
HAL Id: hal-01590647
https://hal.science/hal-01590647

Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural vs. Cyclic Induction
Sorin Stratulat

To cite this version:
Sorin Stratulat. Structural vs. Cyclic Induction: A Report on Some Experiments with Coq.
SYNASC’2016 International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, Sep 2016, Timisoara, Romania. pp.29 - 36, �10.1109/SYNASC.2016.018�. �hal-01590647�

https://hal.science/hal-01590647
https://hal.archives-ouvertes.fr


Structural vs. cyclic induction
- a report on some experiments with Coq -

Sorin Stratulat
LITA, Department of Computer Science

Université de Lorraine
Metz, France

Email: sorin.stratulat@univ-lorraine. fr

Abstract—Structural and (Noetherian) cyclic induction are two
instances of the Noetherian induction principle adapted to reason
on first-order logic. From a theoretical point of view, every
structural proof can be converted to a cyclic proof but the
other way is only conjectured. From a practical point of view,
i) structural induction principles are built-in or automatically
issued from the analysis of recursive data structures by many
theorem provers, and ii) the implementation of cyclic induction
reasoning may require additional resources such as functional
schemas, libraries and human interaction.

In this paper, we firstly define a set of conjectures that can be
proved by using cyclic induction and following a similar scenario.
Next, we implement the cyclic induction reasoning in the Coq
proof assistant. Finally, we show that the scenarios for proving
these conjectures with structural induction differ in terms of the
number of induction steps and lemmas, as well as proof scenario.
We identified three conjectures from this set that are hard or
impossible to be proved by structural induction.

Index Terms—mechanical reasoning, Noetherian induction,
structural induction, cyclic induction, Coq

I. INTRODUCTION

In [8], it has been shown that structural and (Noetherian)
cyclic induction are two instances of the Noetherian induction
principle adapted to reason on first-order logic. The cyclic
induction principles are formula-based since they allow to
prove the validity of sets of formulas. On the other hand,
the structural induction principles are term-based because they
allow to prove that a given formula holds for any value of some
(induction) variable, provided that its datatype is recursively
defined. From a theoretical point of view, every structural
induction proof can be converted to a cyclic proof but the other
way is only conjectured.

In this paper, we compare the two approaches while proving
a given set of conjectures using the Coq proof assistant [11].
In Coq, the structural induction principles are automatically
issued from the analysis of recursive data structures and their
application can be easily performed by built-in tactics. This is
not the case for the cyclic induction principles, even if they fit
better to deal with i) mutual induction, i.e., when the proof of
a formula φ1 requires as induction hypothesis an instance of
another formula φ2 and, viceversa, the proof of φ2 requires as
induction hypothesis an instance of φ1, and ii) lazy induction,
i.e., the induction hypotheses need to be generated only when
they are effectively applied in the proof.

The rest of the paper consists of four sections. In Section II,
we define the set of conjectures serving to our comparison.
Section III shows i) that the cyclic proof for any conjecture
can be done following a similar scenario, and ii) how the

cyclic reasoning can be implemented in Coq, using additional
resources as functional schemas, libraries and non-trivial human
interaction. Different scenarios for proving the conjectures
using structural induction are presented in Section IV, and
show that they differ in terms of number of induction steps
and lemmas, as well as proof scenario.1 Section V gives the
conclusions and outlines future work.

II. DEFINING THE SET OF CONJECTURES

Let R be a set of ternary inductive predicate symbols taking
natural numbers as arguments such that each symbol R ∈ R
is defined by a set of axioms of the form:

R(0, u, 0) (1)
R(x1, y1, y2)⇒ R(S(x), u, 0) (2)
R(x′1, y

′
1, y
′
2)⇒ R(0, u, S(v)) (3)

R(x1, y1, y2) ∧R(x′1, y′1, y′2)⇒ R(S(x), u, S(v)) (4)

where S is the ‘successor’ function and the variables x, u, v are
universally quantified. The values of the parameters x1, y1, y2
and x′1, y

′
1, y
′
2 of R occurring in the condition part of the axioms

are defined in order to satisfy the following ordering con-
straints: i) R(x1, y1, y2) < R(S(x), u, 0), ii) R(x′1, y

′
1, y
′
2) <

R(0, u, S(v)), iii) R(x1, y1, y2) < R(S(x), u, S(v)), and
iv) R(x′1, y

′
1, y
′
2) < R(S(x), u, S(v)), by using a well-

founded ordering <. This ordering is defined such that
R(z1, z2, z3) < R(z′1, z

′
2, z
′
3) if {{z1, z1}, {z2, z2, z3}} <<

{{z′1, z′1}, {z′2, z′2, z′3}}, for any naturals z1, z2, z3, z
′
1, z
′
2, z
′
3.

Here, << is the multiset extension of an ordering over multisets
of terms which, in turn, is the multiset extension of the rpo
ordering [1], defined over naturals and denoted by <t, based
on the precedence over the function symbols stating that 0
is smaller than S. It can be shown that this rpo ordering is
well-founded and satisfies, for example, that 0 <t S(x) and
x <t S(x), for any natural x. Since every multiset extension
of a well-founded ordering is also well-founded, we conclude
that < is well-founded.

We use the fact that a multiset A is smaller than another
multiset B w.r.t. the multiset extension of some ordering ≺
if, after pairwisely deleting the common elements from A and
B we get the multisets A′ and B′, respectively, and, for each
element x in A′, there is an element y in B′ such that x ≺ y.
In our case, the ordering constraints

1The full Coq scripts of the proofs can be found at
lita.univ-lorraine. fr/~stratula/synasc2016.zip



1) i) and iii) are, respectively,
{{x1, x1}, {y1, y1, y2}} << {{S(x), S(x)}, {u, u, 0}}
and {{x1, x1}, {y1, y1, y2}} �
{{S(x), S(x)}, {u, u, S(v)}}.
They are satisfied if x1 is an element from
{0, u, x} and the pair (y1, y2) an element from
{(0, 0), (0, x), (x, 0), (0, S(x)), (x, S(x)), (x, x)}.
Notice that the pairs of the form (S(x), ) and the pairs
including u cannot be assigned to (y1, y2);

2) ii) and iv) are, respectively, {{x′1, x′1}, {y′1, y′1, y′2}} <<
{{0, 0}, {u, u, S(v)}} and {{x′1, x′1}, {y′1, y′1, y′2}} <<
{{S(x), S(x)}, {u, u, S(v)}}. They are also satisfied if
x′1 is an element from {0, u, v} and (y′1, y

′
2) is from

{(0, 0), (0, u), (0, v), (u, v), (v, u), (u, 0), (v, 0), (v, v)}.
The pair (u, u) cannot be assigned to (y′1, y

′
2).

Therefore, the set R will have 3 × 6 × 3 × 8 = 432
inductive predicate symbols. Finally, the set of conjectures
for our purpose is {∀x u v,R(x, u, v) | R ∈ R}.

III. PROVING BY CYCLIC INDUCTION

For any R ∈ R, the conjecture ∀x u v,R(x, u, v) can
be proved by cyclic induction reasoning using only variable
instantiations and unfoldings with the axioms defining R, as
shown in the proof graph from Fig. 1.

The root node is labeled by R(x, u, v), the other nodes being
labeled by inductive atoms that are instances of it. Each non
root-node n is pointed by a solid arrow starting from some
other node n′. If p′ is the inductive atom labelling n′, then
the inductive atom labelling n results either i) by instantiating
some variable from p′ by 0 and S(x), where x is a fresh
variable, or ii) by unfolding p′ using one of the conditional
axioms (3)-(4). In the first case, the instantiating substitution
annotates the corresponding solid arrow. The inductive atom
labeling each leaf node either instantiates (1) or the inductive
atom labeling the root node. In the last case, a dashed arrow
is firstly created by leading the leaf node to the root node,
then annotated with the instantiating substitution, written in
boldface.

The proof graph from Fig. 1 contains cycles by following
the arrows in the graph. In general, not all proof derivations,
for which the root formula is instantiated by leaf formulas, are
sound. In our case, the soundness is guaranteed by the ordering
constraints i) - iv), as shown by the cyclic induction method
from [8].
The Coq implementation. Let us assume that R is one of the
inductive predicates symbols from R, defined by the axioms:

R(0, u, 0) (5)
R(u, x, S(x))⇒ R(S(x), u, 0) (6)

R(v, u, v)⇒ R(0, u, S(v)) (7)
R(u, x, S(x)) ∧R(v, u, v)⇒ R(S(x), u, S(v)) (8)

We will show how the cyclic induction reasoning for
proving ∀x u v,R(x, u, v) can be certified in Coq.

R can be specified in Coq as an inductive predicate, denoted
here by R:

Inductive R: nat → nat → nat → Prop :=

r 1: ∀ u, R 0 u 0 |
r 2: ∀ x u, R u x (S x) → R (S x) u 0 |
r 3: ∀ u v, R v u v → R 0 u (S v) |
r 4: ∀ x u v, R u x (S x) → R v u v → R (S x) u (S v).

The scenario from the cyclic proof from Fig. 1 can be
reproduced if the conjecture to be proved is (temporarily)
considered as an hypothesis before its usage.

Hypothesis R admitted: ∀ x u v, R x u v.

Theorem R assumption: ∀ x u v, R x u v.
Proof.
destruct x ; intros.
- Case "x=0". destruct v.

+ SCase "v=0". apply r 1.
+ SCase "v=S v". apply r 3. apply R admitted.

- Case "x=S x". destruct v.
+ SCase "v=0". apply r 2. apply R admitted.
+ SCase "v=S v". apply r 4; apply R admitted.

Qed.

The tactic destruct, when applied on a natural variable
v, instantiates it by 0 and (S v).

In [9], it has been shown how to normalize the graph of
a cyclic proof and boil down the induction reasoning to the
strongly connected components of the normalized graph. It
can be easily noticed that the cycles from the proof graph
from Fig. 1 form a unique strongly connected component.
The induction reasoning performed along these cycles can
be captured by an explicit induction schema issued from the
definition of a terminating and recursive boolean function,
denoted by f P, taking as argument a triplet of naturals.

Function f P (a: nat × nat × nat) {wf (fun u v: nat×
nat×nat ⇒ match u,v with

(u1, x1, y1), (u2, x2, y2) ⇒ mless ({{[u1,
u1]}} + {{[x1, x1, y1]}}) ({{[u2, u2]}} + {{[x2,
x2, y2]}}) end) a}: bool :=
match a with

| (x’, y) ⇒ match x’ with
| (u, x) ⇒
match u, x, y with
| 0, , 0 ⇒ true
| (S x), u, 0 ⇒ f P (u, x, (S x))
| 0, u, (S v) ⇒ f P (v, u, v)
| (S x), u, (S v) ⇒ andb (f P(v,

u, v)) (f P(u, x, (S x)))
end

end
end.

The function f P firstly decomposes the triplet given as
argument, then performs a case analysis on the resulting
naturals to finally get a different (functional) representation of
the definition of R.

As any function whose definition is accepted by Coq,
f P should terminate. The Coq environment generates proof
obligations requiring that its argument should decrease after
each recursive call w.r.t. the well-founded ordering provided



R(x, u, v)

{x 7→0}

uu

{x 7→S(x′)}

))
R(0, u, v)

{v 7→0}

tt
{v 7→S(v′)}

��

R(S(x′), u, v)

{v 7→0}

��

{v 7→S(v′)}

++
R(0, u, 0) R(0, u, S(v′))

��

R(S(x′), u, 0)

uu

R(S(x′), u, S(v′))

��ss
R(x1, y1, y2)

{x 7→x1;u 7→y1;v 7→y2}{x 7→x1;u 7→y1;v 7→y2}{x 7→x1;u 7→y1;v 7→y2}

AA

R(x′
1, y

′
1, y

′
2)

{x7→x′
1;u7→y′

1;v 7→y′
2}{x7→x′

1;u7→y′
1;v 7→y′

2}{x7→x′
1;u7→y′

1;v 7→y′
2}

II

R(x1, y1, y2)

{x7→x1;u7→y1;v 7→y2}{x7→x1;u7→y1;v 7→y2}{x7→x1;u7→y1;v 7→y2}

^^

R(x′
1, y

′
1, y

′
2)

{x7→x′
1;u7→y′

1;v 7→y′
2}{x7→x′

1;u7→y′
1;v 7→y′

2}{x7→x′
1;u7→y′

1;v 7→y′
2}

dd

Fig. 1. The graph of the cyclic proof of ∀x u v,R(x, u, v), for any R ∈ R.

after the wf keyword, where mless is the multiset extension
of the multiset extension of the ‘less than’ ordering over
naturals, defined using the CoLoR library [2]. Once the proof
obligations are discharged, Coq automatically generates a
functional (induction) schema f P ind.

An explicit induction proof can be built for the theorem
RP true which is similar to R assumption when using RP,
the version of R with only one (triplet) argument.

Definition RP z := R (fst (fst z)) (snd (fst z)) (snd z).

Theorem RP true: ∀ u x y, RP (u, x, y).
Proof.
intros u x y. pattern (u, x, y). pattern (f P (u,

x, y)).
apply f P ind; intros; unfold RP; simpl. (* apply

the induction schema *)
apply r 1. (* follow the cyclic proof *)
apply r 2; unfold RP in H; simpl in H; trivial.
apply r 3. unfold RP in H; simpl in H. trivial.
apply r 4; unfold RP in H0; simpl in H0;

trivial.
Qed.

Finally, the R admitted hypothesis can be proved.

Theorem R admitted: ∀ x u v, R x u v.
(* the proof follows directly from RP true *)

Similarly, ∀ x u v, R′(x, u, v) can be certified in Coq, for
any R′ ∈ R, using a similar scenario for which only the
termination proof is different.

IV. PROVING BY STRUCTURAL INDUCTION

We will try to prove the conjectures ∀ x u v, R′(x, u, v),
where R′ ∈ R, using this time Peano induction which is a
structural induction principle issued from the analysis of the
recursive definition of naturals: a natural can be either 0 or
the successor of another natural. According to it, in order to
prove a formula P (x), where x is a natural variable to be
instantiated, also called induction variable, it is enough to
prove both P (0) and ∀x′, P (x′)⇒ P (S(x′)), where P (x′) is
an induction hypothesis and x′ a fresh variable. P (x′) can be
soundly used in the proof of P (S(x′)) because the number
of ‘S’ symbols in x′ is smaller than in S(x′), for any natural
x′, and the ‘less than’ ordering over naturals is well-founded.

In Coq, the Peano induction can be applied using the tactic
induction which takes as argument the induction variable.

To distinguish each R′ from R, they are represented under
the form of Rijkl, where
• i is the position of x1 from the axioms (2) and (4) in the

list [0, u, x],
• j is the position of (y1, y2) from the axioms (2) and (4) in

the list [(0, 0), (0, x), (x, 0), (0, S(x)), (x, S(x)), (x, x)],
• k is the position of x′1 from the axioms (3) and (4) in the

list [0, u, v], and
• l is the position of (y′1, y

′
2) from (3) and (4) in

[(0, 0), (0, u), (0, v), (u, v), (v, u), (u, 0), (v, 0), (v, v)].
For example, the symbol R, defined by the axioms (5)-(8),

will be referred to as R2534.
Similarly in Coq, the axioms defining Rijkl, denoted by

Rijkl, are labelled as rijkl 1, rijkl 2, rijkl 3, and rijkl 4.
In addition, the theorem to be proved is denoted as Rijkl true.

All proofs of Rijkl true have the following structure:

Theorem Rijkl true: ∀ x u v, Rijkl x u v.
Proof.
destruct x; destruct v; intros.
(* case x=0, v=0 *) apply rijkl 1.
(* case x=0, v=(S v) *) apply rijkl 3. (* to complete *)
(* case x=(S x), v=0 *) apply rijkl 2. (* to complete *)
(* case x=(S x), v=(S v) *) apply rijkl 4. (*to complete*)

Qed.

This proof scenario is similar to that from Fig. 1, excepting
that the proof of the formulas labelling the lowest nodes in
the proof graph should be provided.

Different proof scenarios can be distinguished to complete
the proof of Rijkl true. TABLE I presents some proof
statistics for each case, where the second (resp., third) col-
umn gives the number of induction (resp., destruct)
calls, and the fourth column the number of times ‘apply
rijkl 4’ was called. The fifth column displays the number
of intermediate lemmas and the last column the depth of
the proof tree, issued by expanding the calls to the lemmas
and by considering as one ‘big step’ each sequence of steps
different from induction, destruct, split (for dealing
with conjunctions) and ‘apply rijkl 4’. We do not claim
that our proofs have a graph with minimal depth, our intention



is only to give an idea about the degree of difficulty of each
proof.

a) Scenario 1: no induction steps. The case R1111: this
is the most trivial one.

Theorem R1111 true: ∀ x u v, R1111 x u v.
Proof.
destruct x; destruct v; intros.
apply r1111 1.
apply r1111 3. apply r1111 1.
apply r1111 2. apply r1111 1.
apply r1111 4; apply r1111 1.

Qed.

Overall, 78 cases have no induction steps in their proofs.
These proofs are performed mainly by instantiating variables
and unfolding axioms, the maximal depth being of 7 (e.g., for
R1132 true).

b) Scenario 2: one induction step. The case R1113:
an induction step is performed in the proof of the additional
lemma:

Theorem R1113 10v: ∀ v, R1113 0 0 v.
Proof.
induction v.
- Case "v=0" . apply r1113 1.
- Case "v=S v". apply r1113 3. apply IHv.

Qed.

Theorem R1113 true: ∀ x u v, R1113 x u v.
Proof.
destruct x; destruct v; intros. apply r1113 1.
apply r1113 3. apply R1113 10v.
apply r1113 2. apply r1113 1.
apply r1113 4; apply R1113 10v.

Qed.
c) Scenario 3: two induction steps. The case R1115: two

induction steps are performed in the proof of the conjunction
lemma:

Theorem R1115 mix: ∀ u v, R1115 0 v u ∧ R1115 0 u v.
Proof.
induction u; intros.
- Case "u=0". split. apply r1115 1. destruct v.

apply r1115 1. apply r1115 3. apply r1115 1.
- Case "u=S u". split. apply r1115 3. apply IHu.

induction v.
+ SCase "v=0". apply r1115 1.
+ SCase "v = S v". apply r1115 3. apply r1115 3.

apply IHu.
Qed.

Theorem R1115 true: ∀ x u v, R1115 x u v.
Proof.
destruct x; destruct v; intros. apply r1115 1.
apply r1115 3. apply R1115 mix.
apply r1115 2. apply r1115 1.
apply r1115 4; apply R1115 mix.

Qed.

d) Scenario 4: more than two induction steps. The cases
R2535 and R2534: the proof of R2535 true required 3
induction steps and its graph has the deepest depth (19). On

the other hand, in spite of our efforts, the proof of R2534 true,
as well as R2634 true and R2636 true, could not have been
completed.

V. CONCLUSIONS AND FUTURE WORK

We have defined a set of conjectures that can be proved
using cyclic induction by following a similar scenario. We
have shown how to implement the cyclic induction reasoning
in Coq, by means of external libraries and functional schemas
issued from the definition of new function symbols. On the
other hand, all but three conjectures have also been proved by
structural induction. We have shown that these proofs are very
different in terms of scenario, length and difficulty.

We think that the cyclic proofs can be easily automatised
in Coq, the main challenge being the automatic generation of
the termination proof when defining the new function symbols.
This is not the case for the proofs by structural induction which
may require major human interaction.

In the future, we plan to generalize the implementation in
Coq of the cyclic reasoning for arbitrary proofs. For this, we
may use different libraries of orderings, like COCCINELLE [4],
[5], and follow ideas that have been successfully tested for
implementing the implicit induction reasoning [6], [7], [9],
[10]. From a theoretical point of view, we plan to use the three
‘not yet’ proved conjectures to check the Brotherston-Simpson
conjecture [3], asserting the equivalence between cyclic and
explicit induction reasoning for first-order logic with inductive
definitions.

REFERENCES

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[2] F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded
rewrite relations and its application to the automated verification of
termination certificates. MSCS, 21(4):827–859, 2011.

[3] J. Brotherston and A. Simpson. Sequent calculi for induction and infinite
descent. Journal of Logic and Computation, 21(6):1177–1216, 2011.

[4] E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification
of automated termination proofs. Frontiers of Combining Systems, pages
148–162, 2007.

[5] E. Contejean, A. Paskevich, X. Urbain, P. Courtieu, O. Pons, and J. Forest.
A3PAT, an approach for certified automated termination proofs. In
J. P. Gallagher and J. Voigtländer, editors, PEPM - Proceedings of the
2010 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2010, Madrid, Spain, January 18-19, 2010, pages
63–72. ACM, 2010.

[6] A. Henaien and S. Stratulat. Performing implicit induction reasoning
with certifying proof environments. In A. Bouhoula, T. Ida, and
F. Kamareddine, editors, Proceedings Fourth International Symposium on
Symbolic Computation in Software Science, Gammarth, Tunisia, 15-17
December 2012, volume 122 of Electronic Proceedings in Theoretical
Computer Science, pages 97–108. Open Publishing Association, 2013.

[7] S. Stratulat. Integrating implicit induction proofs into certified proof
environments. In IFM’2010 (8th International Conference on Integrated
Formal Methods), volume 6396 of Lecture Notes in Computer Science,
pages 320–335, 2010.

[8] S. Stratulat. A unified view of induction reasoning for first-order logic. In
A. Voronkov, editor, Turing-100 (The Alan Turing Centenary Conference),
volume 10 of EPiC Series, pages 326–352. EasyChair, 2012.

[9] S. Stratulat. Mechanically certifying formula-based Noetherian induction
reasoning. Journal of Symbolic Computation, 80, Part 1:209–249, 2017.

[10] S. Stratulat and V. Demange. Automated certification of implicit induction
proofs. In CPP’2011 (First International Conference on Certified
Programs and Proofs), volume 7086 of Lecture Notes Computer Science,
pages 37–53. Springer Verlag, 2011.

[11] The Coq development team. The Coq Reference Manual - version 8.5.
INRIA, 2016.



TABLE I: Statistics about the proofs by Peano induction of Rijkl true.

Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth
R1111 0 2 1 0 3 R2411 0 3 2 1 5
R1112 0 3 1 1 4 R2412 0 4 2 2 5
R1113 1 2 1 1 4 R2413 1 3 2 2 6
R1114 1 2 1 1 4 R2414 1 3 2 2 6
R1115 2 2 1 1 6 R2415 1 5 2 2 5
R1116 0 2 1 0 3 R2416 0 3 2 1 5
R1117 0 2 1 0 3 R2417 0 3 2 1 5
R1118 1 2 1 1 4 R2418 1 3 2 2 6

R1121 0 3 1 1 4 R2421 0 4 2 2 6
R1122 1 2 2 1 5 R2422 0 4 2 2 5
R1123 1 4 2 1 6 R2423 3 6 3 2 9
R1124 1 4 2 1 6 R2424 4 5 3 2 9
R1125 2 2 3 1 7 R2425 1 4 5 2 9
R1126 0 3 1 1 4 R2426 0 4 2 2 6
R1127 0 3 1 1 4 R2427 0 4 2 2 6
R1128 1 4 2 1 6 R2428 1 5 5 3 9

R1131 0 3 1 1 4 R2431 1 3 2 2 6
R1132 0 6 2 1 7 R2432 4 8 3 2 9
R1133 1 2 2 1 5 R2433 1 3 3 2 7
R1134 1 2 2 1 5 R2434 7 5 11 2 12
R1135 1 6 3 1 8 R2435 3 6 7 2 12
R1136 0 4 1 1 5 R2436 3 5 2 2 7
R1137 0 3 1 1 4 R2437 1 6 4 2 8
R1138 1 2 2 1 5 R2438 1 3 4 2 8

R1211 0 3 1 1 4 R2511 1 3 4 1 7
R1212 0 3 1 1 4 R2512 1 5 4 2 8
R1213 1 2 1 1 3 R2513 2 4 4 2 8
R1214 1 2 1 1 4 R2514 2 5 3 2 9
R1215 1 4 1 1 5 R2515 2 6 4 2 9
R1216 0 3 1 1 4 R2516 1 4 4 2 8
R1217 0 3 1 1 4 R2517 1 4 4 1 7
R1218 1 3 1 2 4 R2518 2 4 4 2 8

R1221 0 4 1 2 4 R2521 2 4 4 2 8
R1222 0 4 2 2 6 R2522 2 4 5 2 9
R1223 1 4 2 2 7 R2523 4 6 4 2 11
R1224 2 4 2 2 6 R2524 4 4 7 2 11
R1225 1 4 3 2 8 R2525 3 6 16 3 16
R1226 0 4 1 2 5 R2526 2 4 8 2 11
R1227 0 4 1 2 5 R2527 2 5 8 3 11
R1228 1 5 3 3 10 R2528 2 6 17 3 18

R1231 1 2 1 3 5 R2531 2 4 4 2 8
R1232 1 4 2 3 8 R2532 2 6 7 3 13
R1233 1 3 2 3 7 R2533 2 4 7 2 9
R1234 2 2 3 3 8 R2534 - - - - -
R1235 2 5 3 3 9 R2535 3 7 18 3 19
R1236 1 3 1 3 6 R2536 2 5 9 3 13
R1237 1 2 1 3 5 R2537 2 4 11 2 12
R1238 1 2 1 3 6 R2538 2 4 14 2 13

R1311 0 2 1 0 3 R2611 1 5 3 1 8
R1312 0 3 1 1 4 R2612 1 8 3 2 8
R1313 1 2 1 1 4 R2613 2 7 3 2 9
R1314 1 2 1 1 4 R2614 2 8 4 2 11
R1315 1 4 1 1 5 R2615 2 5 4 2 10
R1316 0 3 1 1 4 R2616 1 6 3 1 8



TABLE I – Continued
Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth

R1317 0 2 1 0 3 R2617 1 6 3 1 8
R1318 1 2 1 1 4 R2618 2 7 3 2 9

R1321 0 3 1 1 4 R2621 2 8 3 2 10
R1322 0 3 1 1 4 R2622 2 8 5 2 12
R1323 1 4 2 1 6 R2623 6 9 5 3 14
R1324 1 4 2 1 6 R2624 10 2 7 3 13
R1325 1 3 3 1 8 R2625 3 7 17 3 18
R1326 0 3 1 1 4 R2626 2 6 5 2 14
R1327 0 3 1 1 4 R2627 2 7 6 3 15
R1328 1 4 2 1 6 R2628 2 7 8 2 16

R1331 0 3 1 1 4 R2631 2 7 3 2 12
R1332 0 7 2 1 7 R2632 4 10 5 3 13
R1333 1 2 2 1 5 R2633 2 6 4 2 13
R1334 1 2 2 1 5 R2634 - - - - -
R1335 1 6 3 1 8 R2635 3 9 11 4 16
R1336 0 3 1 1 4 R2636 - - - - -
R1337 0 3 1 1 4 R2637 2 7 6 2 15
R1338 1 2 2 1 5 R2638 2 7 6 2 14

R1411 0 2 1 1 3 R3111 1 2 1 1 4
R1412 0 3 1 2 4 R3112 1 3 1 1 4
R1413 1 2 1 2 4 R3113 2 2 1 2 4
R1414 1 2 1 2 4 R3114 2 2 1 2 4
R1415 1 4 1 1 5 R3115 2 4 1 2 5
R1416 0 3 1 2 4 R3116 1 2 1 1 4
R1417 0 2 1 1 3 R3117 1 2 1 1 4
R1418 1 2 1 2 4 R3118 2 2 1 2 4

R1421 0 3 1 2 4 R3111 1 2 1 1 4
R1422 0 3 2 2 5 R3122 1 3 2 2 5
R1423 3 4 2 1 7 R3123 4 4 2 2 7
R1424 2 4 2 2 6 R3124 2 4 2 2 7
R1425 1 3 3 2 7 R3125 2 4 4 2 8
R1426 0 3 1 2 4 R3126 1 3 1 2 4
R1427 0 3 1 2 4 R3127 1 3 1 2 5
R1428 2 4 3 3 8 R3128 3 5 4 2 9

R1431 1 2 1 2 4 R3131 1 3 1 2 5
R1432 4 5 2 1 8 R3132 1 4 2 2 7
R1433 1 2 2 2 5 R3133 2 2 2 2 6
R1434 2 2 3 2 5 R3134 2 2 2 2 6
R1435 2 5 3 3 9 R3135 4 8 4 2 11
R1436 1 3 1 3 5 R3136 1 4 1 2 6
R1437 1 2 1 2 4 R3137 1 3 1 2 5
R1438 1 2 2 2 5 R3138 2 2 2 2 6

R1511 0 2 1 1 3 R3211 1 2 2 1 5
R1512 0 3 1 2 4 R3212 1 3 2 2 5
R1513 1 2 1 1 4 R3213 1 3 2 2 5
R1514 1 3 1 2 5 R3214 3 2 2 2 6
R1515 1 4 1 2 5 R3215 2 4 2 2 5
R1516 0 3 1 2 4 R3216 1 2 2 1 5
R1517 0 2 1 1 3 R3217 1 2 2 1 5
R1518 1 2 1 2 4 R3218 2 2 2 2 6

R1521 1 2 1 2 4 R3211 1 3 2 2 6
R1522 1 2 2 2 5 R3222 2 2 3 2 5
R1523 4 4 3 3 7 R3223 5 4 3 2 7
R1524 3 2 2 2 6 R3224 3 4 3 2 9



TABLE I – Continued
Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth

R1525 2 3 4 3 7 R3225 2 4 5 2 9
R1526 1 2 1 2 4 R3226 1 3 2 2 6
R1527 1 2 1 2 4 R3227 1 3 2 2 6
R1528 1 5 5 2 10 R3228 1 4 5 2 11

R1531 1 2 1 2 4 R3231 1 2 2 1 6
R1532 1 2 3 3 9 R3232 1 4 3 2 9
R1533 1 2 2 2 5 R3233 1 4 2 1 6
R1534 1 2 2 2 5 R3234 2 2 3 2 7
R1535 2 6 6 3 13 R3235 2 6 5 2 13
R1536 1 3 1 3 5 R3236 1 3 2 2 7
R1537 1 2 1 2 4 R3237 1 2 2 1 6
R1538 1 2 2 2 5 R3238 1 2 3 1 6

R1611 0 3 1 1 4 R3311 1 2 2 1 4
R1612 0 4 1 2 5 R3312 1 3 1 2 4
R1613 1 3 1 2 5 R3313 2 2 1 2 4
R1614 1 3 1 2 5 R3314 2 2 1 2 4
R1615 1 4 1 2 5 R3315 2 4 1 2 5
R1616 0 3 1 2 4 R3316 1 2 1 1 4
R1617 0 3 1 2 4 R3317 1 2 1 1 4
R1618 1 3 1 2 5 R3318 2 2 1 2 4

R1621 2 2 1 2 5 R3311 1 3 1 2 5
R1622 1 2 3 1 6 R3322 1 3 1 2 5
R1623 4 5 3 2 10 R3323 3 5 2 2 7
R1624 8 3 3 3 11 R3324 2 4 2 2 7
R1625 2 4 7 2 11 R3325 2 4 4 2 8
R1626 1 3 1 2 5 R3326 1 3 2 2 5
R1627 1 3 1 2 3 R3327 1 4 2 2 5
R1628 2 4 4 2 8 R3328 2 6 4 4 10

R1631 1 2 1 1 5 R3331 1 3 1 2 5
R1632 3 4 3 2 10 R3332 1 7 2 2 8
R1633 1 2 2 1 6 R3333 2 2 2 2 7
R1634 1 2 2 1 6 R3334 2 2 2 2 6
R1635 2 6 5 2 12 R3335 2 4 3 2 9
R1636 1 2 1 1 5 R3336 1 3 1 2 5
R1637 1 2 1 1 5 R3337 1 3 1 2 5
R1638 1 2 2 1 6 R3338 2 2 2 2 6

R2111 0 3 1 1 4 R3411 1 2 2 1 5
R2112 0 4 1 2 4 R3412 1 3 2 2 5
R2113 1 3 1 2 4 R3413 2 2 2 2 6
R2114 1 3 1 2 4 R3414 3 2 2 2 6
R2115 1 5 1 2 5 R3415 2 4 2 2 5
R2116 0 4 1 2 4 R3416 1 3 2 2 5
R2117 0 4 2 2 4 R3417 1 2 2 1 5
R2118 1 3 1 2 4 R3418 2 2 2 2 6

R2121 0 3 1 1 4 R3421 1 3 2 2 6
R2122 0 4 2 2 4 R3422 1 3 2 2 6
R2123 2 5 2 2 8 R3423 4 5 3 2 9
R2124 1 5 2 2 6 R3424 3 4 3 2 9
R2125 1 6 4 2 9 R3425 2 4 4 2 9
R2126 0 4 1 2 4 R3426 1 3 2 2 6
R2127 0 4 1 2 4 R3427 1 3 2 2 6
R2128 1 5 2 2 5 R3428 1 4 5 2 10

R2131 0 3 1 1 4 R3431 1 3 2 2 6
R2132 0 6 2 2 6 R3432 1 7 3 2 9



TABLE I – Continued
Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth

R2133 1 3 2 2 5 R3433 1 2 4 1 7
R2134 1 3 2 2 5 R3434 2 2 5 2 9
R2135 1 7 3 2 8 R3435 2 5 4 2 11
R2136 0 5 1 2 5 R3436 1 3 2 2 7
R2137 0 4 1 2 4 R3437 1 2 2 1 7
R2138 1 3 2 2 5 R3438 1 2 4 1 7

R2211 0 7 2 1 7 R3511 1 2 2 1 5
R2212 0 5 2 2 7 R3512 1 3 2 2 5
R2213 1 4 2 2 7 R3513 2 2 2 2 6
R2214 1 6 2 2 7 R3514 2 4 2 2 7
R2215 1 9 2 2 7 R3515 2 4 2 2 7
R2216 0 7 2 1 6 R3516 1 3 2 2 5
R2217 0 7 2 1 6 R3517 1 2 2 1 5
R2218 1 7 2 2 8 R3518 2 2 2 2 6

R2221 0 9 2 2 7 R3521 2 2 2 2 6
R2222 0 9 3 2 7 R3522 1 3 4 2 8
R2223 3 4 2 1 7 R3523 4 5 4 2 10
R2224 4 6 3 2 10 R3524 3 2 2 1 6
R2225 1 9 4 2 11 R3525 2 5 9 2 12
R2226 0 8 2 2 8 R3526 1 3 2 2 8
R2227 0 9 2 2 8 R3527 1 3 2 2 6
R2228 0 6 3 2 9 R3528 1 4 9 2 12

R2231 0 4 2 2 8 R3531 1 3 2 2 6
R2232 1 4 2 2 8 R3532 1 4 4 2 10
R2233 1 4 2 2 9 R3533 1 2 4 1 7
R2234 2 4 4 3 9 R3534 1 2 4 1 7
R2235 2 11 6 3 17 R3535 2 6 5 2 13
R2236 1 5 2 3 8 R3536 1 3 2 2 7
R2237 1 4 3 2 9 R3537 1 2 2 1 6
R2238 1 5 4 2 10 R3538 1 2 4 1 7

R2311 1 4 1 1 5 R3611 1 2 2 1 5
R2312 1 5 1 2 5 R3612 1 3 2 2 5
R2313 2 4 1 2 5 R3613 2 2 2 2 6
R2314 2 4 1 2 5 R3614 2 4 2 2 7
R2315 2 6 1 2 5 R3615 2 4 2 2 7
R2316 0 6 1 2 5 R3616 1 2 2 1 5
R2317 1 4 1 1 5 R3617 1 2 2 1 5
R2318 2 4 1 2 5 R3618 2 2 2 2 6

R2321 1 5 1 2 5 R3621 1 3 2 2 6
R2322 1 5 1 2 5 R3622 1 3 4 2 8
R2323 3 7 2 2 7 R3623 4 5 5 2 10
R2324 2 6 2 2 8 R3624 3 2 2 1 6
R2325 2 6 4 2 10 R3625 2 4 9 2 12
R2326 1 5 1 2 6 R3626 1 3 2 2 6
R2327 1 4 1 1 5 R3627 1 3 2 2 6
R2328 3 7 4 2 10 R3628 1 4 7 2 12

R2331 1 3 1 2 5 R3631 1 3 2 2 7
R2332 1 6 2 2 8 R3632 1 7 4 2 10
R2333 2 4 2 2 5 R3633 1 2 3 1 6
R2334 2 4 2 2 5 R3634 1 2 4 1 7
R2335 2 7 3 2 10 R3635 2 9 6 2 14
R2336 1 5 1 2 6 R3636 1 3 2 2 7
R2337 1 4 1 1 5 R3637 1 2 2 1 6
R2338 2 4 2 2 7 R3638 1 2 2 1 5


