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Abstract. We develop various proof techniques for the synthesis of sorting
algorithms on binary trees, by extending our previous work on the synthesis of
algorithms on lists. Appropriate induction principles are designed and various
specific prove-solve methods are experimented, mixing rewriting with assump-
tion-based forward reasoning and goal-based backward reasoning à la Prolog.
The proof techniques are implemented in the Theorema system and are used for
the automatic synthesis of several algorithms for sorting and for the auxiliary
functions, from which we present few here. Moreover we formalize and check
some of the algorithms and some of the properties in the Coq system.
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1 Introduction

Program synthesis is currently a very active area of programming language and veri-
fication communities. Generally speaking, the program synthesis problem consists in
finding an algorithm which satisfies a given specification. We focus on the proof-based
synthesis of functional algorithms, starting from their formal specification expressed
as two predicates: the input condition I[X] and the output condition O[X,T ], where
X and T are vectors of universal and existential variables, respectively. The desired
function F must satisfy the correctness condition (∀X)(I[X] =⇒ O[X,F [X]]).1

We are interested to develop proof-based methods for finding F and to build formal
tools for mechanizing and (partially) automatizing the proof process, by following con-
structive theorem proving and program extraction techniques to deductively synthesize
F as a functional program [5]. The way the constructive proof is built is essential since
the definition of F can be extracted as a side effect of the proof. For example, case
splits may generate conditional branches and induction steps may produce recursive

1 The square brackets have been used for function and predicate applications instead of round
brackets.
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definitions. Hence, the use of different case reasoning techniques and induction principles
may output different definitions of F . The extraction procedure guarantees that F
satisfies the specification.

Non-trivial algorithms, as for sorting [14], are generated when X is a recursively-de-
fined unbounded data structure, as lists and trees. In this paper, we apply the deductive
approach to synthesize binary tree algorithms, extending similar results for lists [8].
In order to do this, we introduce new induction principles, proof strategies and infer-
ence rules based on properties of binary trees. Numerous new algorithms have been
synthesized. For lack of space, we fully present the synthesis process for one of these
algorithms; the proofs for the other algorithms are only summarized but can be found in
the technical report [9]. The correctness of the discovered algorithms is ensured by the
soundness of the induction principles, the specific inference rules and proof strategies
introduced in this paper.

The implementations of the new prover and extractor, as well as of the case studies
presented in this paper are carried out in the frame of the Theorema system2 and
e.g., [4] which is itself implemented in Mathematica [20]. Theorema offers significant
support for automatizing the algorithm synthesis; in particular, the new proof strategies
and inference rules have been quickly prototyped, tested and integrated in the system
thanks to its extension features. Also, the proofs are easier to understand since they
are presented in a human-oriented style. Moreover the synthesized algorithms can
be directly executed in the system. The implementation files can be accessed in the
technical report [9].

Additionally we have formalized part of the theory presented here and mechanically
checked that some extracted algorithms satisfy the correctness condition in the frame
of the Coq system [3].

1.1 Related Work

For an overview of the most common approaches used to tackle the synthesis problem,
the reader may consult [12]. Synthesis methods and techniques similar to our proof-based
approach are extensively presented in [8]. It can be noticed that most of the proof
methods are based on expressive and undecidable logics that integrate induction
principles.

The proof environments underlying deductive synthesis frameworks are usually
supporting both automated and interactive proof methods. Those based on abstract
datatype and computation refinements [2, 19] integrate techniques that are mainly exe-
cuted manually and implemented by higher-order proof assistants like Isabelle/HOL [15]
or more synthesis-oriented tools as Specware [16]. On the other hand, automated proof
steps can be performed with decision procedures, e.g., for linear arithmetics, or SAT
and SMT solvers as those integrated in Leon [13]. The generated algorithms can be
checked for conformity with the input specification by validating the proof trails for each
refinement process, for example using the Coq library Fiat [7] to ensure the soundness
of the validation step by certification with the Coq kernel. [6] presents a different Coq
library using datatype refinement to verify parameterized algorithms for which the
soundness proof of some version can be deduced from that of a previous (less efficiently
2 https://www.risc.jku.at/research/theorema/software/
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implemented) version. Implementing inference rules directly in Coq may be of interest
if one can prove that every generated synthesized algorithm is sound. In general, this is
a rather difficult task, therefore this approach does not fit for rapid prototyping and
testing new ideas.

2 The Proof-based Synthesis Method

This section introduces the algorithm synthesis problem and presents the proof-based
synthesis techniques that we use, by adapting and improving inference rules and
induction principles from [8].

2.1 Our Approach

Basic notions and notations. According to the Theorema style, we use square
brackets for function and for predicate application (e.g., f[x] instead of f(x) and P[a]
instead of P(a)). Moreover the quantified variables appear under the quantifier: ∀

X
(“for

all X”) and ∃
T
(“exists T ”). We consider binary trees over a totally ordered domain. In our

formulae there are two kinds of objects: domain objects which are tree members (usually
denoted by lower-case letters – e.g. a, b, n), and binary trees (usually represented by
upper-case letters – e.g. X,T, Y, Z). However the formulae do not indicate explicitly the
types of the objects, but our specific predicate and function symbols are not overloaded3.
Furthermore the meta–variables are starred (e.g., T ∗, T ∗1 , Z∗) and the Skolem constants
have integer indices (e.g., X0, X1, a0).

The ordering between tree elements is denoted by the usual ≤, and the ordering
between a tree and an element is denoted by: � (e.g., T � z states that all the elements
from the tree T are smaller or equal than the element z, z � T states that z is smaller
or equal than all the elements from the tree T ). We use two constructors for binary
trees, namely: ε for the empty tree, and the triplet 〈L, a,R〉 for non-empty trees, where
L and R are trees and a is the root element.

A tree is a sorted (or search, or ordered) tree if it is either ε or of the form 〈L, a,R〉
such that i) L � a � R, and ii) L and R are sorted trees.

Functions: RgM, LfM, Concat, Insert,Merge have the following interpretations,
respectively: RgM[〈L, n,R〉] (resp. LfM[〈L, n,R〉]) returns the last (resp. first) visited
element by traversing the tree 〈L, n,R〉 using the in-order (symmetric) traversal, i.e.,
the rightmost (resp. leftmost) element; Concat[X,Y ] concatenates X with Y (namely,
when X is of the form 〈L, n,R〉 adds Y as a right subtree of the element RgM[〈L, n,R〉]);
Insert[n,X] inserts an element n in a tree X (if X is sorted, then the result is also
sorted); Merge[X,Y ] combines trees X and Y into a new tree (if X,Y are sorted then
the result is also sorted).

Predicates: ≈ and IsSorted have the following interpretations, respectively: X ≈ Y
states that X and Y have the same elements with the same number of occurrences (but
may have different structures), i.e., X is a permutation of Y ; IsSorted[X] states that X
is a sorted tree.

The formal definitions of these functions and predicates are:
3 Each predicate and function symbol applies to a certain combination of types of argument.
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Definition 1. ∀
n,m,L,R,S

(
RgM[〈L, n, ε〉] = n

RgM[〈L, n, 〈R,m, S〉〉] = RgM[〈R,m, S〉]

)

Definition 2. ∀
n,m,L,R,S

(
LfM[〈ε, n,R〉] = n

LfM[〈〈L, n,R〉,m, S〉] = LfM[〈L, n,R〉]

)

Definition 3. ∀
n,L,R,S

(
Concat[ε,R] = R

Concat[〈L, n,R〉, S] = 〈L, n,Concat[R,S]〉

)
Definition 4.

∀
L,m,R

(
IsSorted[ε]

(IsSorted[L] ∧ IsSorted[R] ∧ RgM[L] ≤ m ≤ LfM[R])⇐⇒ IsSorted[〈L,m,R〉]

)
A formal definition of ≈ is not given, however we use the properties of ≈ as

equivalence implicitly in our inference rules and strategies. In particular, we use in
our prover the fact that equivalent trees have the same multiset of elements, which
translates into equivalent tree–expressions having the same multiset of constants and
variables.

The functions LfM and RgM do not have a definition for the empty tree, however
we assume that: ∀

m

(
RgM[ε] ≤ m ≤ LfM[ε]

)
.

An example of simple property which can be proven inductively from Definition 3
is the following:

Property 5. ∀
z,T

(
IsSorted[T ] =⇒ (T � z ⇐⇒ RgM[T ] ≤ z)

)
All the statements used at object level in our experiments are formally just predicate

logic formulae, however for this presentation we will call them differently depending on
their role: a definition or an axiom is given as an initial piece of the theory, considered
to hold; a property is a logical consequence of the definitions and axioms; a proposition is
a formula which we sometimes assume, and sometimes prove, depending of the current
experiment scenario; and a conjecture is something we want to prove.
The synthesis problem. As stated in the introduction, the specification of the target
function F consists of two predicates: the input condition I[X] and the output condition
O[X,T ], and the correctness property for F is ∀

X
(I[X]⇒ O[X,F [X]]). The synthesis

problem is expressed by the conjecture: ∀
X
∃
T
(I[X] ⇒ O[X,T ]). Proof-based synthesis

consists in proving this conjecture in a constructive way and then extracting the
algorithm for the computation of F from this proof.

In the case of sorting the input condition specifies the type of the input, therefore
it is missing since the type is implicit using the notations presented above (e.g., X
is a tree). The output condition O[X,T ] is X ≈ T ∧ IsSorted[T ] thus the synthesis
conjecture becomes:

Conjecture 6. ∀
X
∃
T
(X ≈ T ∧ IsSorted[T ])

This conjecture can be proved in several ways. Each constructive proof is different
depending on the applied induction principle and the content of the knowledge base.
Hence, different algorithms are extracted from different proofs.
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Synthesis scenarios. The simple scenario is when the proof succeeds, because the
properties of the auxiliary functions which are necessary for the implementation of the
algorithm are already present in the knowledge base. An example of knowledge base
is given in [10]. The auxiliary algorithms used for tree sorting are Insert[a,A] (insert
element a into sorted tree A, such that the result is sorted) and Merge[A,B] (merge
two sorted trees into a sorted tree). Some of their necessary properties are:

Proposition 7. ∀
T

(
IsSorted[T ] =⇒ IsSorted[Insert[n, T ]]

)
Proposition 8. ∀

L,R

(
(IsSorted[L] ∧ IsSorted[R]) =⇒ IsSorted[Merge[L,R]]

)
More complex is the scenario where the auxiliary functions are not present in the

knowledge base. In this case the prover fails and on the failing proof situation we apply
cascading: we create a conjecture which would make the proof succeed, and it also
expresses the synthesis problem for the missing auxiliary function. In this scenario, the
functions Insert and Merge are synthesized in separate proofs, and the main proof is
replayed with a larger knowledge base which contains their properties.

2.2 Induction Principles

The illustration of the induction principles and algorithm extraction in this subsection
is similar to the one from [8], but the induction principles are adapted for trees and the
extracted algorithms are more complex.

The following induction principles are direct term-based instances of the Noetherian
induction principle [17] and can be represented using induction schemas. Consider the
domain of binary trees with a well-founded ordering <t and denote by <<t the multiset
extension [1] of <t as a well-founded ordering over vectors of binary trees. An induction
schema to be applied to a predicate ∀

x
P [x] defined over a vector of tree variables x is a

conjunction of instances of P [x] called induction conclusions that ‘cover’ ∀
x
P [x], i.e.,

for any value v from the domain of x, there is an instance of an induction conclusion
P [t] that equals P [v], where t is a vector of trees. An induction schema may attach to
an induction conclusion P [t], as induction hypotheses, any instance P [t′] of ∀

x
P [x] as

long as t′ <<t t. The induction conclusions without (resp., with) attached induction
hypotheses are base (resp., step) cases of the induction schema.

In the current presentation we will use the number of elements as the measure
of binary trees. Checking strict ordering E <t E′ between two expressions E,E′

representing trees reduces to check strict inclusion between the multisets of symbols
(constants and variables except ε) occurring in the expressions. This is because the
expressions representing trees contain only functions which preserve the number of
elements in the tree (Concat, Insert, Merge).

In our experiments we used different induction principles for proving P as unary
predicate over binary trees. A first example is:

Induction-1:
(
P [ε]

∧
∀

n,L,R

(
(P [L] ∧ P [R]) =⇒ P [〈L, n,R〉]

))
=⇒ ∀

X
P [X]
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The ‘covering’ property of the two induction conclusions P [ε] and P [〈L, n,R〉] is
satisfied since any binary tree is either ε or of the form 〈L, n,R〉. P [L] and P [R] are
induction hypotheses attached to P [〈L, n,R〉], and it is very easy to see that their terms
are smaller than the one of the induction conclusion.

Induction-2:(
P [ε]

∧
∀

n,L

(
P [L] =⇒ P [〈L, n, ε〉]

)∧
∀

n,L,R

(
(P [〈L, n, ε〉] ∧ P [R]) =⇒ P [〈L, n,R〉]

))
=⇒

∀
X
P [X]

Induction-3:(
P [ε]

∧
∀
n
(P [〈ε, n, ε〉])

∧
∀

n,L
(P [L] =⇒ P [〈L, n, ε〉])

∧
∀

n,R
(P [R] =⇒ P [〈ε, n,R〉])

∧
∀

n,L,R
((P [L] ∧ P [R]) =⇒ P [〈L, n,R〉])

)
=⇒ ∀

X
P [X]

In the formula above, L and R are assumed to be nonempty. In order to encode this
conveniently during the proof, they are replaced by 〈A, a,B〉 and 〈C, b,D〉, respectively.
Induction schema discovery. In some examples (e.g., synthesis of Merge[X,Y ] [11]),
the induction principles are generated in a lazy way, especially when it is not possible
to find a witness term using only the constants and functions present in the proof
situation. In such cases the prover allows the use of terms containing the function to
be synthesized, by assuming that it fulfils the desired specification. However, the call of
this function must apply to arguments which are strictly smaller (w.r.t. <<t) then the
arguments of the main call of the function which is currently synthesized.

2.3 Special Inference Rules and Proof Strategies

We summarize here the main inference rules and proof strategies. More details are
given in [9].
Inference rules:

IR-1: Generate Microatoms. Certain atoms can be transformed into a conjunction
of (micro)atoms, depending on the specific properties of our functions and predicates.
E.g., IsSorted[〈T1, n, T2〉] is transformed into (IsSorted[T1] ∧ IsSorted[T2] ∧ RgM[T1] ≤
n ∧ n ≤ LfM[T2]). Similarly, we get x � A ∧ x ≤ b ∧ x � C from x � 〈A, b, C〉.

IR-2: Eliminate-Ground-Formulae-from-Goal. The ground formulas from any goal
are deleted if they are assumption instances.

IR-3: Replace-Equivalent-Term-in-Goal. Let t1 ≈ t2 be an assumption and assume
that t1 occurs in a goal as argument of a predicate which is preserved by equivalence
(≈, �). The rule replaces t1 by t2.

IR-4: Generate permutations and expressions. This rule applies combinatorial
techniques that are widely explained in [11]. Given a goal of the form Expression ≈
T ∗ ∧ IsSorted[T ∗], it generates all permutations of the list of nonempty symbols from
Expression. Then, for each permutation it generates all possible witnesses as a tree
expressions containing these symbols. E.g., if Expression is 〈L, x, ε〉, then the generated
trees are: 〈L, x, ε〉, 〈ε, x, L〉, and Insert[x, L].
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Strategies:
S-1: Quantifier reduction. The strategy organizes the inference rules for quantifiers

(see IR-1), in situations where it is clear that several such rules are to be performed in
sequence (e.g., when applying an induction principle).

S-2: Priority-of-Local-Assumptions. The strategy consists in using with priority the
local assumptions, usually ground formulae generated during the current proof and
considered as “true” in the context of the proof, w.r.t. the global assumptions consisting
of definitions and propositions from the database, considered as being always “true”.

3 Experiments

3.1 Synthesis of Sort-1

In this subsection we present the automatically generated proof of Conjecture 6 in the
Theorema system. Note that the statement which has to be proven by induction is:

P [X] : ∃
T
(X ≈ T ∧ IsSorted[T ]).

Proof. Start to prove Conjecture 6 using the current knowledge base and by applying
Induction-3, then S-1 to eliminate the existential quantifier.
Base case 1: Prove: ε ≈ T ∗ ∧ IsSorted[T ∗].
One obtains the substitution {T ∗ → ε} and the new goal is IsSorted[ε], which is true
by Definition 4.
Base case 2: Prove: 〈ε, n, ε〉 ≈ T ∗ ∧ IsSorted[T ∗].
One obtains the substitution {T ∗ → 〈ε, n, ε〉}. The new goal is IsSorted[〈ε, n, ε〉] which
is true by Definition 4.
Induction case 1: Assume:

∃
T
(L0 ≈ T ∧ IsSorted[T ]) (1)

and prove:
∃
T
(〈L0, n, ε〉 ≈ T ∧ IsSorted[T ]) (2)

Apply S-1 on (1) and (2) to eliminate the existential quantifiers. The induction
hypotheses are:

L0 ≈ T1, IsSorted[T1] (3)

and the goal is:
〈L0, n, ε〉 ≈ T ∗ ∧ IsSorted[T ∗] (4)

Apply IR-3 and rewrite our goal (4) by using the first conjunct of the assumption
(3). The goal becomes:

〈T1, n, ε〉 ≈ T ∗ ∧ IsSorted[T ∗] (5)

Apply IR-4 (to generate permutations of 〈T1, n, ε〉) and prove alternatives:
Alternative-1: One obtains the substitution {T ∗ → 〈T1, n, ε〉} to get:

IsSorted[〈T1, n, ε〉] (6)
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Apply IR-1 on (6) and prove:

IsSorted[T1] ∧ RgM[T1] ≤ n (7)

Apply IR-2 using (3) and the new goal is:

RgM[T1] ≤ n (8)

Apply IR-5 and the goal (8) becomes the conditional assumption on this branch.
Alternative-2: One obtains the substitution {T ∗ → 〈ε, n, T1〉}. The proof is similar
and one has to prove:

n ≤ LfM[T1] (9)

which becomes the conditional assumption on this branch.
Alternative-3: Since the disjunction of the conditions (8) and (9) is not provable, the
prover generates a further alternative. This depends on the synthesis scenario (see the
end of Section 2.1). If the properties of the function Insert are present in the knowledge
base, then the prover generates the substitution {T ∗ → Insert[n, T1]} based on these
properties.

If the properties of Insert are not present, then the prover generates a failing branch.
A new conjecture is further generated which is used for the synthesis of Insert. Then
we replay the current proof with knowledge about this auxiliary function and the proof
will proceed further.
Induction case 2: Similar to Induction case 1 one obtains:
Alternative-1: {T ∗ → 〈ε, n, T2〉} and the conditional assumption is: n ≤ LfM[T2].
Alternative-2: {T ∗ → 〈T2, n, ε〉} and the conditional assumption is: RgM[T2] ≤ n.
Alternative-3: Since the auxiliary function Insert is already known, the proof will
succeed with the substitution: {T ∗ → Insert[n, T2]}.
Induction case 3: Assume:

L1 ≈ T3, IsSorted[T3], R1 ≈ T4, IsSorted[T4] (10)

and prove:
〈L1, n,R1〉 ≈ T ∗ ∧ IsSorted[T ∗] (11)

Apply IR-3 and rewrite our goal (11) by using the first and the third conjunct of the
assumption (10) and the new goal is:

〈T3, n, T4〉 ≈ T ∗ ∧ IsSorted[T ∗] (12)

Apply IR-4 and obtain the permutations of the list 〈T3, n, T4〉, for each permutation
a number of possible tree expressions as witness for T ∗, and for each witness an
alternative possibly generating a condition as goal.

If the function Merge is not present, then the branch corresponding to Concat
will be followed by a failing branch which has the same witness. For the purpose of
this presentation we use only the alternative branch generated by the list 〈n, T3, T4〉
with expression Insert[n,Concat[T3, T4]]. This generates the same conjecture for the
synthesis of Merge and also the last branch in the following sorting algorithm, knowing
that if the proof succeeds to find a witness T ∗ = =[n,L0, R0, T1, T2] (term depending
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on n,L0, R0, T1 and T2), then a new branch F [〈L, n,R〉] = =[n,L,R, F [L], F [R]] of
the synthesized algorithm is generated (T1 and T2 are replaced by F [L] and F [R],
respectively) by using as conditions the conditional assumptions required by the witness:

∀
n,L,R



F1[ε] = ε
F1[〈ε, n, ε〉] = 〈ε, n, ε〉

F1[〈L, n, ε〉] =

 〈F1[L], n, ε〉, if RgM[F1[L]] ≤ n
〈ε, n, F1[L]〉, if n ≤ LfM[F1[L]]
Insert[n, F1[L]], otherwise

F1[〈ε, n,R〉] =

 〈ε, n, F1[R]〉, if n ≤ LfM[F1[R]]
〈F1[R], n, ε〉, if RgM[F1[R]] ≤ n
Insert[n, F1[R]], otherwise

F1[〈L, n,R〉] = Insert[n,Merge[F1[L], F1[R]]]


3.2 Additional Certification of the Synthesized Algorithm F1

The theoretical basis and the correctness of this proof-based synthesis scheme is well
known – see for instance [5]. However, the implementation of the presented rules
in Theorema is error-prone. To check the soundness of the implementation, we have
mechanically verified that the algorithm F1 satisfies the correctness condition, by using
the Coq proof assistant (https://coq.inria.fr). The Coq formalization of the LfM
and RfM functions has slightly changed from the partial definitions given here, as Coq
requires that the functions be total. The conversion into total functions is possible if
the components of the triplet given as argument are represented as the new arguments,
as below.

Definition 9. ∀
n,m,L,R,S

(
RgM[L, n, ε] = n

RgM[L, n, 〈R,m, S〉] = RgM[R,m, S]

)

Definition 10. ∀
n,m,L,R,S

(
LfM[ε, n,R] = n

LfM[〈L, n,R〉,m, S] = LfM[L, n,R]

)
The proof effort was non-trivial, involving significant user interaction. The certifica-

tion proofs used rules and proof strategies completely different from those generating
the synthesized algorithms, requiring additionally 2 induction schemas and 15 lemmas.4

3.3 Synthesis of Other Sorting Algorithms

Sort-2. The prover generated automatically the proof of Conjecture 6 by applying
Induction-2 and by using the current knowledge base (Definition 4, Proposition 7,
and 8), including the following property:

Proposition 11. ∀
n,L,R,A,B

((〈L, n, ε〉 ≈ A ∧R ≈ B) =⇒ 〈L, n,R〉 ≈ Merge[A,B])

The proof is similar with the ones presented above and from this proof the following
algorithm is extracted automatically:
4 The full Coq script is available at: http://web.info.uvt.ro/~idramnesc/LATA2016/coq.v
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∀
n,L,R


F2[ε] = ε

F2[〈L, n, ε〉] =

 〈F2[L], n, ε〉, if RgM[F2[L]] ≤ n
〈ε, n, F2[L]〉, if n ≤ LfM[F2[L]]
Insert[n, F2[L]], otherwise

F2[〈L, n,R〉]=Merge[F2[〈L, n, ε〉], F2[R]]


Sort-3. The proof of Conjecture 6 is generated automatically by applying Induction-3
and by using properties from the knowledge base (including properties of Concat).

The corresponding algorithm which is extracted automatically from the proof is
similar to F1 excepting the last branch, which is:

F3[〈L, n,R〉] = Insert[n, F3[Concat[L,R]]]

Sort-4. The prover automatically generates the proof of Conjecture 6 by applying
Induction-3 and by using properties from the knowledge base (including properties of
Insert, Merge) and applies the inference rule IR-4 which generates permutations.

The automatically extracted algorithm is similar to F1 excepting the last branch,
where F4 has three branches:

F4[〈L, n,R〉] =

 〈F4[L], n, F4[R]〉, if (RgM[F4[L]] ≤ n ∧ n ≤ LfM[F4[R]])
〈F4[R], n, F4[L]〉, if (RgM[F4[R]] ≤ n ∧ n ≤ LfM[F4[L]])
Insert[n,Merge[F4[L], F4[R]]], otherwise

Sort-5. The prover generates automatically the proof of Conjecture 6 by applying
Induction-3 and by using properties from the knowledge base (including properties of
Insert, Concat) and applies the inference rule IR-4 which generates permutations.

The algorithm which is extracted automatically from the proof is similar to F3

excepting the last branch, where F5 has three branches:

F5[〈L, n,R〉] =

 〈F5[L], n, F5[R]〉, if RgM[F5[L]] ≤ n ∧ n ≤ LfM[F5[R]]
〈F5[R], n, F5[L]〉, if RgM[F5[R]] ≤ n ∧ n ≤ LfM[F5[L]]
Insert[n, F5[Concat[L,R]]], otherwise

The automatically generated proofs corresponding to these algorithms, their extraction
process and the computations with the extracted algorithms in Theorema are fully
presented in the technical report [9].

The following table presents the synthesized sorting algorithms. For each of them
Conjecture 6 has been proved using the induction principles from the first column.
The second column specifies the auxiliary function used and the third column shows
whether the rule IR-4 (which generates the permutations and witnesses) is used or not.

Induction Auxiliary used Uses Extracted
principle functions IR-4 algorithm

Induction-2 LfM, RgM, Insert, Merge No F2

Induction-3

LfM, RgM, Insert, Merge No F1

LfM, RgM, Insert, Merge Yes F4

LfM, RgM, Insert, Concat No F3

LfM, RgM, Insert, Concat Yes F5
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4 Conclusions and Further Work

Our results are: a new theory of binary trees, an arsenal of special strategies and specific
inference rules based on properties of binary trees, a new prover in the Theorema
system which generates all the presented synthesis proofs, an extractor in the Theorema
system which is able to extract from a proof the corresponding algorithms (including
if-then-else algorithms), the synthesis of numerous sorting algorithms and auxiliary
algorithms. We have also certified by Coq the soundness property of F1 with the current
implementation of the auxiliary functions. The certification proof is more complex and
its generation less automatic than for the Theorema proof that helped for extracting
F1, by using different inference rules and additional properties.

The problem of sorting binary trees does not appear to have an important practical
significance, and in fact the algorithms we synthesize are not very efficient. (For instance
it appears to be more efficient to extract the elements of the tree in a list, to sort it by
a fast algorithm, and then to construct the sorted tree.) However, the problem itself
poses interesting algorithmic problems, and also the proof techniques are more involved
than the ones from lists. This is very relevant for our research, because our primary
goal is not to generate the most efficient algorithms, but to study interesting examples
of proving and synthesis, from which we can discover new proof methods for algorithm
synthesis.

Our experiments done in the Theorema system and presented in detail in the
technical report [9] show that by applying different induction principles and by choosing
different alternatives in the proofs one can discover numerous algorithms for the same
functions, differing in efficiency and complexity. This case study illustrates that the
automation of the synthesis problem is not a trivial one.

As further work, for a fully automatization of the synthesis process, we want to use
other systems in order to automatically generate the induction principles, which in the
Theorema system are given as inference rules in the prover. For example, we can apply
induction schemas that are issued from recursive data structures and functions defined
in Coq [18]. We also want to use the method presented in this paper on more complex
recursive data structures (e.g. red-black trees). In the near future, we intend to certify
the correctness property for the other synthesized sorting algorithms, using a similar
approach as for F1. One of our long-term goals is to define procedures for translating the
Theorema proofs directly into Coq scripts, by following similar translation procedures
as those used for implicit induction proofs [18].
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