Sorin Stratulat
email: sorin.stratulat@univ-lorraine.fr

Structural vs. cyclic induction -a report on some experiments with Coq

Keywords: mechanical reasoning, Noetherian induction, structural induction, cyclic induction, Coq

Structural and (Noetherian) cyclic induction are two instances of the Noetherian induction principle adapted to reason on first-order logic. From a theoretical point of view, every structural proof can be converted to a cyclic proof but the other way is only conjectured. From a practical point of view, i) structural induction principles are built-in or automatically issued from the analysis of recursive data structures by many theorem provers, and ii) the implementation of cyclic induction reasoning may require additional resources such as functional schemas, libraries and human interaction.

In this paper, we firstly define a set of conjectures that can be proved by using cyclic induction and following a similar scenario. Next, we implement the cyclic induction reasoning in the Coq proof assistant. Finally, we show that the scenarios for proving these conjectures with structural induction differ in terms of the number of induction steps and lemmas, as well as proof scenario. We identified three conjectures from this set that are hard or impossible to be proved by structural induction.

I. INTRODUCTION

In [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF], it has been shown that structural and (Noetherian) cyclic induction are two instances of the Noetherian induction principle adapted to reason on first-order logic. The cyclic induction principles are formula-based since they allow to prove the validity of sets of formulas. On the other hand, the structural induction principles are term-based because they allow to prove that a given formula holds for any value of some (induction) variable, provided that its datatype is recursively defined. From a theoretical point of view, every structural induction proof can be converted to a cyclic proof but the other way is only conjectured.

In this paper, we compare the two approaches while proving a given set of conjectures using the Coq proof assistant [START_REF]The Coq Reference Manual -version 8[END_REF]. In Coq, the structural induction principles are automatically issued from the analysis of recursive data structures and their application can be easily performed by built-in tactics. This is not the case for the cyclic induction principles, even if they fit better to deal with i) mutual induction, i.e., when the proof of a formula φ 1 requires as induction hypothesis an instance of another formula φ 2 and, viceversa, the proof of φ 2 requires as induction hypothesis an instance of φ 1 , and ii) lazy induction, i.e., the induction hypotheses need to be generated only when they are effectively applied in the proof.

The rest of the paper consists of four sections. In Section II, we define the set of conjectures serving to our comparison. Section III shows i) that the cyclic proof for any conjecture can be done following a similar scenario, and ii) how the cyclic reasoning can be implemented in Coq, using additional resources as functional schemas, libraries and non-trivial human interaction. Different scenarios for proving the conjectures using structural induction are presented in Section IV, and show that they differ in terms of number of induction steps and lemmas, as well as proof scenario. 1 Section V gives the conclusions and outlines future work.

II. DEFINING THE SET OF CONJECTURES

Let R be a set of ternary inductive predicate symbols taking natural numbers as arguments such that each symbol R ∈ R is defined by a set of axioms of the form:

R(0, u, 0) (1) R(x 1 , y 1 , y 2) ⇒ R(S(x), u, 0) (2) R(x 1 , y 1 , y 2) ⇒ R(0, u, S(v)) (3) R(x 1 , y 1 , y 2) ∧ R(x 1 , y 1 , y 2) ⇒ R(S(x), u, S(v)) (4
)
where S is the 'successor' function and the variables x, u, v are universally quantified. The values of the parameters x 1 , y 1 , y 2 and x 1 , y 1 , y 2 of R occurring in the condition part of the axioms are defined in order to satisfy the following ordering con-

straints: i) R(x 1 , y 1 , y 2) < R(S(x), u, 0), ii) R(x 1 , y 1 , y 2) < R(0, u, S(v)), iii) R(x 1 , y 1 , y 2) < R(S(x), u, S(v))
, and iv) R(x 1 , y 1 , y 2) < R(S(x), u, S(v)), by using a wellfounded ordering <. This ordering is defined such that

R(z 1 , z 2 , z 3) < R(z 1 , z 2 , z 3) if {{z 1 , z 1 }, {z 2 , z 2 , z 3 }} < < {{z 1 , z 1 }, {z 2 , z 2 , z 3 }}, for any naturals z 1 , z 2 , z 3 , z 1 , z 2 , z 3 .
Here, < < is the multiset extension of an ordering over multisets of terms which, in turn, is the multiset extension of the rpo ordering [START_REF] Baader | Term Rewriting and All That[END_REF], defined over naturals and denoted by < t , based on the precedence over the function symbols stating that 0 is smaller than S. It can be shown that this rpo ordering is well-founded and satisfies, for example, that 0 < t S(x) and x < t S(x), for any natural x. Since every multiset extension of a well-founded ordering is also well-founded, we conclude that < is well-founded. We use the fact that a multiset A is smaller than another multiset B w.r.t. the multiset extension of some ordering ≺ if, after pairwisely deleting the common elements from A and B we get the multisets A and B , respectively, and, for each element x in A , there is an element y in B such that x ≺ y. In our case, the ordering constraints 1) i) and iii) are, respectively, {{x 1 , x 1 }, {y 1 , y 1 , y 2 }} < < {{S(x), S(x)}, {u, u, 0}} and {{x 1 , x 1 }, {y 1 , y 1 , y 2 }} {{S(x), S(x)}, {u, u, S(v)}}. They are satisfied if x 1 is an element from {0, u, x} and the pair (y 1 , y 2) an element from {(0, 0), (0, x), (x, 0), (0, S(x)), (x, S(x)), (x, x)}. Notice that the pairs of the form (S(x),) and the pairs including u cannot be assigned to (y 1 , y 2); 2) ii) and iv) are, respectively, {{x 1 , x 1 }, {y 1 , y 1 , y 2 }} < < {{0, 0}, {u, u, S(v)}} and {{x 1 , x 1 }, {y 1 , y 1 , y 2 }} < < {{S(x), S(x)}, {u, u, S(v)}}. They are also satisfied if x 1 is an element from {0, u, v} and (y 1 , y 2) is from {(0, 0), (0, u), (0, v), (u, v), (v, u), (u, 0), (v, 0), (v, v)}.

The pair (u, u) cannot be assigned to (y 1 , y 2). Therefore, the set R will have 3 × 6 × 3 × 8 = 432 inductive predicate symbols. Finally, the set of conjectures for our purpose is {∀x u v, R(x, u, v) | R ∈ R}.

III. PROVING BY CYCLIC INDUCTION

For any R ∈ R, the conjecture ∀x u v, R(x, u, v) can be proved by cyclic induction reasoning using only variable instantiations and unfoldings with the axioms defining R, as shown in the proof graph from Fig. 1.

The root node is labeled by R(x, u, v), the other nodes being labeled by inductive atoms that are instances of it. Each non root-node n is pointed by a solid arrow starting from some other node n . If p is the inductive atom labelling n , then the inductive atom labelling n results either i) by instantiating some variable from p by 0 and S(x), where x is a fresh variable, or ii) by unfolding p using one of the conditional axioms (3)-(4). In the first case, the instantiating substitution annotates the corresponding solid arrow. The inductive atom labeling each leaf node either instantiates [START_REF] Baader | Term Rewriting and All That[END_REF] or the inductive atom labeling the root node. In the last case, a dashed arrow is firstly created by leading the leaf node to the root node, then annotated with the instantiating substitution, written in boldface.

The proof graph from Fig. 1 contains cycles by following the arrows in the graph. In general, not all proof derivations, for which the root formula is instantiated by leaf formulas, are sound. In our case, the soundness is guaranteed by the ordering constraints i) -iv), as shown by the cyclic induction method from [START_REF] Stratulat | A unified view of induction reasoning for first-order logic[END_REF]. The Coq implementation. Let us assume that R is one of the inductive predicates symbols from R, defined by the axioms:

R(0, u, 0) (5) R(u, x, S(x)) ⇒ R(S(x), u, 0) (6) R(v, u, v) ⇒ R(0, u, S(v)) (7) R(u, x, S(x)) ∧ R(v, u, v) ⇒ R(S(x), u, S(v)) (8)
We will show how the cyclic induction reasoning for proving ∀x u v, R(x, u, v) can be certified in Coq.

R can be specified in Coq as an inductive predicate, denoted here by R:

Inductive R: nat → nat → nat → Prop := r 1: ∀ u, R 0 u 0 | r 2: ∀ x u, R u x (S x) → R (S x) u 0 | r 3: ∀ u v, R v u v → R 0 u (S v) | r 4: ∀ x u v, R u x (S x) → R v u v → R (S x) u (S v).
The scenario from the cyclic proof from Fig. 1 can be reproduced if the conjecture to be proved is (temporarily) considered as an hypothesis before its usage.

Hypothesis R admitted: ∀ x u v, R x u v. Theorem R assumption: ∀ x u v, R x u v. Proof.
destruct x ; intros.

-Case "x=0". destruct v. + SCase "v=0". apply r 1. + SCase "v=S v". apply r 3. apply R admitted. -Case "x=S x". destruct v.

+ SCase "v=0". apply r 2. apply R admitted. + SCase "v=S v". apply r 4; apply R admitted. Qed.

The tactic destruct, when applied on a natural variable v, instantiates it by 0 and (S v).

In [START_REF] Stratulat | Mechanically certifying formula-based Noetherian induction reasoning[END_REF], it has been shown how to normalize the graph of a cyclic proof and boil down the induction reasoning to the strongly connected components of the normalized graph. It can be easily noticed that the cycles from the proof graph from Fig. 1 form a unique strongly connected component. The induction reasoning performed along these cycles can be captured by an explicit induction schema issued from the definition of a terminating and recursive boolean function, denoted by f P, taking as argument a triplet of naturals.

Function f P (a: nat × nat × nat) {wf (fun u v: nat× nat×nat ⇒ match u,v with (u1, x1, y1), (u2, x2, y2) ⇒ mless ({{[u1, u1]}} + {{[x1, x1, y1]}}) ({{[u2, u2]}} + {{[x2, x2, y2]}}) end) a}: bool := match a with | (x', y) ⇒ match x' with | (u, x) ⇒ match u, x, y with | 0, , 0 ⇒ true | (S x), u, 0 ⇒ f P (u, x, (S x)) | 0, u, (S v) ⇒ f P (v, u, v) | (S x), u, (S v) ⇒ andb (f P(v, u, v)) (f P(u, x, (S x))) end end end.
The function f P firstly decomposes the triplet given as argument, then performs a case analysis on the resulting naturals to finally get a different (functional) representation of the definition of R.

As any function whose definition is accepted by Coq, f P should terminate. The Coq environment generates proof obligations requiring that its argument should decrease after each recursive call w.r.t. the well-founded ordering provided

R(x, u, v) {x →0} u u {x →S(x)})) R(0, u, v) {v →0} t t {v →S(v)} R(S(x), u, v) {v →0} {v →S(v)} + + R(0, u, 0) R(0, u, S(v)) R(S(x), u, 0) u u R(S(x), u, S(v)) s s R(x1, y1, y2) {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } A A R(x 1 , y 1 , y 2) {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } I I R(x1, y1, y2) {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } ^R(x 1 , y 1 , y 2) {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } {x →x 1 ;u →y 1 ;v →y 2 } d d Fig. 1. The graph of the cyclic proof of ∀x u v, R(x, u, v), for any R ∈ R.
after the wf keyword, where mless is the multiset extension of the multiset extension of the 'less than' ordering over naturals, defined using the CoLoR library [START_REF] Blanqui | CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates[END_REF]. Once the proof obligations are discharged, Coq automatically generates a functional (induction) schema f P ind.

An explicit induction proof can be built for the theorem RP true which is similar to R assumption when using RP, the version of R with only one (triplet) argument.

Definition RP z := R (fst (fst z)) (snd (fst z)) (snd z).
Theorem RP true: ∀ u x y, RP (u, x, y). Proof.

intros u x y. pattern (u, x, y). pattern (f P (u, x, y)).

apply f P ind; intros; unfold RP; simpl. (* apply the induction schema *) apply r 1.

(* follow the cyclic proof *) apply r 2; unfold RP in H; simpl in H; trivial. apply r 3. unfold RP in H; simpl in H. trivial. apply r 4; unfold RP in H0; simpl in H0; trivial. Qed.

Finally, the R admitted hypothesis can be proved.

Theorem R admitted:

∀ x u v, R x u v.
(* the proof follows directly from RP true *)

Similarly, ∀ x u v, R (x, u, v) can be certified in Coq, for any R ∈ R, using a similar scenario for which only the termination proof is different.

IV. PROVING BY STRUCTURAL INDUCTION

We will try to prove the conjectures ∀ x u v, R (x, u, v), where R ∈ R, using this time Peano induction which is a structural induction principle issued from the analysis of the recursive definition of naturals: a natural can be either 0 or the successor of another natural. According to it, in order to prove a formula P (x), where x is a natural variable to be instantiated, also called induction variable, it is enough to prove both P (0) and ∀x , P (x) ⇒ P (S(x)), where P (x) is an induction hypothesis and x a fresh variable. P (x) can be soundly used in the proof of P (S(x)) because the number of 'S' symbols in x is smaller than in S(x), for any natural x , and the 'less than' ordering over naturals is well-founded.

In Coq, the Peano induction can be applied using the tactic induction which takes as argument the induction variable.

To distinguish each R from R, they are represented under the form of Rijkl, where

• i is the position of x 1 from the axioms (2) and (4) in the list [0, u, x],

• j is the position of (y 1 , y 2) from the axioms (2) and (4) in the list [(0, 0), (0, x), (x, 0), (0, S(x)), (x, S(x)), (x, x)],

• k is the position of x 1 from the axioms (3) and (4) in the list [0, u, v], and • l is the position of (y 1 , y 2) from (3) and (4) in [(0, 0), (0, u), (0, v), (u, v), (v, u), (u, 0), (v, 0), (v, v)]. For example, the symbol R, defined by the axioms (5)-(8), will be referred to as R2534.

Similarly in Coq, the axioms defining Rijkl, denoted by Rijkl, are labelled as rijkl 1, rijkl 2, rijkl 3, and rijkl 4.

In addition, the theorem to be proved is denoted as Rijkl true. This proof scenario is similar to that from Fig. 1, excepting that the proof of the formulas labelling the lowest nodes in the proof graph should be provided.

All proofs of

Different proof scenarios can be distinguished to complete the proof of Rijkl true. TABLE I presents some proof statistics for each case, where the second (resp., third) column gives the number of induction (resp., destruct) calls, and the fourth column the number of times 'apply rijkl 4' was called. The fifth column displays the number of intermediate lemmas and the last column the depth of the proof tree, issued by expanding the calls to the lemmas and by considering as one 'big step' each sequence of steps different from induction, destruct, split (for dealing with conjunctions) and 'apply rijkl 4'. We do not claim that our proofs have a graph with minimal depth, our intention is only to give an idea about the degree of difficulty of each proof.

a) Scenario 1: no induction steps. The case R1111: this is the most trivial one.

Theorem R1111 true: ∀ x u v, R1111 x u v. Proof. destruct x; destruct v; intros. apply r1111 1. apply r1111 3. apply r1111 1. apply r1111 2. apply r1111 1. apply r1111 4; apply r1111 1.

Qed.

Overall, 78 cases have no induction steps in their proofs. These proofs are performed mainly by instantiating variables and unfolding axioms, the maximal depth being of 7 (e.g., for R1132 true).

b) Scenario 2: one induction step. The case R1113: an induction step is performed in the proof of the additional lemma:

Theorem R1113 10v: ∀ v, R1113 0 0 v. Proof. induction v.
-Case "v=0" . apply r1113 1.

-Case "v=S v". apply r1113 3. apply IHv. Qed.

Theorem R1113 true: ∀ x u v, R1113 x u v. Proof.
destruct x; destruct v; intros. apply r1113 1. apply r1113 3. apply R1113 10v. apply r1113 2. apply r1113 1. apply r1113 4; apply R1113 10v. Qed.

c) Scenario 3: two induction steps. The case R1115: two induction steps are performed in the proof of the conjunction lemma:

Theorem R1115 mix: ∀ u v, R1115 0 v u ∧ R1115 0 u v. Proof.
induction u; intros.

-Case "u=0". split. apply r1115 1. destruct v. apply r1115 1. apply r1115 3. apply r1115 1.

-Case "u=S u". split. apply r1115 3. apply IHu. induction v.

+ SCase "v=0". apply r1115 1. d) Scenario 4: more than two induction steps. The cases R2535 and R2534: the proof of R2535 true required 3 induction steps and its graph has the deepest depth (19). On the other hand, in spite of our efforts, the proof of R2534 true, as well as R2634 true and R2636 true, could not have been completed.

+ SCase "v = S v

V. CONCLUSIONS AND FUTURE WORK

We have defined a set of conjectures that can be proved using cyclic induction by following a similar scenario. We have shown how to implement the cyclic induction reasoning in Coq, by means of external libraries and functional schemas issued from the definition of new function symbols. On the other hand, all but three conjectures have also been proved by structural induction. We have shown that these proofs are very different in terms of scenario, length and difficulty.

We think that the cyclic proofs can be easily automatised in Coq, the main challenge being the automatic generation of the termination proof when defining the new function symbols. This is not the case for the proofs by structural induction which may require major human interaction.

In the future, we plan to generalize the implementation in Coq of the cyclic reasoning for arbitrary proofs. For this, we may use different libraries of orderings, like COCCINELLE [START_REF] Contejean | Certification of automated termination proofs[END_REF], [START_REF] Contejean | A3PAT, an approach for certified automated termination proofs[END_REF], and follow ideas that have been successfully tested for implementing the implicit induction reasoning [START_REF] Henaien | Performing implicit induction reasoning with certifying proof environments[END_REF], [START_REF] Stratulat | Integrating implicit induction proofs into certified proof environments[END_REF], [START_REF] Stratulat | Mechanically certifying formula-based Noetherian induction reasoning[END_REF], [START_REF] Stratulat | Automated certification of implicit induction proofs[END_REF]. From a theoretical point of view, we plan to use the three 'not yet' proved conjectures to check the Brotherston-Simpson conjecture [START_REF] Brotherston | Sequent calculi for induction and infinite descent[END_REF], asserting the equivalence between cyclic and explicit induction reasoning for first-order logic with inductive definitions.

Case IS DS CR Lemmas Depth

Case IS DS CR Lemmas Depth R1111 0

2 1 0 3 R2411 0 3 2 1 5 R1112 0 3 1 1 4 R2412 0 4 2 2 5 R1113 1 2 1 1 4 R2413 1 3 2 2 6 R1114 1 2 1 1 4 R2414 1 3 2 2 6 R1115 2 2 1 1 6 R2415 1 5 2 2 5 R1116 0 2 1 0 3 R2416 0 3 2 1 5 R1117 0 2 1 0 3 R2417 0 3 2 1 5 R1118 1 2 1 1 4 R2418 1 3 2 2 6 R1121 0 3 1 1 4 R2421 0 4 2 2 6 R1122 1 2 2 1 5 R2422 0 4 2 2 5 R1123 1 4 2 1 6 R2423 3 6 3 2 9 R1124 1 4 2 1 6 R2424 4 5 3 2 9 R1125 2 2 3 1 7 R2425 1 4 5 2 9 R1126 0 3 1 1 4 R2426 0 4 2 2 6 R1127 0 3 1 1 4 R2427 0 4 2 2 6 R1128 1 4 2 1 6 R2428 1 5 5 3 9 R1131 0 3 1 1 4 R2431 1 3 2 2 6 R1132 0 6 2 1 7 R2432 4 8 3 2 9 R1133 1 2 2 1 5 R2433 1 3 3 2 7 R1134 1 2 2 1 5 R2434 7 5 11 2 12 R1135 1 6 3 1 8 R2435 3 6 7 2 12 R1136 0 4 1 1 5 R2436 3 5 2 2 7 R1137 0 3 1 1 4 R2437 1 6 4 2 8 R1138 1 2 2 1 5 R2438 1 3 4 2 8 R1211 0 3 1 1 4 R2511 1 3 4 1 7 R1212 0 3 1 1 4 R2512 1 5 4 2 8 R1213 1 2 1 1 3 R2513 2
R1411 0 2 1 1 3 R3111 1 2 1 1 4 R1412 0 3 1 2 4 R3112 1 3 1 1 4 R1413 1 2 1 2 4 R3113 2 2 1 2 4 R1414 1 2 1 2 4 R3114 2 2 1 2 4 R1415 1 4 1 1 5 R3115 2 4 1 2 5 R1416 0 3 1 2 4 R3116 1 2 1 1 4 R1417 0 2 1 1 3 R3117 1 2 1 1 4 R1418 1 2 1 2 4 R3118 2
R1611 0 3 1 1 4 R3311 1 2 2 1 4 R1612 0 4 1 2 5 R3312 1 3 1 2 4 R1613 1 3 1 2 5 R3313 2 2 1 2 4 R1614 1 3 1 2 5 R3314 2 2 1 2 4 R1615 1 4 1 2 5 R3315 2 4 1 2 5 R1616 0 3 1 2 4 R3316 1 2 1 1 4 R1617 0 3 1 2 4 R3317 1 2 1 1 4 R1618 1 3 1 2 5 R3318 2 2 1 2 4 R1621 2 2 1 2 5 R3311 1 3 1 2 5 R1622 1 2 3 1 6 R3322 1

 Rijkl true have the following structure: Theorem Rijkl true: ∀ x u v, Rijkl x u v. Proof. destruct x; destruct v; intros. (* case x=0, v=0 *) apply rijkl 1. (* case x=0, v=(S v) *) apply rijkl 3. (* to complete *) (* case x=(S x), v=0 *) apply rijkl 2. (* to complete *) (* case x=(S x), v=(S v) *) apply rijkl 4. (*to complete*) Qed.

 ". apply r1115 3. apply r1115 3.

	apply IHu.
	Qed.
	Theorem R1115 true: ∀ x u v, R1115 x u v.
	Proof.
	destruct x; destruct v; intros. apply r1115 1.

apply r1115 3. apply R1115 mix. apply r1115 2. apply r1115 1. apply r1115 4; apply R1115 mix. Qed.

TABLE I :

 I Statistics about the proofs by Peano induction of Rijkl true.

TABLE I

 I

						-Continued					
	Case IS DS CR Lemmas Depth	Case IS DS CR Lemmas Depth
	R1317 0	2	1	0	3	R2617 1	6	3	1	8
	R1318 1	2	1	1	4	R2618 2	7	3	2	9
	R1321 0	3	1	1	4	R2621 2	8	3	2	10
	R1322 0	3	1	1	4	R2622 2	8	5	2	12
	R1323 1	4	2	1	6	R2623 6	9	5	3	14
	R1324 1	4	2	1	6	R2624 10	2	7	3	13
	R1325 1	3	3	1	8	R2625 3	7	17	3	18
	R1326 0	3	1	1	4	R2626 2	6	5	2	14
	R1327 0	3	1	1	4	R2627 2	7	6	3	15
	R1328 1	4	2	1	6	R2628 2	7	8	2	16
	R1331 0	3	1	1	4	R2631 2	7	3	2	12
	R1332 0	7	2	1	7	R2632 4	10	5	3	13
	R1333 1	2	2	1	5	R2633 2	6	4	2	13
	R1334 1	2	2	1	5	R2634	-	-	-	-	-
	R1335 1	6	3	1	8	R2635 3	9	11	4	16
	R1336 0	3	1	1	4	R2636	-	-	-	-	-
	R1337 0	3	1	1	4	R2637 2	7	6	2	15
	R1338 1	2	2	1	5	R2638 2	7	6	2	14

TABLE I

 I

						-Continued				
	Case IS DS CR Lemmas Depth	Case IS DS CR Lemmas Depth
	R1525 2	3	4	3	7	R3225 2	4	5	2	9
	R1526 1	2	1	2	4	R3226 1	3	2	2	6
	R1527 1	2	1	2	4	R3227 1	3	2	2	6
	R1528 1	5	5	2	10	R3228 1	4	5	2	11
	R1531 1	2	1	2	4	R3231 1	2	2	1	6
	R1532 1	2	3	3	9	R3232 1	4	3	2	9
	R1533 1	2	2	2	5	R3233 1	4	2	1	6
	R1534 1	2	2	2	5	R3234 2	2	3	2	7
	R1535 2	6	6	3	13	R3235 2	6	5	2	13
	R1536 1	3	1	3	5	R3236 1	3	2	2	7
	R1537 1	2	1	2	4	R3237 1	2	2	1	6
	R1538 1	2	2	2	5	R3238 1	2	3	1	6

TABLE I

 I

						-Continued				
	Case IS DS CR Lemmas Depth	Case IS DS CR Lemmas Depth
	R2133 1	3	2	2	5	R3433 1	2	4	1	7
	R2134 1	3	2	2	5	R3434 2	2	5	2	9
	R2135 1	7	3	2	8	R3435 2	5	4	2	11
	R2136 0	5	1	2	5	R3436 1	3	2	2	7
	R2137 0	4	1	2	4	R3437 1	2	2	1	7
	R2138 1	3	2	2	5	R3438 1	2	4	1	7
	R2211 0	7	2	1	7	R3511 1	2	2	1	5
	R2212 0	5	2	2	7	R3512 1	3	2	2	5
	R2213 1	4	2	2	7	R3513 2	2	2	2	6
	R2214 1	6	2	2	7	R3514 2	4	2	2	7
	R2215 1	9	2	2	7	R3515 2	4	2	2	7
	R2216 0	7	2	1	6	R3516 1	3	2	2	5
	R2217 0	7	2	1	6	R3517 1	2	2	1	5
	R2218 1	7	2	2	8	R3518 2	2	2	2	6
	R2221 0	9	2	2	7	R3521 2	2	2	2	6
	R2222 0	9	3	2	7	R3522 1	3	4	2	8
	R2223 3	4	2	1	7	R3523 4	5	4	2	10
	R2224 4	6	3	2	10	R3524 3	2	2	1	6
	R2225 1	9	4	2	11	R3525 2	5	9	2	12
	R2226 0	8	2	2	8	R3526 1	3	2	2	8
	R2227 0	9	2	2	8	R3527 1	3	2	2	6
	R2228 0	6	3	2	9	R3528 1	4	9	2	12
	R2231 0	4	2	2	8	R3531 1	3	2	2	6
	R2232 1	4	2	2	8	R3532 1	4	4	2	10
	R2233 1	4	2	2	9	R3533 1	2	4	1	7
	R2234 2	4	4	3	9	R3534 1	2	4	1	7
	R2235 2	11	6	3	17	R3535 2	6	5	2	13
	R2236 1	5	2	3	8	R3536 1	3	2	2	7
	R2237 1	4	3	2	9	R3537 1	2	2	1	6
	R2238 1	5	4	2	10	R3538 1	2	4	1	7
	R2311 1	4	1	1	5	R3611 1	2	2	1	5
	R2312 1	5	1	2	5	R3612 1	3	2	2	5
	R2313 2	4	1	2	5	R3613 2	2	2	2	6
	R2314 2	4	1	2	5	R3614 2	4	2	2	7
	R2315 2	6	1	2	5	R3615 2	4	2	2	7
	R2316 0	6	1	2	5	R3616 1	2	2	1	5
	R2317 1	4	1	1	5	R3617 1	2	2	1	5
	R2318 2	4	1	2	5	R3618 2	2	2	2	6
	R2321 1	5	1	2	5	R3621 1	3	2	2	6
	R2322 1	5	1	2	5	R3622 1	3	4	2	8
	R2323 3	7	2	2	7	R3623 4	5	5	2	10
	R2324 2	6	2	2	8	R3624 3	2	2	1	6
	R2325 2	6	4	2	10	R3625 2	4	9	2	12
	R2326 1	5	1	2	6	R3626 1	3	2	2	6
	R2327 1	4	1	1	5	R3627 1	3	2	2	6
	R2328 3	7	4	2	10	R3628 1	4	7	2	12
	R2331 1	3	1	2	5	R3631 1	3	2	2	7
	R2332 1	6	2	2	8	R3632 1	7	4	2	10
	R2333 2	4	2	2	5	R3633 1	2	3	1	6
	R2334 2	4	2	2	5	R3634 1	2	4	1	7
	R2335 2	7	3	2	10	R3635 2	9	6	2	14
	R2336 1	5	1	2	6	R3636 1	3	2	2	7
	R2337 1	4	1	1	5	R3637 1	2	2	1	6
	R2338 2	4	2	2	7	R3638 1	2	2	1	5

The full Coq scripts of the proofs can be found at lita.univ-lorraine. fr/~stratula/synasc2016.zip