
HAL Id: hal-01590637
https://hal.science/hal-01590637v1

Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Case Study on Algorithm Discovery from Proofs: The
Insert Function on Binary Trees

Isabela Dramnesc, Tudor Jebelean, Sorin Stratulat

To cite this version:
Isabela Dramnesc, Tudor Jebelean, Sorin Stratulat. A Case Study on Algorithm Discovery from
Proofs: The Insert Function on Binary Trees. SACI 2016: 11th IEEE International Symposium on
Applied Computational Intelligence and Informatics, May 2016, Timisoara, Romania. �hal-01590637�

https://hal.science/hal-01590637v1
https://hal.archives-ouvertes.fr


A Case Study on Algorithm Discovery from Proofs:
The Insert Function on Binary Trees

Isabela Drămnesc
Department of Computer Science

West University
Timişoara, Romania

Email: idramnesc@info.uvt.ro

Tudor Jebelean
Research Institute for Symbolic Computation,

Johannes Kepler University,
Linz, Austria

Email: Tudor.Jebelean@jku.at

Sorin Stratulat
LITA, Department of Computer Science

Université de Lorraine
Metz, France

Email: sorin.stratulat@univ-lorraine.fr

Abstract—We present a proof–based automatic synthesis ex-
periment in the context of sorting binary trees, namely the synthe-
sis of the function which inserts an element in a sorted binary tree
at the appropriate place. The algorithm is automatically extracted
from the automatically produced proof of the conjecture which
expresses the existence of the desired output for each appropriate
input of the function.

This is a case study with the purpose of finding and illustrat-
ing general and domain specific inference rules and strategies for
efficiently producing proofs from which the desired algorithms
can be extracted.

The construction of the necessary theory, of the provers, and
the experiment itself are performed in the Theorema system.

Keywords—automated reasoning, binary trees, Theorema

I. INTRODUCTION

Certified software is usually based on formal verification:
by using an appropriate verification condition generator, a set
of logical statements is produced from the already existing
software (or algorithm) and then these are proved using
automated theorem proving or checked using model checking.

An interesting alternative approach is to automatically
synthesize the algorithm (and then the software) using a formal
environment. We illustrate in this paper the proof–based algo-
rithm synthesis. Namely, one starts from the properties of the
desired function, and then proves automatically the conjecture:
”for each appropriate input there exists an output with the
desired properties”. The algorithm is extracted from the proof
as a set of conditional equalities. Proof–based synthesis is a
classical method (see e.g. [6]), however concrete experiments
with non–trivial algorithms are scarce.

We present in this paper a case study on the automatic
generation of the Insert function for the sorting of binary trees.
In the insert–sort algorithm, this function inserts an element in
a sorted binary tree, such that the resulting tree is also sorted.

The purpose of the case study is to discover and illustrate
the proving methods which are successful in producing effi-
ciently a proof from which the algorithm can be extracted.
Furthermore the experiment illustrates the process of con-
structing the theory which is necessary for expressing the
specification of the desired function and the properties of the
objects involved – which are needed for the success of the
proofs.

The construction of the theory, of the appropriate prover,
and the proof experiments are performed in the Theorema
system [3], which is implemented on top of Mathematica [17].
The Theorema system allows to express and construct the
logical formulae and the proofs in natural style (that is, similar
to the style humans use), and furthermore the automatically
synthesized algorithms are directly executable in the system.

A. Related Work

In literature there are several methods for recursive pro-
gram synthesis. Three of them: constructive/deductive syn-
thesis, schema-based synthesis and inductive synthesis have
been compared in [1] in the synthesis of a common program.
A survey of logic program synthesis has been done in [7]
and [14]. In the context of constructive/deductive synthesis, the
approach in this paper is proof–based and describes deductive
techniques for synthesizing the Insert algorithm operating on
binary trees.

In [5] the authors describe some techniques (based on
a combination of “rippling” [4] and “middle–out reason-
ing” [16]) to construct induction rules for deductive synthesis.
In contrast, in this paper we give the induction principle and
we apply some special strategies and techniques in order to
obtain the algorithm.

Most of the techniques from literature have been applied
for synthesizing algorithms operating on natural numbers or
lists, but none on binary trees.

In classical approaches (see e. g. [15]) problems like sorting
of trees and inserting an element in a sorted tree are not
investigated.

In this paper we handle the problem of inserting an element
in a sorted tree such that the result is sorted. From the
specification of the problem, we derive a conjecture which
is automatically proved by our new prover implemented in
the Theorema system. The prover uses techniques which
are specific to the domain of binary trees. Some of these
techniques were introduced in [9] and [13] and some of
them are introduced in this paper. From the generated proof,
the corresponding algorithm is automatically extracted. The
corresponding theory of binary trees is explored in [12].

Compared to our previous work on algorithm synthesis on
lists [8], in this paper we use a similar proof–based approach,
but different techniques to synthesize algorithms on binary



trees. The authors apply in [9] combinatorial techniques in
order to discover from proofs auxiliary algorithms, other than
Insert, which are versions of an algorithm that merges two
sorted binary trees into a sorted one. All these auxiliary
algorithms are necessary in the sorting algorithms which
were discovered from proofs in [13]. The experiments in the
Theorema system are given in [10].

II. PROOF–BASED SYNTHESIS

This section describes the problem of algorithm synthesis
in the context of the binary trees and the proof-based synthesis
techniques which we use.

A. Context

1) Notations: We consider binary trees over a totally
ordered domain.

In our formulae there are two kinds of objects: domain
objects which are tree members (usually denoted by lower-
case letters – e.g. a, b, n), and binary trees (usually represented
by upper-case letters – e.g. X,T, Y, Z). However the formulae
do not indicate explicitly the types of the objects, but the type
of each object is determined unambiguously by the context in
which it occurs. Furthermore the meta–variables are starred
(e.g., T ∗, T ∗

1 , Z∗) and the Skolem constants have integer
indices (e.g., X0, X1, a0).

The ordering between tree elements is denoted by the usual
≤, and the ordering between a tree and an element is denoted
by: � (e.g., T � z states that all the elements from the tree T
are smaller or equal than the element z, z � T states that z
is smaller or equal than all the elements from the tree T ). We
use two constructors for binary trees, namely: ε for the empty
tree, and the triplet 〈L, a,R〉 for non-empty trees, where L
and R are trees and a is the root element (e. g. 〈ε, a, ε〉 is a
tree containing one single element).

A tree is a sorted (or search, or ordered) tree if it is either
ε or of the form 〈L, a,R〉 such that i) L � a � R, and ii) L
and R are sorted trees.

Functions: RgM, LfM have the following interpretations,
respectively: RgM[〈L, n,R〉] (resp. LfM[〈L, n,R〉]) returns the
last (resp. first) visited element by traversing the tree 〈L, n,R〉
using the in-order traversal;

Predicates: ≈ and IsSorted with the following interpreta-
tions: X ≈ Y states that X and Y have the same elements
with the same number of occurrences (but may have different
structures), i.e., X is a permutation of Y ; IsSorted[X] states
that X is a sorted tree.

All the statements used at object level in our experiments
are formally just predicate logic formulae, and we call them
differently depending on their role: a definition is given as
an initial piece of the theory, considered to hold; a property
is a logical consequence of the definitions; a lemma is a
formula which we sometimes assume, and sometimes prove,
depending of the current experiment scenario; and a conjecture
is something we want to prove – typically in order to produce
and algorithm. Not assumed properties and the conjectures are
proved automatically by our system.

The following definitions and properties constitute the
knowledge base.

Definition 1.

∀
n,m,L,R,S

(
RgM[〈L, n, ε〉] = n

RgM[〈L, n, 〈R,m, S〉〉] = RgM[〈R,m, S〉]

)
Definition 2.

∀
n,m,L,R,S

(
LfM[〈ε, n,R〉] = n

LfM[〈〈L, n,R〉,m, S〉] = LfM[〈L, n,R〉]

)
Definition 3. ∀

L,m,R IsSorted[ε]
(IsSorted[L] ∧ IsSorted[R] ∧ RgM[L] ≤ m ≤ LfM[R])⇐⇒

IsSorted[〈L,m,R〉]


The functions LfM and RgM do not have a definition for

the empty tree, however we assume:

Property 1. ∀
m

(
RgM[ε] ≤ m ≤ LfM[ε]

)
.

We also consider the following property which can be
proved by induction from Definition 3:

Property 2. ∀
z,T

(
IsSorted[T ] =⇒ (T � z ⇐⇒ RgM[T ] ≤ z)

)
2) The Problem: We address the problem: having an ele-

ment and a sorted binary tree, insert the element in the tree
such that the result is sorted.

Algorithm synthesis is based on the proof of the following
conjecture:

Conjecture 1. ∀
n,X

IsSorted[X]

∃
T

(
〈ε, n,X〉 ≈ T ∧ IsSorted[T ]

)

One can prove this conjecture in several ways. Each
proof is different depending on the applied induction principle
and the content of the knowledge base. Therefore, different
algorithms are extracted from different proofs.

B. Induction Principle

In our experiments we use the following induction principle
for proving P as unary predicate over binary trees.

Induction-1:(
P [ε]

∧
∀

n,L,R
((P [L]∧P [R]) =⇒ P [〈L, n,R〉])

)
=⇒ ∀

X
P [X]

The ‘covering’ property of the two induction conclusions
P [ε] and P [〈L, n,R〉] is satisfied since any binary tree is
either ε or a triplet of the form 〈L, n,R〉. P [L] and P [R] are
induction hypotheses attached to P [〈L, n,R〉], and it is very
easy to see that their terms are smaller than the one of the
induction conclusion, where the measure can be the height of
the tree.

For instance, in order to synthesize the Insert algorithm
as a function F [n,X], we consider the output condition
O[n,X, T ] : (〈ε, n,X〉 ≈ T ∧IsSorted[T ]). The corresponding



synthesis conjecture is:

∀
n,X

IsSorted[X]

∃
T
O[n,X, T ]

by taking P [X] as (IsSorted[X] =⇒ ∃
T
O[n,X, T ]).

We perform induction on variable X from the synthesis
conjecture, thus the proof is structured as follows:

Base case: For arbitrary but fixed n (new constant),
we prove ∃

T
O[n, ε, T ]. If the proof succeeds to find a

ground witness =1[n, ε] (a term depending on n) such that
O[n, ε,=1[n, ε]], then we know that F [n, ε] = =1[n, ε].

Step case: For arbitrary but fixed m, L and R (new
constants), we prove

IsSorted[〈L,m,R〉] =⇒ ∃
T
O[n, 〈L,m,R〉, T ].

We assume as induction hypotheses:

IsSorted[L] =⇒ ∃
T
O[n,L, T ]

and
IsSorted[R] =⇒ ∃

T
O[n,R, T ],

which are Skolemized by introducing two new constants T1

and T2 for each existential T. The existentially quantified
variable from the goal becomes the metavariable T ∗ (for
which we need to find a substitution term). If the proof
succeeds to find a witness T ∗ = =2[n,m,L,R, T1, T2] (term
depending on n,m,L,R, T1 and T2), then we know that
F [n, 〈L,m,R〉] = =2[n,m,L,R, F [n,L], F [n,R]] (T1 and
T2 are replaced by F [n,L] and F [n,R], respectively).

The extracted algorithm from the proof has the following
structure:

∀
n,m,L,R

(
F [n, ε] = =1[n, ε]

F [n, 〈L,m,R〉] = =2[n,m,L,R, F [n,L], F [n,R]]

)
The process of algorithm extraction from the proof is also

described in [9], but for a different conjecture.

C. Special Inference Rules and Strategies

Since the theory which we construct is expressed in first
order logic, in principle the proofs can be performed by
refutation and resolution, or by a search strategy like in
Prolog. (In fact we also tried this approach in our earlier
experiments.) However the proving process will be very long
and memory consuming – in fact it will fail for more complex
proofs for reasons of resource exhaustion. Additionally, it may
happen that the resulting proof does not allow to extract an
algorithm – because it uses non constructive inference steps.
Therefore is very important to find efficient inference rules and
strategies which allow the automatic proof in a reasonable time
(any proof in our experiments does not overcome 5 seconds)
and space, and furthermore to restrict the inference steps (in
particular the creation of Skolem constants) in such a way that
the produced proof is constructive (i. e. it allows the extraction
of an algorithm).

The strategies and the inference rules which we apply were
introduced by the authors in [9] and [13]. All these are based

on the specific properties of our functions and predicates. We
mention below only the special inference rules and strategies
which are needed for the experiment which we describe in
Section III. We detail IR-3a and IR-3c, which in [9] were
only summarized, and IR-5 and S-3 which are not described
neither in [9] nor in [13].

1) Special Inference Rules:

IR-1: Generate Microatoms. This rule is used in order to
simplify both the goals and the assumptions. For assumptions
it generates as many microatoms as possible and for the goal it
generates a few microatoms that become conjuncts in the goal.
Moreover, some of these microatoms will become conditional
assumptions in the synthesized algorithm (see IR-5 below).

We call microatoms those atoms whose arguments do not
contain function symbols, except for few special ones – in the
case of the current experiments we allow the functions RgM
and LfM in microatoms.

Example: IsSorted[〈L,m,R〉] is transformed into
(IsSorted[L] ∧ IsSorted[R] ∧ RgM[L] ≤ m ∧m ≤ LfM[R]).

IR-2: Eliminate-Ground-Formulae-from-Goal. This rule
increases the efficiency of proving by eliminating ground
formulae from the goal.

Example: the assumption is: L � m and the goal is: n ≤
m∧L � m∧m ≤ RgM[R], the goal becomes: n ≤ m∧m ≤
RgM[R].

The following two inference rules are a generalization of
IR-3 for replacing equivalent terms in goal (see [9]).

IR-3a: Replace-Equivalent-Tree-Expression-in-Goal. This
rule constructs a different and equivalent tree expression. We
illustrate on some examples.

Example-1: the assumption is: 〈ε, n, L〉 ≈ T1 and the goal
is: 〈ε, n, 〈L,m,R〉〉 ≈ T ∗, then the goal is rewritten into:
〈T1,m,R〉 ≈ T ∗.

Example-2: the assumption is: 〈ε, n,R〉 ≈ T2 and the goal
is: 〈ε, n, 〈L,m,R〉〉 ≈ T ∗, then the goal is rewritten into:
〈L,m, T2〉 ≈ T ∗.

IR-3c: Replace-Equivalent-Atom-in-Goal. This rule takes
into account the interplay between the equivalence relation ≈,
the orderings, and the functions RgM, LfM in order to perform
similar replacements. We illustrate this rule on some examples.

Example-1: the assumptions are: 〈ε, n, L〉 ≈ T1,
IsSorted[T1] and the goal is: RgM[T1] ≤ m then the goal is
rewritten into: n ≤ m ∧ L � m.

Example-2: the assumptions are: 〈ε, n,R〉 ≈ T2,
IsSorted[T2] and the goal is: m ≤ LfM[T2] then the goal is
rewritten into: m ≤ n ∧m � R.

All these transformation rules generate proof alternatives
because they do not guarantee that the new goal is provable.

IR-5: Simple-Goal-Conditional-Assumption. When the
goal is ground, no further simplification of it is possible,
and the goal does not contain tree constants except inside
the functions RgM, and LfM. Then this goal becomes a
conditional assumption representing the condition attached to
the corresponding branch of the synthesized algorithm, and the



current branch is considered successful (see also strategy S-3).
The reason for the selection of such formulae as conditional
assumptions is that they can be easily evaluated (an expression
which does not contain tree expressions is evaluated in constant
time, and the functions RgM and LfM, are evaluated in linear
time).

2) Strategies:

S-1: Quantifier reduction. This strategy organizes the in-
ference rules for quantifiers (e. g. when applying an induction
principle), and it is more effective on goals. For the soundness
of the prover it is necessary to keep track of the order in which
Skolem constants and metavariables have been introduced,
because a Skolem constant which cannot be generated before
a certain metavariable cannot be used in a solution for that
meta–variable.

S-3: Case-Distinction. The prover generates several proof
branches, follows each branch in turn and produces a set
of conditional witnesses which becomes a multiple branch
in the synthesized algorithm. The final proof is successful
if the disjunction of all conditions is true – this means that
the algorithm covers all the possible cases. Example: on one
branch one obtains the condition m ≤ n and on another branch
the condition n ≤ m.

III. EXPERIMENTS

In this subsection we describe the discovery of the Insert
algorithm which is used by the sorting algorithms operating
on binary trees. Some of the sorting algorithms are described
in [13] and the experiments in the Theorema system (including
the following one) are given in [11].

A. Synthesis of Insert

The following proof of Conjecture 1 constitute the synthe-
sis of the auxiliary function Insert.

The prover automatically generates the proof of Conjec-
ture 1 by applying Induction-1 (on the second argument) and
the specific inference rules and strategies from Subsection II-C.
We describe below the most important steps of the proof. Note
that the statement which has to be proven by induction is:

P [X] : IsSorted[X] =⇒ (∃
T
(〈ε, n,X〉 ≈ T ∧ IsSorted[T ])).

Proof: After applying Induction-1 and S-1 to eliminate
the existential quantifier, we get:

Base case: The witness found is {T ∗ → 〈ε, n, ε〉}.
Induction step: We assume:

IsSorted[L] =⇒ (〈ε, n, L〉 ≈ T1 ∧ IsSorted[T1]) (1)

IsSorted[R] =⇒ (〈ε, n,R〉 ≈ T2 ∧ IsSorted[T2]) (2)

and we prove:

IsSorted[〈L,m,R〉] =⇒
(〈ε, n, 〈L,m,R〉〉 ≈ T ∗ ∧ IsSorted[T ∗])

(3)

We prove the right hand side of the above implication, by
assuming the left hand side, which using IR-1 is decomposed
into:

IsSorted[L] (4)

IsSorted[R] (5)

RgM[L] ≤ m (6)

m ≤ LfM[R] (7)

By using Property 2 we extend these four assumptions with
the new ones:

L � m (8)

m � R (9)

Using modus ponens from (4) and (5) by (1) and (2) we
obtain:

〈ε, n, L〉 ≈ T1 (10)

IsSorted[T1] (11)

〈ε, n,R〉 ≈ T2 (12)

IsSorted[T2] (13)

The goal is:

〈ε, n, 〈L,m,R〉〉 ≈ T ∗ ∧ IsSorted[T ∗] (14)

Since IR-3a can be applied on (14) in two different ways,
the prover generates two alternatives:
Alternative-1: By applying IR-3a using the two assumptions
(10) and (11), the goal is transformed into:

〈T1,m,R〉 ≈ T ∗ ∧ IsSorted[T ∗] (15)

Obtain substitution {T ∗ −→ 〈T1,m,R〉} and prove:

IsSorted[〈T1,m,R〉] (16)

Apply IR-1 and the goal becomes:

IsSorted[T1]∧IsSorted[R]∧RgM[T1] ≤ m∧m ≤ LfM[R] (17)

Eliminate the first two conjuncts of the goal (apply IR-2 using
(11), (5)) and the new goal is:

RgM[T1] ≤ m ∧m ≤ LfM[R] (18)

Apply IR-3c using (10) and (11) and the goal becomes:

n ≤ m ∧ L � m ∧m ≤ LfM[R] (19)

Apply IR-2 using (7) and (8) and the new goal is:

n ≤ m (20)

This goal fulfils the rule IR-5 and thus it becomes the
conditional assumption on this branch.

Alternative-2: By applying IR-3a using the two assumptions
(12) and (13) the new goal is:

〈L,m, T2〉 ≈ T ∗ ∧ IsSorted[T ∗] (21)

Similar to the previous case and by using Property 2 we obtain
the substitution {T ∗ −→ 〈L,m, T2〉} and the last goal is:

m ≤ n (22)

which becomes the conditional assumption on this branch.

The synthesized algorithm is extracted from the proof of
Conjecture 1 as the definition of the following Insert function:



∀
n,m,L,R


Insert[n, ε] = 〈ε, n, ε〉
Insert[n, 〈L,m,R〉] ={

〈Insert[n,L],m,R〉, if n ≤ m

〈L,m, Insert[n,R]〉, otherwise


Computations: We make some computations in Theorema

with the obtained algorithm.

Input–1: Compute[Insert[2, 〈ε, 10, ε〉]

Output–1: 〈〈ε, 2, ε〉, 10, ε〉

Input–2: Compute[Insert[12, 〈ε, 10, ε〉]

Output–2: 〈ε, 10, 〈ε, 12, ε〉〉

Input–3: Compute[Insert[8, 〈〈ε, 9, 〈ε, 11, ε〉〉, 12, ε〉]

Output–3: 〈〈〈ε, 8, ε〉, 9, 〈ε, 11, ε〉〉, 12, ε〉

Input–4: Compute[Insert[18, 〈〈ε, 9, 〈ε, 12, ε〉〉, 15, ε〉]

Output–4: 〈〈ε, 9, 〈ε, 12, ε, 〉〉, 15, 〈ε, 18, ε〉〉

B. Certification of Properties About the Synthesized Algorithm

According to [11], every insertion algorithm, denoted
generically by Ins and supposed to be used in the synthesis
of the merge algorithm on binary trees, should satisfy the
following properties:

Property 3. ∀
T

(
Ins[n, T ] ≈ 〈ε, n, T 〉

)
Property 4. ∀

T

(
IsSorted[T ] =⇒ IsSorted[Ins[n, T ]]

)
For the particular case when Ins is instantiated by the Insert

function, these properties become:

Property 5. ∀
T

(
Insert[n, T ] ≈ 〈ε, n, T 〉

)
Property 6. ∀

T

(
IsSorted[T ] =⇒ IsSorted[Insert[n, T ]]

)
Properties 5 and 6 have been mechanically certified using

the Coq proof assistant [2].1 Insert has been used to define a
version of the merge algorithm, defined by the Merge function:

∀
m,L,R,T

Merge[ε, T ] = T

Merge[〈L,m,R〉, T ] =
Insert[m,Merge[L,Merge[R, T ]]


for which the following crucial property has also been

certified:

Property 7. ∀
L,R

(
(IsSorted[L] ∧ IsSorted[R]) =⇒

IsSorted[Merge[L,R]]
)

During the certification process, several auxiliary lemmas
have been used, as:

1The full Coq script is available at: http://web.info.uvt.ro/∼idramnesc/
LATA2016/coq.v

Lemma 1. ∀
n,m,L,R

(
LfM[〈Insert[n,L],m,R〉] = n ∨

LfM[〈Insert[n,L],m,R〉] = LfM[〈L,m,R〉]
)

Lemma 2. ∀
n,m,L,R

(
RgM[〈L,m, Insert[n,R]〉] = n ∨

RgM[〈L,m, Insert[n,R]〉] = RgM[〈L,m,R〉]
)

IV. CONCLUSIONS AND FURTHER WORK

This experiment illustrates the usefulness of the proof–
based approach to the automatic synthesis of a nontrivial
algorithm. The success of the approach is the result of the
application of inference rules and strategies which are specific
to the domain of binary trees – in fact some of them are
also applicable to lists and to other domains. The principles
which are more general include: induction principles based
on the definition of the domain, the treatment of quantifiers
using Skolem constants and metavariables, decomposition into
microatoms, and simple–goal conditional assumptions.

In the context of the problem of sorting of binary trees, the
experiment also contributed to the illustration and understand-
ing of the process of theory exploration: the construction of
the appropriate theory in parallel with the attempt to define the
specification of the desired function and to prove the necessary
properties.

The results of this experiment opens the way for the
exploration of more complex problems, for instance by using
a combination of the theory of lists with the theory of binary
trees.

REFERENCES

[1] D. Basin, Y. Deville, P. Flener, A. Hamfelt, and J. F. Nilsson. Synthesis
of Programs in Computational Logic. In Program Development in
Computational Logic, pages 30–65. Springer, 2004.

[2] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program
Development Coq’Art: The Calculus of Inductive Constructions, volume
XXV of Texts in Theoretical Computer Science. An EATCS. Springer,
2004.

[3] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nak-
agawa, F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Wind-
steiger. Theorema: Towards Computer-Aided Mathematical Theory
Exploration. Journal of Applied Logic, 4(4):470–504, 2006.

[4] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: meta-level
guidance for mathematical reasoning. Cambridge University Press,
2005.

[5] A. Bundy, L. Dixon, J. Gow, and J. Fleuriot. Constructing Induction
Rules for Deductive Synthesis Proofs. Electron. Notes Theor. Comput.
Sci., 153:3–21, March 2006.

[6] A. Bundy, A. Smaill, and G. Wiggins. The Synthesis of Logic Programs
from Inductive Proofs. In J. W. Lloyd, editor, Computational Logic:
Symposium Proc., pages 135–149. Springer, 1990.

[7] Y. Deville and K. K. Lau. Logic Program Synthesis. J. Log. Program.,
19/20:321–350, 1994.

[8] I. Dramnesc and T. Jebelean. Synthesis of list algorithms by mechanical
proving. Journal of Symbolic Computation, 68:61–92, 2015.

[9] I. Dramnesc, T. Jebelean, and S. Stratulat. Combinatorial techniques
for proof-based synthesis of sorting algorithms. In SYNASC 2015:
Proceedings of the 17th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages 137–144, 2015.

[10] I. Dramnesc, T. Jebelean, and S. Stratulat. Synthesis of Some Algo-
rithms for Trees: Experiments in Theorema. Technical Report 15-04,
RISC Report Series, University of Linz, Austria, 2015.



[11] I. Dramnesc, T. Jebelean, and S. Stratulat. Synthesis of Some Algo-
rithms for Trees: Experiments in Theorema. Technical Report 15-04,
RISC Report Series, Johannes Kepler University, Linz, Austria, 2015.

[12] I. Dramnesc, T. Jebelean, and S. Stratulat. Theory exploration of binary
trees. In 13th IEEE International Symposium on Intelligent Systems and
Informatics (SISY 2015), pages 139–144. IEEE Publishing, 2015.

[13] I. Dramnesc, T. Jebelean, and S. Stratulat. Proof-based Synthesis
of Sorting Algorithms for Trees. In Proceedings of LATA 2016:
10th International Conference on Language and Automata Theory and
Applications, volume LNCS 9618. Springer, 2016.

[14] P. Flener. Achievements and Prospects of Program Synthesis. In
Computational Logic: Logic Programming and Beyond, pages 310–346,
2002.

[15] D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd ed.)
Sorting and Searching. Addison-Wesley Longman Publishing Co.,Inc.,
Redwood City, CA, USA, 1998.

[16] I. Kraan, D. A. Basin, and A. Bundy. Middle-Out Reasoning for
Synthesis and Induction. Journal Of Automated Reasoning, 16(1-
2):113–145, 1996.

[17] S. Wolfram. The Mathematica Book. Wolfram Media Inc., 2003.


