof of e 13(u 1 , u 2 , u 3 ). The LF list type LF 13 and its type LF 13 are: The measure value attached to any equality e in the corresponding anonymous function is the list of the literate representation in COCCINELLE of the terms from e.

Definition type LF 13 := nat → nat → nat → Prop × List.list
The main lemma becomes:

Lemma main 13 : ∀ F, In F LF 13 → ∀ u1 u2 u3, (∀ F', In F' LF 13 → ∀ e1 e2 e3, less (snd (F' e1 e2 e3 )) (snd (F u1 u2 u3 )) → fst (F' e1 e2 e3 )) → fst (F u1 u2 u3 ).
The proof of the main 13 lemma starts with a case analysis on the anonymous functions from LF 13. We describe the scenarios for building the Coq script by translating every single implicit induction inference step. Given an anonymous function F ∈ LF 13,

• the main steps for generating the Coq script for the case when a GenNat rule is applied on an equality e from F are: (1) generation and application of the instantiation schema. The instantiation schema of variables from e consists in replacing a variable v of natural sort with 0 and successor of a fresh variable. In Coq, this can be easily performed with the destruct tactic applied on v. However, an instantiation schema reproduced by the means of functional schemes [START_REF] Barthe | Efficient reasoning about executable specifications in Coq[END_REF] is more flexible than the instantiation schemas issued from the definitions of inductive sets on which the destruct tactic are based:

Fixpoint f (u 1 : nat) {struct u 1 } : nat := match u 1 with | 0 ⇒ 0 | (S u 2 ) ⇒ 0 end.
Functional Scheme f ind:= Induction for f Sort Prop.

The functional scheme can be applied on any natural variable u 1 , as follows:

pattern u 1 , (f u 1 ). apply f ind.

(2) validation of each instance and ordering constraint. For each equality instance φ generated during the application of GenNat, we assign to F the anonymous function from LF 13 that corresponds to the equality resulted from the rewriting of φ in the I f -proof. If the axioms are put in the Coq rewrite base, the logical equivalence between φ and the rewritten instance can be automatically checked by the auto tactic. The ordering constraints requiring that the measure value of the equality from F be smaller than µ φ are also automatically checked by user-defined tactics. The rewrite model tactic simplifies µ φ by unfolding the model nat translation functions on the subterms of φ of the form (model nat (S u)). The solve rpo mul tactic i) replaces the terms of the form (model nat u) by COCCINELLE variables, ii) performs the comparison test, representing a test case for checking Theorem 4.4, and iii) by the 'stability under substitutions' property of rpo mul, preserves the comparison result for the instance built with the substitution mapping the COCCINELLE variables to the corresponding (model nat u) terms. • the scenario corresponding to the application of a SimpEq rule using rewriting is similar to that presented at the step (2) of the scenario built for GenNat. The tautologies are eliminated by the auto tactic; • the application of a Negative Clash corresponds to the application of the discriminate tactic; • the Subsumption steps are ignored because the equality from the anonymous function F is an instance of an equality from another anonymous function from LF 13.

Next, we show that any formula from LF 13 is true:

Theorem all true 13 : ∀ F, In F LF 13' → ∀ (u1 : nat) (u2 : nat) (u3 : nat), fst (F u1 u2 u3 ).
Finally, our property is certified:

Theorem true 13 : ∀ (u1 : nat) (u2 : nat) (u3 : nat), odd (plus u1 u2 ) = true → even (plus u2 u3 ) = true → odd (plus u1 u3 ) = true.

Certifying cyclic proofs

In the previous section, we have shown that the computational cost for certifying implicit induction proofs also depends on the number of equalities encountered in the proofs. In practice, it is common that implicit induction provers (automatically) generate large proofs, with hundreds or thousands of equalities [START_REF] Barthe | Validation of the JavaCard platform with implicit induction techniques[END_REF][START_REF] Rusinowitch | Mechanical verification of an ideal incremental ABR conformance algorithm[END_REF]. In this case, the proof certification effort becomes non-negligeable. We present a different method for proving conjectures about conditional specifications, based on a reductive-free cyclic induction approach proposed in [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF] for which the certification process is more effective. The proofs are built by outlining the non-trivial induction reasoning in terms of cycles of equalities. Compared to the validation process of implicit induction proofs from Section 4, the validation of cyclic proofs needs fewer ordering constraints and shorter LF lists.

Cyclic induction inference systems

We introduce the abstract inference system D , similar to the system D [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF], which consists of the following three rules:

Deduction: E ∪ {φ} D E ∪ Φ,
if Φ has a counterexample whenever φ has a counterexample.

Split: E ∪ {φ} D E ∪ Φ, if Φ 
is a set of instances of φ such that Φ has a counterexample whenever φ has a counterexample.

Induction: E ∪ {φ} D E ∪ Φ, if there exists an equality ψ previously generated in the derivation such that Φ or ψ have a counterexample whenever φ has a counterexample.

Compared to the implicit induction inference rules, the D -rules are transitions between multisets of equalities that transform an equality (i.e., the processed conjecture) into a set of new equalities (i.e., new conjectures). Deduction ensures that for any counterexample of the processed conjecture there is a counterexample in the set of new conjectures. Split is a particular case of Deduction, requiring that the set of new conjectures consists of instances of the processed conjecture. Finally, Induction is the only rule that performs induction reasoning, by allowing instances of previously generated equalities in the derivation to be used as IHs when transforming the processed conjecture. It can be seen as a generalisation of Deduction since for any counterexample of the processed conjecture we may not require for a counterexample in the set of new conjectures if the equality used as IH has already a counterexample. Definition 5.1 (D -preproof ). Given a multiset of equalities E 0 , any finite derivation of the form

E 0 D . . . D ∅ is a D -preproof of E 0 .
Concrete inference rules can be built by showing how the new conjectures from the Drules are generated using specific reasoning techniques. Based on the reasoning techniques employed by the inference system I b from Section 4, we can build the inference system I b c :

DelInst' (D c ): E ∪ {φ} I b c E, if there are ψ ∈ Ax and a substitution σ such that φ ≡ ψσ.

RedEq' (R c ): E ∪ {φ} I b c E ∪ i {l i σ = r i σ}, if i l i = r i ⇒ l = r ∈ Ax and ∃σ such that φ ≡ (lσ = rσ) or φ ≡ (rσ = lσ). SplitNat (S c ): E ∪ {φ x } I b c E ∪ {φ{x → 0}, φ{x → s(x )}}
, where x is a fresh variable.

IndNat (I c ): E ∪ {φ} I b c E, if
there are a previously generated equality ψ and a substitution σ such that φ ≡ ψσ.

DelInst' deletes the processed conjecture if it is an instance of an axiom. RedEq' firstly checks whether the processed conjecture is an instance of the conclusion of some axiom, then adds as new conjectures the set of corresponding instances of the conditions of the axiom. SplitNat applies on conjectures with natural variables and replaces them by their instances resulted by replacing some natural variable with 0 and successor of a new variable. Finally, IndNat deletes the processed conjecture if it is an instance of a previous conjecture in the derivation.

Theorem 5.2. Any I b c -rule is an instance of a D -rule.

Proof. We perform a case analysis on the I b c -rules: • DelInst' is an instance of Deduction for the case when the set of new conjectures is empty since the processed conjecture has no counterexamples; • RedEq' is an instance of Deduction because for any counterexample of the processed conjecture φ there is one in the set of corresponding instances of the equality conditions of the axiom whose conclusion was instantiated by φ; • SplitNat is an instance of Split since any counterexample of the processed conjecture is also a counterexample in the set of new conjectures; • IndNat is an instance of Induction because any counterexample of the processed conjecture is also a counterexample of the previous equality whose instance was used as IH. 2

An I b c -preproof of a multiset of equalities E 0 is any finite I b c -derivation that starts with E 0 and finishes with an empty set of equalities.

Example 5.3. The following I b c -preproof of {q(x, y) = true} can be built by using the axioms ( 5)-( 12) and the proof scenario given at the end of Section 2:

{q(x, y) = true} Sc I b c {q(x, 0) = true, q(x, s(y )) = true} Dc I b c {q(x, s(y )) = true} Rc I b c {q(x, y ) = true, p(x) = true} Ic I b c {p(x) = true} Sc I b c {p(0) = true, p(s(x )) = true} Dc I b c {p(s(x )) = true} Rc I b c {p(x ) = true, q(x , s(x )) = true} Ic I b c {q(x , s(x )) = true} Ic I b c ∅,
where the processed conjectures are underlined. In order to check the soundness of the induction reasoning employed in D -preproofs, we will illustrate the D -preproofs as oriented graphs for which the nodes are equalities from the preproof and the arrows are of two kinds: i) downward arrows that link a processed conjecture to any new conjecture, and ii) upward (dashed) arrows that connect a processed conjecture to the previous conjecture whose instance was used as IH in an induction step. The instantiating substitutions used in split and induction steps annotate the corresponding arrows, those from the induction steps being written in boldface style. We denote a node by R node if R is the name of the D -rule applied on the equality labelling the node. Also, an IH-node is any node labelled by an equality whose instance was used as IH.

q(x, y) = true {y →0} w w {y →s(y )} ' ' q(x, 0) = true q(x, s(y )) = true w w q(x, y ) = true {y →y } {y →y } {y →y } W W p(x) = true {x →0} & & {x →s(x )} w w p(s(x )) = true w w ' ' p(0) = true q(x , s(x )) = true {x →x ;y →s(x )} {x →x ;y →s(x )} {x →x ;y →s(x )} A A p(x ) = true {x →x } {x →x } {x →x } W W
Example 5.4. The I b c -preproof from Example 5.3 is illustrated as the oriented graph from Fig. 2.

A cycle of a D -preproof can be represented as a circular list of paths such that each path has nodes from only one tree derivation of the preproof. Oriented graphs may have minimal cycles, i.e., cycles that do not contain other cycles, and strongly connected components. A strongly connected component p is a maximal sub-graph such that, given any two different nodes in p, there is a path in p between them in each direction.

Example 5.5. The oriented graph from Fig. 2 has 3 minimal cycles:

• [q(x, y) = true, q(x, s(y )) = true, q(x, y ) = true], • [p(x) = true, p(s(x )) = true, p(x ) = true], and • [q(x, y) = true, q(x, s(y ) = true, p(x) = true, p(s(x )) = true, q(x , s(x )) = true]
and one strongly connected component representing the sub-graph built from the nodes of these minimal cycles. By abuse of notation, the nodes from the paths have been denoted by the labelling equalities. This is possible only for preproofs for which no equality labels distinct nodes in a tree derivation.

We can build a well-founded partial ordering < C over the set of strongly connected components C of any D -preproof. Given two strongly connected components p 1 and p 2 , we write p 1 < C p 2 if there is a path in the cyclic graph of the D -preproof leading any node of p 2 to any node of p 1 .

Cyclic proofs

A D -preproof of a multiset of equalities E 0 , built using a set of axioms Ax, is sound if Ax |= E 0 . Any sound preproof is also called a proof. In order to prove the soundness of a preproof, it is enough to show that any of its strongly connected components soundly uses the IHs.

Definition 5.6 (sound strongly connected components). A strongly connected component p of a D -preproof is sound if the IHs, representing instances of equalities labelling IH-nodes from p and used to process equalities labelling Induction nodes from p, are true.

Ordering constraints that guarantee the soundness of D -preproof can be defined for normalised cycles for which each path starts with an equality labelling a root of some tree derivation from the graph of p. This property can be achieved if any non-root IHnode is transformed into a root IH-node, as illustrated in Fig. 3 and referred to as the normalisation operation. Any transformation detaches the subtree rooted by the non-root IH-node, labelled by φ, from the graph to become a new tree, by preserving a copy of the IH-node. Next, an upward arrow is added to link the copy node with the root node of the new tree. By labelling it with the identity substitution σ φ id , the transformation simulates the application of Induction on the formula labelling the copy node, using as IH-node the root node of the new tree. It can be noticed that the transformation does not generate new strongly connected components. φ 7 7 g g becomes A strongly connected component is normalised if each of its minimal cycles is normalised. A D -preproof is normalised if each of its strongly connected components is normalised. Since the number of non-root IH-nodes of a D -preproof is finite, the normalisation process is finite. Moreover, the normal form is unique, independent from the order of processing the non-root IH-nodes.

Example 5.7. The I b c -preproof from Fig. 2 has one non-root IH-node, labelled by p(x) = true. The result of the transformation applied on it is illustrated in Fig. 4. The minimal cycles of the strongly connected component are all normalised: • first cycle: [q(x, u) = true, q(x, s(y )) = true, q(x, y ) = true],

• second cycle: [p(x) = true, p(s(x )) = true, p(x ) = true], and • third cycle: [q(x, y) = true, q(x, s(y )) = true, p(x) = true],

[p(x) = true, p(s(x )) = true, q(x , s(x )) = true].

q(x, y) = true {y →0}

x x {y →s(y )} ' ' Proof. The normalisation process may generate new tree derivations. If S is the set of the equalities labelling their root nodes, then S is S ∪ S . 2

p(x) = true {x →0} & & {x →s(x )} q(x, 0) = true q(x, s(y )) = true w w p(s(x )) = true & & p(0) = true q(x, y ) = true
Example 5.9. The I b c -preproof in Fig. 4 is also a I b c -preproof of {p(x) = true, q(x, y) = true}.

We can associate a substitution σ to each node n of a D -preproof. If n is a direct offspring of a Split node, then σ is the instantiating substitution used by the Split operation to generate n, otherwise σ is the identity substitution. To each path in a tree derivation, of the form [n 1 , . . . , n k ], we can also associate the cumulative substitution represented by the composition of substitutions §σ 1 • • • σ k , where each σ i (i ∈ [1..k]) is the substitution associated to the node n i . We denote by φ(n) the equality labelling the node n.

Definition 5.10 (n-cycle discharging IHs). An n-cycle, made of a circular list of n(>0) paths [n 1 1 , . . . n p1 1 ], . . . , [n 1 n , . . . , n pn n ] from a strongly connected component p, discharges the IHs φ(n 1 j )δ j (j ∈ [1.

.n]) if, for any i ∈ [1.

.n], we have that φ(n 1 next(i) )δ next(i) < p φ(n 1 i )θ i , where θ i is the cumulative substitution for the path [φ(n 1 i ), . . . , φ(n pi i )], next(i) = 1 + (i mod n) and < p is a well-founded and 'stable under substitutions' ordering defined over the instances of the equalities labelling the root nodes of p.

Example 5.11. The IHs used in the minimal cycles from Fig. 4 and detailed in Example 5.7 are discharged if: • (q(x, y) = true){x → x; y → y } < p (q(x, y) = true){x → x; y → s(y )} in the first cycle, true because their proofs do not require non-trivial induction reasoning, thanks to the < C -minimality of p. Therefore, the above property can be applied to conclude that all IHs used in the tree derivation rooted by n are true, which means that equality labelling n is true, so contradiction.

The step case. Let n be the root of some strongly connected component p from C and, by induction hypothesis, we assume that all the root nodes of any strongly connected component of C, < C -smaller than p, are labelled by true equalities. The IHs used by the Induction applications on nodes of p and representing instances of equalities labelling nodes outside p are true because they are instances of equalities labelling either i) root nodes of strongly connected components of C < C -smaller than p, or ii) root nodes of tree derivations that are not in any strongly connected component of C but whose proofs may require non-trivial induction reasoning captured only inside strongly connected components < C -smaller than p. From the above property, all IHs used in the tree derivation rooted by n are true. Hence, the equality labelling n is true, which leads to a contradiction.

We conclude that all root nodes of any strongly connected component of C are labelled with true equalities. Therefore, n is a root node that is not the member of any strongly connected component from C. We can build an ordering < R on the set R of root nodes that are not part of any strongly connected component from C, as follows: n 1 < R n 2 if there is an Induction step in the tree rooted by n 2 for which n 1 is the IH-node. The < R ordering is well-founded, otherwise it would include a cycle which contradicts the fact that the nodes from R are not members of any strongly connected component of C. We reason by induction on the nodes of R. If n is a < R -minimal node, then its equality is true since the IHs used in the tree derivation rooted by n, if any, are true, as instances of equalities labelling root nodes from C. If n is not a < R -minimal node, then we assume by induction hypothesis that all nodes from R, < R -smaller than n, are labelled by true equalities. The equality labelling n is true because the IHs used in the tree derivation rooted by n are true, as instances of equalities labelling root nodes from C or nodes from R, < R -smaller than n. This leads again to a contradiction. 2 Example 5.13 (cont. Example 5.11). The I b c -preproof from Fig. 4 is sound because all the IHs from its minimal cycles are discharged. Therefore, q(x, y) = true and p(x) = true are true.

Coq formalisation and certification of cyclic proofs using the logic programming style

The p and q functions can be defined using the inductive predicates P and Q, respectively, by following the logic programming style:

Inductive P : nat → Prop := | p0 : P 0 | p1 : ∀ x : nat, P x → Q x (S x ) → P (S x ) with Q : nat → nat → Prop := | q0 : ∀ x, Q x 0 | q1 : ∀ x y : nat, Q x y → P x → Q x (S y).
Any equality of the form t = true is translated to the atom t. The variables from the equational specifications and cyclic proofs are either universally quantified or free variables in the corresponding Coq specifications and proofs.

The formula-based Noetherian induction principle will be applied on the set built only from the equalities whose instances are used as induction hypotheses in the cycles, in our case, the two atoms labelling the root nodes. The main lemma becomes:

Lemma main PandQ : ∀ F, In F LF PandQ → ∀ u, (∀ F', In F' LF PandQ → ∀ u , less (snd (F' u )) (snd (F u)) → fst (F' u )) → fst (F u).
Its proof starts by a case analysis on the possible values of F, which can be either Pu or Qxy. The generation of the Coq script for each case starts by a split rule instantiating a natural variable with 0 and the successor of a fresh variable. In Coq, this can be easily performed with the destruct tactic or by the means of functional schemes, as shown in the proof of Lemma main 13 at the end of Section 4.

The proof of each resulted case follows some path from a root node to a leaf node in the cyclic graph from Figure 4. The generation of the Coq script can be automatised since there is a direct Coq translation of the non-split inference rules, as follows:

• DelInst' is translated to the apply tactic parameterised by the name of the used axiom; • RedEq' is translated by unfolding the definition of the processed conjecture, using again the apply tactic parameterised by the name of the used axiom; • the application of IndNat using an induction hypothesis from LF PandQ is translated to pose proof (HFabs0 F ) as Hind. clear HFabs0. assert (fst (F u1 0)) as HFabs0.

apply Hind. trivial in n.

The user-defined tactic trivial in is applied on an index n and checks that F is the (n + 1) element of the LF PandQ list.

Next, any formula defining the anonymous functions of LF PandQ is proved: Theorem all true PandQ: ∀ F, In F LF PandQ → ∀ u 1 : nat, fst (F u 1 ).

Finally, ∀u, P (u) and ∀x y, Q(x, y) are certified by the following theorems:

Theorem true Pu : ∀ u : nat, P u.

Theorem true Qxy : ∀ (x : nat) (y : nat), Q x y.

The details of the Coq proof can be found in Appendix A.1.

Coq formalisation and certification of cyclic proofs using the functional programming style

Conjecture (19) can also be proved using the cyclic inference system I f c , based on the reasoning techniques underlying I f , presented in Section 4:

SplitNat' (S c ): E ∪ {φ x } I f c E ∪ {φ{x → 0}, φ{x → s(x )}}
, where x is a fresh variable.

DelTaut (T c ): E ∪ {φ} I f c E, if φ is a tautology. NegClash (N c ): E ∪ {φ} I f c E if true = f alse or f alse = true is in the condition part of φ. RedAx (A c ): E ∪ {φ} I f c E ∪ {ψ}, if φ → Ax ψ.
DelSub (E c ): E ∪ {φ} I f c E if φ is an instance of a previously generated equality.

The SplitNat' rule is similar to the I b c -rule SplitNat. DelTaut and NegClash delete tautologies and conditional equalities with false conditions, respectively. RedAx rewrites the processed conjecture with axioms. Finally, DelSub deletes the processed conjecture if it is an instance of a previous equality from the I f c -preproof.

Theorem 5.14. Every I f c -rule instantiates a D -rule.

Proof. We perform a case analysis on the I f c -rules: • SplitNat' is an instance of Split, for the same reasons given for SplitNat in the proof of Theorem 5.2; • DelTaut and NegClash are instances of Deduction when the set of new conjectures is empty. This situation is acceptable because the processed conjectures are valid;

• RedAx is an instance of Deduction because for any counterexample φτ of the processed conjecture φ, ψτ is a counterexample of the new conjecture ψ; • DelSub is an instance of Induction for similar reasons given for IndNat in the proof of Theorem 5.2. 2 one can build the following I f c -preproof of the conjecture (19), represented as a linear derivation: 5 illustrates the above preproof as an oriented graph. We can distinguish three strongly connected components, denoted by p 1 , p 2 and p 3 , each of them made of only one minimal cycle, as follows:

{e 13 (u 1 , u 2 , u 3 )} Gc I f c {e 23 (u 2 , u 3 ), e 29 (u 4 , u 2 , u 3 )} Ac I f c {e 36 (u 2 , u 3 ), e 29 (u 4 , u 2 , u 3 )} * Ac I f c {e 36 (u 2 , u 3 ), e 49 (u 4 , u 2 , u 3 )} Gc I f c {e 67 (u 3 ), e 73 (u 4 , u 3 ), e 49 (u 4 , u 2 , u 3 )} Ac I f c {e 81 (u 3 ), e 73 (u 4 , u 3 ), e 49 (u 4 , u 2 , u 3 )} Nc I f c {e 73 (u 4 , u 3 ), e 49 (u 4 , u 2 , u 3 )} * Ac
• [e 13 (u 1 , u 2 , u 3 ), e 29 (u 4 , u 2 , u 3 ), e 49 (u 4 , u 2 , u 3 ), e 119 (u 5 , u 2 , u 3 ), e 13 (u 5 , u 2 , u 3 )] for p 1 ,

• [e 36 (u 2 , u 3 ), e 73 (u 4 , u 3 ), e 91 (u 4 , u 3 ), e 203 (u 5 , u 3 ), e 36 (u 5 , u 3 )] for p 2 , and • [e 138 (u 2 , u 3 ), e 259 (u 5 , u 3 ), e 283 (u 5 , u 3 ), e 317 (u 6 , u 3 ), e 138 (u 6 , u 3 )] for p 3 . The normalisation process of the I f c -preproof applies the transformation from Fig. 3 to the two non-root IH-nodes labelled by e 36 (u 2 , u 3 ) and e 138 (u 2 , u 3 ). The normal form of the I f c -preproof consists in three derivation trees, rooted by the nodes labelled by e 13 (u 1 , u 2 , u 3 ), e 36 (u 2 , u 3 ) and e 138 (u 2 , u 3 ).

e 13 (u 1 , u 2 , u 3 ) {u1 →0} t t {u1 →s(u4)} e 23 (u 2 , u 3 ) e 29 (u 4 , u 2 , u 3 ) e 36 (u 2 , u 3 ) {u2 →0} } } {u2 →s(u4)} $ $ e 49 (u 4 , u 2 , u 3 ) {u4 →0} {u4 →s(u5)} & & e 67 (u
The soundness of the I f c -preproof is ensured if the following three constraints are satisfied: e 13 (u 1 , u 2 , u 3 ){u 1 → s(s(u 5 )); u 2 → u 2 ; u 3 → u 3 } < p1 e 13 (u 1 , u 2 , u 3 ){u 1 → u 5 ; u 2 → u 2 ; u 3 → u 3 }, e 36 (u 2 , u 3 ){u 2 → u 5 ; u 3 → u 3 } < p2 e 36 (u 2 , u 3 ){u 2 → s(s(u 5 )); u 3 → u 3 }, and e 138 (u 2 , u 3 ){u 2 → u 6 ; u 3 → u 3 } < p3 e 138 (u 2 , u 3 ){u 2 → s(s(u 6 )); u 3 → u 3 }. Different well-founded and 'stable under substitutions' orderings over multisets of terms can be used to implement < p1 , < p2 and < p3 , for example the multiset extension of the rpo using any precedence.

The strategy for certifying a normalised D -preproof integrating a (potentially empty) set C of strongly connected components is based on a partial ordering defined on the components of some partition P over the root nodes of the normalised D -preproof. P is built such that two nodes are in the same component if they belong to the same strongly connected component of C. The partial ordering, denoted by < P , extends < C in such a way that, for any two components c 1 and c 2 , we have c 1 < P c 2 if there is an Induction node in the trees rooted by nodes from c 2 whose corresponding IH-node is a root node from c 1 . The strategy is to certify the proofs of the multisets of equalities labelling the root nodes of each component from P , in distinctive steps and in increasing ordering w.r.t. < P .

Example 5.15. The certification of the normalised I f c -preproof of {e 13 (u 1 , u 2 , u 3 )} starts with the certification of the proofs of the equalities labelling the root nodes of the < Cminimal strongly connected components, i.e., p 2 and p 3 , followed by the certification of the proof of the equality labelling the root node of p 1 .

The certification process for the proof of the multiset of equalities labelling the root nodes of a component c of P is similar to that given for implicit induction proofs in Subsection 4.4. First, we define the LF list as the set of anonymous functions built for the equalities labelling the root nodes from c. Second, the instantiation schemas from the GenNat' steps are defined using functional schemes, or the destruct tactic. Third, the proof of the main lemma is built by translating in Coq script the I f c -steps encountered by following the paths from root to leaf nodes in the trees rooted by the nodes of c, using similar translations as shown in Subsection 4.4. In addition, the application as IH of any instance of some equation e n not labelling any node from c is translated to apply true n. The proposed certification strategy ensures that the proof of the theorem true n is certified before its use by the apply tactic. Multiple rewrite steps can be performed with the simpl tactic. Finally, the theorem all true is certified, followed by the certification of the true theorems about the equalities labelling each node of c.

As example, we will only detail the certification process for the proof of e 13 (u 1 , u 2 , u 3 ), knowing that the certification of the proofs for e 36 (u 2 , u 3 ) and e 138 (u 2 , u 3 ) was already completed and done in a similar way. The LF list for p 1 is defined as:

Definition LF 13 := [F 13 ].
where F 13 is defined as F 13 from Subsection 4.4.

The functional schemes associated to the GenNat' steps are defined as:

The Coq script for the proofs of the remaining theorems is omitted, but it is available online as supplementary material.

Theorem all true 13 : ∀ F, In F LF 13 → ∀ (u1 : nat) (u2 : nat) (u3 : nat), fst (F u1 u2 u3 ).

Theorem true 13 : ∀ (u1 : nat) (u2 : nat) (u3 : nat), odd (plus u1 u2 ) = true → even (plus u2 u3 ) = true → odd (plus u1 u3 ) = true.

Automatic certification of SPIKE proofs

General presentation of SPIKE The automatic theorem prover SPIKE was created in a period when several formula-based Noetherian induction methods issued from Musser's completion-based inductionless induction (or proof-by-consistency) technique [START_REF] Musser | On proving inductive properties of abstract data types[END_REF] have been devised. Some of them have been implemented into theorem provers, for example, the RRL [START_REF] Kapur | RRL: A rewrite rule laboratory[END_REF] and Focus [START_REF] Bronsard | Conditional rewriting in Focus[END_REF] systems integrated the test-set induction method [START_REF] Kapur | Proof by induction using test sets[END_REF]) and a generalization of the term-rewriting induction [START_REF] Bronsard | Induction using term orderings[END_REF] for conditional theories, respectively. Inspired by the rewriting techniques previously tested with the ORME system [START_REF] Lescanne | Implementation of completion by transition rules + control: ORME[END_REF], SPIKE [START_REF] Bouhoula | SPIKE, an automatic theorem prover[END_REF] implemented an implicit induction method [START_REF] Kounalis | Mechanizing inductive reasoning[END_REF][START_REF] Bouhoula | Automated mathematical induction[END_REF] that combines features from explicit induction and inductive completion techniques. It mainly served as a prototype for proving conjectures about (extensions of) conditional specifications and for testing induction-based reasoning techniques that led to many successful proof experiments on non-trivial applications.

SPIKE can reason on conditional specifications that should satisfy some crucial properties, like the ground convergence and completeness, that ensure the coherence of the axioms and the validity of the variable instantiation schemas, respectively. They can be checked more easily if the specification is many-sorted and the set of function symbols is split into constructors and defined function symbols. SPIKE was initially designed to deal with free constructors for which no equality relation can be established between any two different constructor symbols. Several extensions have been operated on SPIKE since [START_REF] Bouhoula | SPIKE, an automatic theorem prover[END_REF] in order to deal with: i) non-free constructors [START_REF] Bouhoula | Automata-Driven Automated Induction[END_REF], ii) parameterised specifications [START_REF] Bouhoula | SPIKE: A system for sufficient completeness and parameterized inductive proofs[END_REF][START_REF] Bouhoula | Using induction and rewriting to verify and complete parameterized specifications[END_REF], iii) associative-commutative theories [START_REF] Berregeb | SPIKE-AC: A system for proofs by induction in associative-commutative theories[END_REF], iv) observational proofs [START_REF] Berregeb | Observational proofs with critical contexts[END_REF][START_REF] Bouhoula | Observational proofs by rewriting[END_REF], and v) simultaneous check of the completeness and ground convergence properties of a specification [START_REF] Bouhoula | Simultaneous checking of completeness and ground confluence for algebraic specifications[END_REF]. Most of them led to distinct proof systems that are no longer maintained in spite of their theoretical and practical interests.

The inference system Each inference rule is the implementation of one of the three rules of the abstract inference system A, based on contextual cover sets (CSSs) [START_REF] Stratulat | A general framework to build contextual cover set induction provers[END_REF]: AddPremise, Simplify, and Delete. The first two rules are the representation with CCSs of the corresponding A -rules from Section 4.1. The last rule is a particular

The employed induction ordering is the multiset extension of the mpo ordering [START_REF] Baader | Term Rewriting and All That[END_REF] using the precedence over the function symbols defined at the sections greater and equiv from the specification file. The mpo ordering also serves to orient the axioms into rewrite rules.

In Appendix A.2, we provide the SPIKE specification for the even and odd example from Section 4.

Proving properties

The implicit induction proof for a conjecture from a specification file name.spike is generated by the command spike bc name.spike. Its generation is highly automatic, following a push-button approach, but the user may influence the process of proof construction before launching the proof by defining i) the precedence used by the mpo ordering, ii) the inference rules and the proof strategy, iii) the precedence over the head symbols of the (sub)terms to which the new instantiation technique can be applied, and iv) lemmas. Once a conjecture has been proved, it can participate as lemma in the proof of further conjectures listed in the conjectures section.

The user can also interact with the prover by the means of i) extra sections, for example use: nats;2 for activating the combination of the decision procedure for linear arithmetic and the congruence closure procedure, and ii) command-line arguments given to spike bc. Some of the useful arguments are:

-coqc spec: generate the preambule, including the definition of the ordering and the Coq specification, and save the result in the Coq file name spec.v; -coqc: translate the implicit induction proof and save the result in the Coq file name.v; -dracula: generate cyclic proofs using the DRaCuLa strategy.

In an automatic way, SPIKE can prove the conjecture (19) from Section 4 by both implicit and cyclic induction. The numerical annotations of the atoms from the presented proofs correspond to numbers labelling conjectures in the SPIKE proofs. SPIKE can also automatically translate the implicit induction proof into valid Coq script. In order to do this, the Coq script translating the axioms and model functions is inlined in the SPIKE specification and should be provided by the user. It is prefixed by $ and ignored by SPIKE during the proof development. On the other hand, the cyclic proof was manually translated into Coq script by modifying the Coq script generated for the implicit induction proof.

Conclusions and future work

We have provided the formal tools to certify formula-based Noetherian induction reasoning with Coq. As an alternative to the built-in explicit induction techniques, we have opened the perspective to directly implement in Coq formula-based Noetherian induction methods that effectively manage the lazy, simultaneous and mutual induction reasoning. Compared to the methods consisting in translating particular classes of formula-based Noetherian induction proofs to an explicit induction form, our approach can generate a constructive Coq proof from any formula-based Noetherian induction proof. The main challenges to face are i) the explicit representation of the underlying induction ordering that is not built-in in Coq and that should be supported by external libraries, and ii) the automatisation of the certification process. Classical Coq proofs can also be built using the 'Descente Infinie' induction principle [START_REF] Stratulat | Integrating implicit induction proofs into certified proof environments[END_REF].

The formal tools have been used to automatically certify implicit induction and cyclic proofs. The implicit induction reasoning is reductive and can be easily automatised, while the cyclic reasoning is reductive-free, requires fewer ordering constraints and allows for more general specifications, but is less automatisable [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF]. In practice, the Coq script translating cyclic proofs may be (much) shorter than that for implicit induction proofs, hence easier to certify. The number of ordering constraints and the size of the LF lists has a strong impact on the complexity of the generated Coq script. For instance, the script generated from the implicit induction proof of the conjecture (19) deals with a unique LF list of 28 anonymous functions and certifies 30 ordering constraints, while the Coq script translating the cyclic proof has only three singleton LF lists and 3 ordering constraints to be checked.

The certification methodology has been tested with SPIKE on different other examples, among which the validation of a conformity algorithm for a telecommunication protocol [START_REF] Rusinowitch | Mechanical verification of an ideal incremental ABR conformance algorithm[END_REF]. As shown in [START_REF] Stratulat | Automated certification of implicit induction proofs[END_REF], most of the lemmas have been automatically certified by Coq. On the other hand, the methodology is limited for several reasons. SPIKE cannot translate the proof steps built with some of its inference rules, e.g., those requiring arithmetic reasoning due to the complexity of the underlying decision procedures, or some rules are correctly translated only under certain conditions. In fact, the translation process does not guarantee the conversion of any SPIKE proof to a valid Coq script. Also, an inconvenient for the potential users is represented by the necessity to inline Coq code in the SPIKE specification.

In a future line of research, we intend to avoid the translation drawbacks by directly generating the formula-based Noetherian induction proofs with the Coq inference system. In another direction, we plan to apply the formal tools for certifying other formula-based Noetherian induction techniques, e.g., the inductionless induction reasoning and other saturation-based reductive reasoning, as those based on ordered paramodulation [START_REF] Nieuwenhuis | Paramodulation-based theorem proving[END_REF] and resolution [START_REF] Bachmair | Resolution theorem proving[END_REF]. Last but not least, we intend to build similar formal tools for other certifying proof assistants, like Isabelle.

Fig. 1 .

 1 Fig. 1. The lazy and mutual induction proof of Q(x, y).

  Example 3.1. The measure value used for (Q x 0) in the formula-based Noetherian induction proof from Fig. 1 can be represented as the following COCCINELLE term list: (model nat x :: model nat x :: (Term id 0 nil) :: nil), corresponding to the literate translation of the multiset {x, x, 0}.

Theorem 4 .

 4 2 (soundness of I b ). The inference system I b is sound.

Fixpoint

  plus (x y : nat): nat := match x with | O ⇒ y | S x' ⇒ S (plus x' y) end. Fixpoint even (x : nat): bool := match x with | 0 ⇒ true | S x' ⇒ odd x' end with odd (x : nat): bool := match x with | 0 ⇒ false | S x' ⇒ even x' end.

Theorem 4 . 4 (

 44 reductiveness of rewriting). Let ρ be a set of rewrite rules and e, e two equalities. If e → ρ e , then e ≺ ≺ e.

  term. Definition LF 13 := [F 13, . . . ,F 317], (* all equalities from the proof *) where the anonymous functions from LF 13 are: Definition F 13 : type LF 13 := fun u1 u2 u3 ⇒ ( e 13(u1,u2,u3 ), Term id odd (Term id plus (model nat u1 :: model nat u2 :: nil) :: nil) :: Term id true nil :: Term id even (Term id plus (model nat u2 :: model nat u3 :: nil) :: nil) :: Term id true nil :: Term id odd (Term id plus ( model nat u1 :: model nat u3 :: nil) :: nil) :: Term id true nil :: nil). . . . Definition F 317 : type LF 13 := fun u3 ⇒ ( e 317(u3 ), Term id false nil :: Term id true nil :: Term id odd (model nat u3 :: nil) :: Term id true nil :: Term id even (model nat u3 :: nil) :: Term id true nil :: nil).

Fig. 2 .

 2 Fig. 2. The I b c -preproof of {q(x, y) = true} as an oriented graph.

Fig. 3 .

 3 Fig. 3. The transformation of a non-root IH-node.

Fig. 4 .

 4 Fig. 4. The normalised I b c -preproof of {q(x, y) = true}.

  The LF list LF PandQ and its type type LF PandQ are: Definition type LF PandQ := nat → nat → Prop × List.list term. Definition LF PandQ:= [Pu, Qxy]. where the anonymous functions Pu and Qxy associate to the root atoms the measure values defined at Example 5.11: Definition Pu : type LF PandQ := fun u ⇒ (P u, (model nat u :: model nat u :: nil)). Definition Qxy : type LF PandQ := fun x y ⇒ (Q x y, (model nat x :: model nat x :: model nat y :: nil)).

  Fig.5illustrates the above preproof as an oriented graph. We can distinguish three strongly connected components, denoted by p 1 , p 2 and p 3 , each of them made of only one minimal cycle, as follows:• [e 13 (u 1 , u 2 , u 3 ), e 29 (u 4 , u 2 , u 3 ), e 49 (u 4 , u 2 , u 3 ), e 119 (u 5 , u 2 , u 3 ), e 13 (u 5 , u 2 , u 3 )] for p 1 ,• [e 36 (u 2 , u 3 ), e 73 (u 4 , u 3 ), e 91 (u 4 , u 3 ), e 203 (u 5 , u 3 ), e 36 (u 5 , u 3 )] for p 2 , and • [e 138 (u 2 , u 3 ), e 259 (u 5 , u 3 ), e 283 (u 5 , u 3 ), e 317 (u 6 , u 3 ), e 138 (u 6 , u 3 )] for p 3 .

Fig. 5 .

 5 Fig. 5. The graph representation of the I f c -preproof of {e 13 (u1, u2, u3)}.

The full source code, including the used libraries, reasoning systems, specifications and proofs, is provided as supplementary material at http:/lita.univ-lorraine.fr/~stratula/jsc-pas.zip and on SPIKE's website https://github.com/sorinica/spike-prover.

To be added just after the specification section.
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• (p(x) = true){x → x } < p (p(x) = true){x → s(x )} in the second cycle, and • (q(x, y) = true){x → x ; y → s(x )} < p (p(x) = true){x → s(x )} and (p(x) = true){x → x} < p (q(x, y) = true){x → x; y → s(y )} in the third cycle, where p denotes the strongly connected component of the I b c -preproof in Fig. 4. The ordering < p has to be defined such that the following four ordering constraints are satisfied: q(x, y ) = true < p q(x, s(y )) = true, p(x ) = true < p p(s(x )) = true, q(x , s(x )) = true < p p(s(x )) = true and p(x) = true < p q(x, s(y )) = true. By proceeding similarly as in Section 4, we can define the measure value of an equality l = r as the multiset of terms |l| ∪ |r|, where |t| is defined as • {x, x} if t is of the form p(x),

• {x, x, y} if t is of the form q(x, y), and • {t}, otherwise. The ordering constraints are satisfied if the induction ordering used for comparing multisets of terms is the multiset extension of the rpo based on the precedence f alse < F true < F 0 < F s.

Theorem 5.12. [soundness of D -preproofs] Any D -preproof is sound if the minimal cycles from its normal form discharge their IHs.

Proof. The non-trivial induction reasoning is performed inside a strongly connected component. We say that the proof of an equality labelling a node n requires non-trivial induction reasoning if the sub-tree rooted by n has Induction nodes whose corresponding IH-nodes are in the same strongly connected component as n. We will firstly prove the following soundness property of strongly connected components: the IHs discharged by the minimal cycles from any strongly connected component p of a normalised D preproof are true if the other IHs used by the Induction applications on nodes of p are true and the equalities from the direct offsprings of leaf nodes of p, if any, are true.

By contradiction, we assume that p has a false IH discharged by one of its minimal cycles. Since the number of minimal cycles in p is finite, we perform a classical induction reasoning on the number of minimal cycles discharging false IHs in p.

The base case. We assume that there is only one minimal cycle in p, denoted by [n 1 1 , . . . n p1 1 ], . . . , [n 1 n , . . . , n pn n ], that discharges the IHs φ(n 1 j )δ j (j ∈ [1.

.n]). So, for any i ∈ [1..n], we have that φ(n 1 next(i) )δ next(i) < p φ(n 1 i )θ i , where θ i is the cumulative substitution for the path [n 1 i , . . . , n pi i ], next(i) = 1 + (i mod n) and < p is a well-founded and 'stable under substitutions' ordering defined over the instances of the equalities labelling the root nodes of p. W.l.o.g., we assume that the equality φ(n 1 n ) has an instance used as a false IH in that minimal cycle.

Since < p is well-founded and no false instance of φ(n 1 n ) can be proved outside the cycle, there is a < p -minimal counterexample of φ(n 1 n )θ n , denoted by φ(n 1 n )θ n τ . It can be noticed that φ(n pn n ) can also be generated by applying the split-free operations along the path [n 1 n , . . . , n pn n ]. The equalities φ(n 1 n )θτ, . . . , φ(n pn n )τ are all false because no extra minimal cycles using false IHs have been involved in any reasoning along the path [n 1 n , . . . , n pn n ]. Moreover, the IH φ(n 1 1 )δ 1 τ should be false, as the new equalities resulting after the application of Induction on φ(n pn n ) are all true. By the 'stability under substitutions' property of < p and the relation φ

In addition, φ(n 1 1 )δ 1 τ cannot be proved outside the cycle, so it should be an instance of φ(n 1 1 )θ 1 . So there exists a substitution τ 1 such that φ(n 1 1 )δ 1 1 ≡ φ(n 1 1 )θ 1 τ 1 , where 1 ≡ τ . Similarly, we show that there is a counterexample φ(n 1 2 )δ 2 2 smaller than φ(n 1 1 )θ 1 τ 1 . And so on, we end the visit of all the root nodes of the minimal cycle by building a counterexample φ(n 1 n )θ n τ n which is smaller than φ(n 1 n-1 )δ n-1 n-1 . By the transitivity of < p , we derive the contradiction that φ(n

The step case. We consider the case when p has m (>1) minimal cycles that soundly discharge false IHs. By induction hypothesis, we assume that any subproof involving 'less than m' minimal cycles in p and soundly discharging false IHs is sound. Let us assume that there is a minimal cycle in p, denoted by

As for the base case, we assume that the equality φ(n 1 n ) has an instance used as a false IH in the cycle. Moreover, it is an instance of φ(n 1 n )θ n , otherwise it should be true since its proof involves 'less than m' minimal cycles soundly discharging false IHs, as assumed by induction hypothesis.

We denote by φ(n

τ is also a counterexample because the IHs used during the Induction steps along the path [n 1 n , . . . , n pn n ] are true, as their subproofs involve 'less than m' minimal cycles soundly discharging false IHs. Moreover, φ(n 1 1 )δ 1 τ is false because all the direct offsprings of n pn n are labelled with true equalities requiring 'less than m' minimal cycles soundly discharging false IHs. By the 'stability under substitutions' property of < p and the relation φ

1 )θ 1 , so it can be treated similarly as φ(n 1 n )θ n τ . By traversing all the nodes in the cycle, we can build a strictly decreasing chain of counterexamples of equalities labelling the root nodes of the cycle, starting with φ(n 1 n )θ n τ and ending with a counterexample of φ(n 1 n )θ n , contradicting the < p -minimality property of φ(n 1 n )θ n τ .

This ends the proof of the property.

Next, we assume by contradiction that the minimal cycles of the normal form of a D -preproof discharge their IHs but there is an equality proved by the D -preproof which is false. By Lemma 5.8, this equality labels one of the root nodes of the normal form of the D -preproof.

Let C denote the set of strongly connected components of the normalised D -preproof, < C the well-founded ordering over C, and assume that there is a strongly connected component p in C such that the false equality labels one of its root nodes, denoted by n. We perform a classical induction reasoning on the elements of C. The Coq script of the main 13 lemma is: case of Simplify that generates an empty set of new conjectures. Thanks to a strategy language [START_REF] Alouini | Un langage de stratégie pour SPIKE[END_REF], new rules can be defined by the user to combine existing reasoning techniques. It also controls the way the proofs are built and allows the prover to automatically generate large proofs and to deal with non-trivial applications. Other reasoning techniques are implemented in built-in rules that are activated without the help of the strategy language, e.g., the combination between a decision procedure for linear arithmetic and a congruence closure algorithm [START_REF] Stratulat | Preuves par récurrence avec ensembles couvrants contextuels. applications à la vérification de logiciels de télécommunications[END_REF][START_REF] Armando | Incorporating decision procedures in implicit induction[END_REF][START_REF] Stratulat | Implementing reasoning modules in implicit induction theorem provers[END_REF]. The arithmetic reasoning permitted to validate the MJRTY algorithm [START_REF] Boyer | MJRTY-A Fast Majority Vote Algorithm[END_REF] using a lemma proposed by N. Shankar (according to [START_REF] Howe | Reasoning about functional programs in Nuprl[END_REF]); also, more than 60% of the conjectures required to certify the conformity algorithm for a telecommunication protocol [START_REF] Rusinowitch | Mechanical verification of an ideal incremental ABR conformance algorithm[END_REF] have been automatically proved.

The validation of the JavaCard platform [START_REF] Barthe | Validation of the JavaCard platform with implicit induction techniques[END_REF] was the most challenging case study ever experienced by SPIKE. The inference system has been adapted to manage variables of parameterised sorts as well as existential variables. New inference rules have been designed to better handle the information from the conditional part of (conditional) conjectures. The efficiency of the implementation has been improved for dealing with specifications counting more than 400 defined function symbols and 2200 axioms, for example by recording the failure context at the conjecture level in order to avoid useless computation.

Recently [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF], the inference system of SPIKE has been extended to implement reductive-free cyclic proofs by keeping the best features of explicit and implicit induction reasoning. The induction reasoning may not be rewrite-based and axioms are no longer required to be oriented into rewrite rules, hence allowing for more general specifications. The prover integrates the DRaCuLa strategy to build cycles by need. Mainly, the induction steps from a cycle are blocked until any involved IH is either proved or discharged by cycles. When a cycle is built, its induction steps are unblocked if they are discharged by the cycle, allowing for simultaneous induction.

Layout of a specification file The structure of a standard SPIKE specification, included in a file name.spike, is: specification: name % the axiomatic definition of a many-sorted constructor-based specification sorts: list of sorts constructors: list of constructor symbols defined functions: list of defined function symbols axioms: list of axioms for each defined function symbols % the induction ordering greater: list of precedences over the function symbols equiv: list of equivalent function symbols % the completeness and ground convergence properties properties: list of properties % the proof strategies strategy: list of inference rules and proof strategies % the conjectures to be proved conjectures: list of conjectures