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Abstract—In the frame of our previous experiments for proof
based synthesis of sorting algorithms for lists and for binary trees,
we employed certain special techniques which are able to generate
multiple variants of sorting and merging, by investigating all
combinations of auxiliary functions available for composing
objects (lists, respectively trees). The purpose of this paper is
to describe this technique and the results obtained. We present
the main principles and the application of this technique to
merging of sorted binary trees into a sorted one. Remarkably,
merging requires a nested recursion, for which an appropriate
induction principle is difficult to guess. Our method is able to
find it automatically by using a general Noetherian induction and
the combinatorial technique.

Index Terms—automated reasoning, algorithm synthesis, The-
orema, binary trees

I. INTRODUCTION

Synthesizing programs from specifications is a challenging
problem [12] that can be tackled by using formal reasoning.
Current successful synthesizing formal systems [13] mix au-
tomated and interactive developments. Most of their success
depends on the way deductive and inductive reasoning is
performed and combined. In this paper, we are interested to
analyze these aspects when dealing with proof-based synthesis
of functional algorithms defined over unbounded data struc-
tures like binary trees.

In our setting, the formal specification of a target function
F [X] (where X is a vector of variables) is defined in terms of
two conditions given as predicates: I[X] (input condition) and
O[X,F [X]] (output condition). The soundness property for F ,
∀
X
(I[X]⇒ O[X,F [X]]), ensures that whenever the input of F

satisfies I , its input and output satisfy O. The synthesis prob-
lem is formalized as the implication ∀

X
∃
T
(I[X] ⇒ O[X,T ])

for which the soundness property is a particular case when
the variable T is Skolemized to F [X]. Our approach is proof-
based [3] by considering the formalized synthesis problem as
a conjecture to be proved. The proof of the conjecture is built
using domain-specific inference rules and proof strategies.
When T is an unbounded data structure, (a potentially infinite
number of) different proofs can be generated, depending on
the used induction principles and deductive techniques, as the
case-analysis. Finally, from any such a proof, a synthesized

algorithm can be automatically extracted using transformation
rules, its ‘form’ depending on the way the proof was built.

In the past, we have experimented with proof-based syn-
thesis of sorting algorithms for lists [9] and binary trees [10],
the employed proof techniques allowing us to synthesize a
bunch of sorting algorithms. In this paper, we are interested
to systematically control their generation and analyze the
results, by investigating all combinations of auxiliary functions
available for composing objects (lists, respectively trees).

The paper is structured as follows: section II summarizes
related work, section III describes the proof-based synthesis
method, section IV presents the experiments, and finally
section V lists the conclusions and further work.

II. RELATED WORK

There are several methods for algorithm synthesis. A com-
parison between three methods for recursive program syn-
thesis, namely constructive/deductive synthesis, schema-based
synthesis and inductive synthesis, has been done in [1] by
synthesizing a common program. Paper [1] complements the
survey of logic program synthesis which has been done in [4]
and [11]. In the context of constructive synthesis, the approach
in this paper describes deductive techniques for synthesizing
algorithms operating on binary trees.

In [5], [7], and [9] the authors describe proof–based methods
and techniques for synthesizing sorting algorithms operating
on lists. A similar proof–based approach has been exper-
imented in [6] and [8] in order to synthesize algorithms
operating on monotone lists (sorted lists without duplications).
This paper also describes methods and techniques which are
proof–based, but in contrast, the focus in this paper is on
synthesizing binary tree algorithms.

In classical approaches, see [14], the problem of sorting
trees is not investigated. This paper introduces combinatorial
techniques which apply in the process of synthesizing sorting
algorithms and of some auxiliary functions necessary in the
sorting algorithms on binary trees.

III. PROOF–BASED METHOD

In this section we present the algorithm synthesis problem
and the main idea of proof-based synthesis techniques which
we use.



A. Context

1) Notations: Similar to the Theorema style, we use square
brackets for function and for predicate application (e.g., f[x]
instead of f(x) and P[a] instead of P(a)). Moreover the quanti-
fied variables are written under the quantifier, that is ∀

x
(“for all

x”) and ∃
T

(“exists T ”). Sometimes the place under the quan-
tifier also contains a property of the quantified object. New
formulas can be obtained from universally quantified formulas
∀
x
F [x] by using substitutions that map subsets of free variables

from F [x] with terms, of the form {x1 7→ t1, . . . xn 7→ tn},
where x1, . . . , xn are free variables from F [x]. We denote the
application of a substitution σ to a formula F by Fσ and
say that Fσ is an instance of F . An identity substitution,
generically denoted by σid, maps any free variable from a
formula to itself. The composition of two substitutions σ1 and
σ2 is denoted by σ1σ2. Similarly, substitutions can be applied
to terms and vector of terms.

The types of the objects are implicit (some objects have type
“tree”), by using predicate and function symbols which are
not overloaded. Lower-case letters (e.g., a, b, n) represent tree
elements, and upper-case letters (e.g., X,T, Y, Z) represent
trees. The provers generate meta–variables (denoted usually
by starred symbols — e.g., T ∗, T ∗1 , Z

∗) and Skolem constants
(e.g., X0, X1, a0).

We consider binary trees over a totally ordered domain.
The orderings between elements of the domain are denoted
by the usual ≤, the ordering between a tree and an element
are denoted by: � (e.g., T � z states that all the elements from
the tree T are smaller or equal than the element z, z � T states
that z is smaller or equal than all the elements from the tree
T ), and � for the ordering between the elements of two trees
(e.g., L � R states that all the elements from L are smaller
or equal than all the elements from R). The constructors for
binary trees are: ε for the empty tree, and the triplet 〈L, a,R〉
for non-empty trees, where L and R are trees and a is the root
element.

A tree is a sorted (or search, or ordered) tree if it is either
ε or of the form 〈L, a,R〉 such that i) a is greater or equal
than any element of L and smaller or equal than any element
of R, and ii) L and R are sorted trees.

Functions: RgM, LfM, Concat, Insertion, Merge have the
following interpretations, respectively: RgM[〈L, n,R〉] returns
the last visited element by traversing the tree 〈L, n,R〉 using
the in-order (symmetric) traversal; LfM[〈L, n,R〉] returns the
first element by traversing the tree 〈L, n,R〉 using the in-order
traversal; Concat[X,Y ] concatenates X with Y (namely, when
X is of the form 〈L, n,R〉 adds Y as a right subtree of the
element RgM[〈L, n,R〉]); Insertion[n,X] inserts an element
n in a tree X (if X is sorted, then the result is also sorted);
Merge[X,Y ] combines trees X and Y into a new tree (if X,Y
are sorted then the result is also sorted).

Predicates: ≈ and IsSorted have the following interpreta-
tions, respectively: X ≈ Y states that X and Y have the same
elements with the same number of occurrences (but may have

different structures), i.e., X is a permutation of Y ; IsSorted[X]
states that X is a sorted tree.

The formal definitions of these functions and predicates
are presented in [10]. A formal definition of ≈ is not given,
however we use the properties of ≈ as equivalence implicitly
in our inference rules and strategies. In particular, we use in
our prover the fact that equivalent trees have the same multiset
of elements, which translates into equivalent tree–expressions
having the same multiset of constants and variables.

The functions LfM and RgM do not have a definition for
the empty tree, however we assume that:

∀
m

(
RgM[ε] ≤ m ≤ LfM[ε]

)
.

Various properties can be proven (mostly by induction) from
these definitions – see [10], and they are necessary for the
synthesis proofs. The process of finding the necessary axioms,
definitions, and properties which are necessary for synthesis
is called theory exploration – see also [2], and it constitutes
an interesting and challenging process.

2) The Synthesis Problem: The main idea is to prove
automatically a synthesis conjecture (which corresponds to the
specification of the function to be synthesized) and to extract
from this proof the algorithm which implements the function.
Of course, proving is the difficult part of this process.

The specification of the target function F [X,Y ] consists
of two predicates (we illustrate here the synthesis princi-
ple for function with two arguments, for a different num-
ber of arguments the principle is similar): the input con-
dition I[X], I[Y ] and the output condition O[X,Y, T ], and
the correctness property for F is ∀

X,Y
((I[X] ∧ I[Y ]) ⇒

O[X,Y, F [X,Y ]]). The synthesis problem is expressed by
the conjecture: ∀

X,Y
∃
T
((I[X] ∧ I[Y ]) ⇒ O[X,Y, T ]). Proof-

based synthesis consists in proving this conjecture and then
extracting the algorithm for the computation of F from this
proof. In our case the input condition states that X,Y are
trees, and since this is implicit, we do not use it.

In this paper we are interested in the synthesis of the
function Merge[L,R] (merge two sorted trees into a sorted
one). The corresponding conjecture is:

Conjecture 1.
∀
L,R

IsSorted[L],IsSorted[R]

∃
T

(
Concat[L,R] ≈ T ∧ IsSorted[T ]

)

B. Induction Principles and Algorithm Extraction

The illustration of the induction principles and algorithm
extraction in this subsection is similar to the one from [5], but
the induction principles are adapted for trees and the extracted
algorithms are more complex.

The general induction principle which we use is the Noethe-
rian induction principle [16]. Consider a domain with a well-
founded ordering C, and the natural extension of this ordering
on terms over the domain (t C t′ if this also holds for any
domain instance). An induction schema to be applied to a



predicate ∀
x
P [x] defined over a vector of variables x is a con-

junction of instances of P [x] called induction conclusions that
‘cover’ ∀

x
P [x], i.e., for any value v from the domain of x, there

is an instance of an induction conclusion P [t] that equals P [v],
where t is a vector of terms. An induction schema may attach
to an induction conclusion P [t], as induction hypotheses, any
instance P [t′] of ∀

x
P [x] as long as t′ is smaller than t w.r.t.

the well-founded ordering. The induction conclusions without
(resp., with) attached induction hypotheses are base (resp.,
step) cases of the induction schema.

In the current presentation we consider the domain of binary
trees and we use the multiset of elements as the measure of
binary trees (C is the strict inclusion of the corresponding
multisets). Checking strict ordering tC t′ between two terms
t, t′ representing trees reduces to check strict inclusion be-
tween the multisets of symbols (constants and variables except
ε) occurring in the terms. This is because the expressions
representing trees contain only functions which preserve the
multiset of elements in the tree: Concat, Insertion, and Merge.
(This preservation of multisets is a consequence of the proper-
ties of these functions, which are also proved automatically in
our experiments.)

The following concrete induction principle is a direct term-
based instance of the Noetherian induction principle and
corresponds to the appropriate induction schema:

Induction-1:(
P [ε]

∧
∀

n,L,R

(
(P [L]∧P [R]) =⇒ P [〈L, n,R〉]

))
=⇒ ∀

X
P [X]

The ‘covering’ property of the two induction conclusions
P [ε] and P [〈L, n,R〉] is satisfied since any binary tree is
either ε or of the form 〈L, n,R〉. P [L] and P [R] are induction
hypotheses attached to P [〈L, n,R〉], and it is very easy to
see that their terms are smaller than the one of the induction
conclusion.

In our experiments we can use automatically this concrete
induction principle for proving P as a unary predicate over
binary trees (in the case of Sort) and for proving P as a binary
predicate — induction on the first argument (in the case of
Merge).

For instance, in order to synthesize the merge algorithm
as a function F [X,Y ], we consider the output condition
O[X,Y, T ] :

(
Concat[X,Y ] ≈ T ∧ IsSorted[T ]

)
. The cor-

responding synthesis conjecture is: ∀
X,Y
∃
T
O[X,Y, T ] by taking

P [X] as ∃
T
O[X,Y, T ].

We perform induction on the first argument, thus the proof
is structured as follows:

Base case: For arbitrary but fixed Y0 (new Skolem con-
stant), we prove ∃

T
O[ε, Y0, T ]. If the proof succeeds to find

a ground witness =1[Y0] (a term depending on Y0) such that
O[ε, Y0,=1[Y0]], then we know that F [ε, Y ] = =1[Y ]. (Y
replaces Y0 in the witness term.)

Step case: For arbitrary but fixed n, X0 and Y0 (new
constants), we prove ∃

T
O[〈L0, n,R0〉, Y0, T ]. We assume as

induction hypotheses ∃
T
O[L0, Y0, T ] and ∃

T
O[R0, Y0, T ], which

are Skolemized by introducing two new constants T1 and T2
for each existential T. The existentially quantified variable
from the goal becomes the meta–variable T ∗ (for which
we need to find a substitution term). If the proof succeeds
to find a witness T ∗ = =2[L0, R0, Y0, T1, T2] (term de-
pending on n,L0, R0, Y0, T1 and T2), then we know that
F [〈L, n,R〉, Y ] = =2[n,L,R, Y, F [L, Y ], F [R, Y ]]. (T1 and
T2 are replaced by F [L, Y ] and F [R, Y ], respectively.)

This function definition expressed as two equalities can
be easily transformed into a functional program by using
appropriate decomposition functions which extract the root,
the left branch, and the right branch from the tree.

The theoretical basis and the correctness of this proof-based
synthesis scheme is well known – see for instance [3].

The method for the synthesis of Sort is similar and simpler.

C. Refining Induction by Combinatorial Techniques and Lazy
Reasoning

As shown e.g. in [16], sometimes the concrete induction
principle which is used for proving does not succeed. In this
case one needs to think about a more powerful principle and
iterate the proof attempt. We present here a technique which
is able to find automatically and in a lazy way, during the
proof, new concrete induction principles which are necessary,
and which are instances of the general Noetherian induction
principle. This is the case for the synthesis of Merge which
is presented in section IV at experiments.

This technique is based on combinatorial principles: we gen-
erate all possible terms which are solutions of the metavariable
(corresponding to the existential goal), and in these terms we
also accept the function symbol to be synthesized, as long as it
is applied on arguments which are smaller than the arguments
of the main call of the current synthesis step. For instance,
during synthesis of Merge, in the step case (see above), the
main call corresponds to the term F [〈L0, n,R0〉, Y ]. If, during
the development of the term, F [L0, Y ] is encountered, we can
consider P [L0, Y ] ⇒ P [〈L0, n,R0〉, Y ] as an induction case
for the new explicit induction schema associated to F [X,Y ].

By lazy induction, the induction hypotheses are ‘discovered’
by need, during the proof process. Compared to eager induc-
tion, where the induction hypotheses are defined by explicit
induction schemas before the proof starts, the induction rea-
soning is improved by eliminating the cases when induction
hypotheses are defined but not used, or crucial induction
hypotheses are needed but not available because the wrong
induction schemas were used. In general, when we want to
prove a formula ∀

x
F [x] by lazy induction, where x is a vector

of variables, we start to instantiate variables from x, then
transform the resulted instances by using deductive rules. The
instantiation and deduction steps can be intertwined up to the
moment when instances of F [x] are encountered. An instance
F [t] can be used as induction hypothesis for the induction case
F [x]θ if t is smaller than xθ.

The substitution θ, called cumulative substitution, is built
from the proof. To illustrate its computation, we represent the
proof derivation as a tree for which the root node is labeled



F [x]

θk1

��

θ1

��
F [x]θk1 . . . F [x]θ1

θ2

��
G[y]

θ3

��

θk3

��
G[y]θk3 . . .

θn−1

��
K[z]θn−1

θn
��

F [t]

mm

Fig. 1: Applying lazy induction during the proof of ∀
x
F [x].

by F [x]. Two kinds of non-root nodes are distinguished:
instantiation nodes and deductive nodes. The instantiation
nodes are direct successors of a node N labeled by a formula
with free variables for which some of them are instantiated
with terms whose variables are fresh. The set of instance
formulas labeling all the instantiation nodes should cover
the formula labeling N and can be built from the sort of
the instantiated variables. For example, if N is labeled by
the formula F [X], a covering set of instance formulas is
{F{X 7→ ε}, F{X 7→ 〈L, n,R〉}}, where L, n, R are fresh
variables. In the graphical representation of a proof tree, the
relation between a node and its direct instantiation nodes
are represented by downward solid arrows annotated by the
corresponding instantiation substitution. The deductive nodes
are direct successors of nodes to which a deductive operation
has been applied. These relations are graphically represented
as curly arrows annotated by identity substitutions. The cu-
mulative substitution is the composition of the substitutions
annotating the nodes from the path leading from the root node,
in our case the node labeled by F [x], to the node labeled
by an instance of it, in our case F [t]. This scenario can be
illustrated as in Fig. 1. F [t] can be used as an induction
hypothesis and its proof no further developed if t is smaller
than xθ1θ2θ3 · · · θn−1θn.

Example 1. By lazy induction, one can benefit of more
effective induction reasoning, involving only useful induction
hypotheses.

Let us assume the following scenario for processing a
formula F [X], where X is a binary tree:

F [X]

{X 7→ε}

��

{X 7→〈L,n,R〉}

  
F [ε] F [〈L, n,R〉]

θid

��
F [R]

qq

where θid is the identity substitution {L 7→ L;n 7→ n;R 7→
R}. F [R] can be used as induction hypothesis in the proof
of the case F [〈L, n,R〉] because R has a number of elements
smaller than 〈L, n,R〉.

The corresponding explicit induction principle is:(
P [ε]

∧
∀

n,L,R

(
P [R]) =⇒ P [〈L, n,R〉]

))
=⇒ ∀

X
P [X]

Example 2. More specific induction schemas can also be gen-
erated by lazy induction, as shown in the following scenario:

F [X]

{X 7→ε}

||

{X 7→〈L,n,R〉}

%%
F [ε] F [〈L, n,R〉]

{R 7→〈...〉}yy

{R 7→ε}

  

θid //

θid

uu

F [〈L, n, ε〉]

ss

F [R]

EE

F [〈L, n, 〈. . .〉〉] F [〈L, n, ε〉]
θid

��
F [L]

uu

The corresponding explicit induction principle is:(
P [ε]

∧
∀
n,L

(
P [L] =⇒ P [〈L, n, ε〉]

)∧
∀

n,L,R

(
(P [〈L, n, ε〉]∧

P [R]) =⇒ P [〈L, n,R〉]
))

=⇒ ∀
X
P [X]

Notice that it is a stronger version of Induction-1 that has
been useful for our experiments [10].

D. Proof techniques

1) Special Inference Rules: We summarize here the main
proof principles by which one arrives at the proof situation
where the combinatorial techniques can be used. The details
on these inference rules and proof strategies are given in [10].

IR-1: Generate Microatoms. We call microatoms those
atoms whose arguments do not contain function symbols,
except for few special ones – in the case of the current exper-
iments we allow the functions RgM and LfM in microatoms.

Based on the specific properties of our functions and pred-
icates, certain atoms can be transformed into a conjunction of
microatoms. For instance, IsSorted[〈T1, n, T2〉] is transformed
into (IsSorted[T1] ∧ IsSorted[T2] ∧ RgM[T1] ≤ n ∧ n ≤
LfM[T2]). Similarly, x � 〈A, b, C〉 is transformed into:
x � A ∧ x ≤ b ∧ x � C.



Some of these microatoms will become conditional assump-
tions in the synthesized algorithm (see IR-4 below).

IR-2: Eliminate-Ground-Formulae-from-Goal. If the goal
contains a ground formula which is identical to (or an instance
of) one of the assumptions, then this ground formula is deleted
from the goal.

IR-3: Replace-Equivalent-Term-in-Goal. If t1 ≈ t2 is an
assumption, and t1 occurs in a goal as argument of a predicate
which is preserved by equivalence (≈, �), then it can be
replaced by t2. (The fact that these predicates preserve the
equivalence is based on their properties, which are proved
automatically in our experiments.)

IR-3a: Replace-Equivalent-Tree-Expression-in-Goal This
generalizes the previous strategy, by constructing a different
tree expression which is equivalent.

IR-3b: Replace-Equivalent-Expression-in-Goal This rule
generalizes IR-3a, by allowing similar replacements when
the expressions contain function symbols different from the
tree constructor. For instance, if among the assumptions are:
Concat[L, S] ≈ T1, Concat[R,S] ≈ T2, and the goal is:
Concat[〈L, n,R〉, S] ≈ T ∗, then it is enough to prove one
of the two goals: 〈T1, n,R〉 ≈ T ∗ and 〈L, n, T2〉 ≈ T ∗.

IR-3c: Replace-Equivalent-Atom-in-Goal This rule takes
into account the interplay between the equivalence relation ≈,
the orderings, and the functions RgM, LfM in order to perform
similar replacements.

IR-4: Generate permutations and expressions.
This is the inference rule which applies the combinatorial

techniques which constitute the main focus of the present
paper.

When the goal is of the form Expression ≈ T ∗ ∧
IsSorted[T ∗], generate all permutations of the list of nonempty
symbols present in Expression and for each permutation gener-
ate all possible witnesses as a tree expressions containing these
symbols. The witnessing expressions contain the constructors
for trees, as well as the functions Concat, Insertion, and
Merge. For instance, if Expression is ε then only the tree ε is
generated. If Expression is 〈L, x, ε〉, then the generated trees
are: 〈L, x, ε〉, 〈ε, x, L〉, and Insertion[x, L].

Since each such expression must represent a sorted tree,
generate for each expression the corresponding condition as
a set of microatoms (see IR-1). For instance the expression
〈L, x, ε〉 needs the conditions IsSorted[L] and L � x.

Such a condition together with the corresponding expression
represents a possible clause in the generated algorithm. These
clauses are simplified (see the experiments section) according
to various criteria, and the remaining set of clauses can be
used for the generation of various algorithms, each algorithm
being composed of a certain subset of clauses.

Of course if the original expression contains more symbols
then the resulting expressions will be more complicated and
also quite many – see the experiments in the next section.

Even as this method is used here for the particular case
of functions and constructors for trees, the principle and also
the implementation is general, it can be applied to any set of
functions and constructors. Generating all permutations and

all respective expressions appears to be costly, however in our
experiments we have a relatively small number of elements
and in fact using the special functions of Mathematica this
takes only few seconds. Therefore the proof is faster than the
possible equivalent proof in which the witnesses are generated
by logical inference rules in a complex proof tree.

2) Strategies: S-1: Quantifier reduction. This strategy orga-
nizes the inference rules for quantifiers (see IR-1), in situations
where it is clear that several such rules are to be performed
in sequence (e.g. when applying an induction principle).

S-2: Priority-of-Local-Assumptions. The local assumptions
are the assumptions (usually ground formulae) generated dur-
ing the current proof, and therefore only “true” in the context
of the proof. The global assumptions (usually universally
quantified formulae) are definitions and propositions that are
part of the theory, and therefore always “true”. The strategy
consists in using with priority the local assumptions, and in
particular never performing an inference which involves only
global assumptions. This strategy is essentially equivalent with
the “set of support” strategy in clausal resolution [15].

IV. EXPERIMENTS

We present here the synthesis of Merge, which is more
interesting because it needs a double recursion. and therefore it
illustrates better the process of finding automatically a concrete
induction principle. The proofs corresponding to the synthesis
of sorting and other functions are similar, but simpler. For lack
of space we show in detail only the most important steps of
this proof, the complete version and the other proofs can be
found in [10].

As theoretically known, the time complexity of the process
is exponential, because it involves search in a proof tree,
however in our experiments the concrete running time for all
proofs remains under 5 seconds. This is due to the specific
inference rules and strategies which are used, because these
simulate in one step many low–level (resolution like) inference
steps and eliminate many failing branches.

A. Synthesis of Merge

The prover automatically generates the proof of Conjec-
ture 1, which is presented in detail in [10]. We present here
only the most important parts of the induction step which
illustrate the combinatorial technique and the lazy induction.

The proof applies Induction-1 on the first argument of
the function Merge to be synthesized. Using strategy S-1,
after Skolemization of the existential variables into T1, T2, the
induction hypotheses become:

P [L] :
(
(IsSorted[L] ∧ IsSorted[S]) =⇒

(Concat[L, S] ≈ T1 ∧ IsSorted[T1])
) (1)

P [R] :
(
(IsSorted[R] ∧ IsSorted[S]) =⇒

(Concat[R,S] ≈ T2 ∧ IsSorted[T2])
) (2)



and the induction goal (to prove) is:

P [〈L, n,R〉] :
(
(IsSorted[〈L, n,R〉] ∧ IsSorted[S]) =⇒

(Concat[〈L, n,R〉, S] ≈ T ∗ ∧ IsSorted[T ∗])
) (3)

where T ∗ is the metavariable obtained from the existential
variable, for which the prover needs to find a witness term.
The RHS of the target implication is proven by assuming the
LHS, which by IR-1 is decomposed into microatoms:

IsSorted[L] (4)
IsSorted[R] (5)

L � n (6)
n � R (7)
L� R (8)

IsSorted[S] (9)

Using modus ponens from (1) and (2) by (4) and (5) further
assumptions are obtained:

Concat[L, S] ≈ T1 (10)
IsSorted[T1] (11)

Concat[R,S] ≈ T2 (12)
IsSorted[T2] (13)

The goal is:

Concat[〈L, n,R〉, S] ≈ T ∗ ∧ IsSorted[T ∗] (14)

We need to find a witness for a sorted T ∗ such that it has
the same elements as Concat[〈L, n,R〉, S]. (Note that this
corresponds to the main call Merge[〈L, n,R〉, S].)

Since IR-3b can be applied on (14) in two different ways,
we generate two alternatives:
Alternative-1: By applying IR-3b using (10), the goal is
transformed into:

〈T1, n,R〉 ≈ T ∗ ∧ IsSorted[T ∗] (15)

In this moment the prover uses the combinatorial technique,
namely it applies IR-4 and generates all the permutations of
〈T1, n,R〉 and to each permutation all possible expressions
containing all the symbols in the list, composed by using
the tree constructors and the functions Concat, Insertion, and
Merge. For each expression the corresponding conditions are
generated as a set of microatoms – IR-1 (except the ones of the
form IsSorted, which are already known for the tree symbols
occurring in the expressions). In this case 42 such clauses are
generated.

Some examples of clauses are:
{} =⇒ Merge[T1,Merge[R, 〈ε, n, ε〉]]
{ε � LfM[R]}

=⇒ Merge[T1,Concat[〈ε, n, ε〉, R]]
{RgM[R] � LfM[T1],RgM[R] � ε,RgM[R] � n}

=⇒ Insertion[n,Merge[R, T1]]
{RgM[R] � LfM[T1],RgM[R] � n, n � LfM[T1]}

=⇒ Concat[R,Concat[〈ε, n, ε〉, T1]]

The conditions are simplified by removing the conditions
involving ε (which are true by the properties of �) and by
removing those conditions which are already assumed in the
current proof situation.

Furthermore the logical consequences (by transitivity) of the
conditions and of the current proof assumptions are computed.
If the consequence includes t � t for some term t, this
means that both t � t′ and t′ � t are present for some
term t′ in the list of conditions and assumptions. This is
possible only in very special cases of the application of the
algorithm, therefore we remove such clauses. Furthermore we
remove from the set of conditions those which are implied by
themselves (redundant).

The list of clauses is simplified by removing each clause
containing a subterm of the form Merge[t2, t1] if the ex-
pression of another clause contains Merge[t1, t2] in a similar
expression at the same level. This because the function Merge
is symmetric and the conditions are not influenced by the order
of its arguments.

The following simplification are also applied because they
improve the respective expressions from the computational
point of view:

Merge[〈ε, n, ε〉, X] −→ Insertion[n,X],

Merge[X, 〈ε, n, ε〉] −→ Insertion[n,X],

Concat[〈L, n, ε〉, R] −→ 〈L, n,R〉.
(16)

Each expression is further processed by replacing each oc-
currence of T1 by Merge[L, S] — according to (1), and also
by replacing the conditions involving T1 with the appropriate
conditions involving L, and S. Finally the duplicate clauses are
removed and we obtain a list of 8 clauses (conditions involving
LfM, RgM are presented as simpler equivalent ones for brevity,
but the algorithm will of course use them).

{} =⇒ Merge[〈ε, n,R〉,Merge[L, S]] (17)
{} =⇒ Merge[Insertion[n,R],Merge[L, S]] (18)
{} =⇒ Insertion[n,Merge[Merge[L, S], R]] (19)
{} =⇒ Merge[Insertion[n,Merge[L, S]], R] (20)

{S � n} =⇒ 〈Merge[L, S], n,R〉 (21)
{S � R} =⇒ Insertion[n,Concat[Merge[L, S], R]] (22)

{S � n} =⇒ Merge[〈Merge[L, S], n, ε〉, R] (23)
{S � n} =⇒ Concat[Merge[L, S], Insertion[n,R]] (24)

Note that the clauses (17), (18), (20) do not fulfill the termi-
nation criterion: the first recursive call to Merge has the same
multiset of symbols as the main call Merge[〈L, n,R〉], S].

From these clauses various algorithms can be extracted.
Each algorithm contains one of the clauses without conditions
as the unique or the last clause in the algorithm — but
termination is insured only for (19). Additionally the algorithm
may contain one of clauses (21), (23), (24), conditioned by
S � n and may contain the clause (22) conditioned by
S � R. Note that the conditioned clauses will lead to more
efficient computations (because they have fewer occurrences
of the more expensive Insertion, Merge), but only when the



conditions of the respective clauses are fulfilled. The choice
of the algorithm is therefore a tradeoff between simplicity and
efficiency.

One possible algorithm which appears to be a good choice
is based on clauses (21), (22), (19) (in this order):

Algorithm 1.

∀
n,L,R,S



Merge[ε, S] = S

Merge[〈L, n,R〉, S] =
〈Merge[L, S], n,R〉, if RgM[S] ≤ n
Insertion[n,Concat[Merge[L, S], R]],

if RgM[S] ≤ LfM[R]

Insertion[n,Merge[Merge[L, S], R]], otherwise


The clauses of the algorithm are ordered such that more

specific clauses are used before more general ones, because
otherwise some more specific clauses will never be used. This
ordering is done automatically using the conditions of the
clauses: more restrictive conditions belong to more specific
clauses.
Alternative-2: By applying IR-3b using (12), the goal is
transformed into:

〈L, n, T2〉 ≈ T ∗ ∧ IsSorted[T ∗] (25)

The proof proceeds similarly as in Alternative-1 and similar
cases are generated, the only difference consists in using
the recursive call Merge[R,S] instead of Merge[L, S] as in
Alternative 1. The most important clause generated here is
the analogous of (19), namely:

{} =⇒ Insertion[n,Merge[L,Merge[R,S]]] (26)

Further details are presented in the technical report [10].
Any algorithm composed from such conditional clauses

must fulfill two important conditions: proper ordering of
clauses and coverage of all cases.

Proper ordering of clauses means that a clause which is
more general – like e.g. (19) must be placed after the ones
which are less general – like e.g. after (22), otherwise the
more special clause will never be used. In our case this is
very easily ensured by ordering the clauses increasingly by
the number of conditions, because due to the nature of he
microatoms, a more general clause always has fewer elements
than a more special one. Of course at most one clause with
empty condition can be present.

Coverage of all cases means that the disjunctions of all
sets of conditions (each set is a conjunction of atoms) must
be valid. This is ensured if at least one clause with empty
condition is present, and this will always be the case for the
merging on binary trees. Validity cannot otherwise be ensured
because the induced ordering relations � on elements vs. trees,
and � on trees vs. trees are not total. However the situation
is different in the case of lists – e.g. merging of sorted lists
into a sorted one, because there we use as conditions only
comparisons between domain elements (not lists). In this case
the check of validity can be performed in the following way:
(1) each set of conditions is completed with the conditions

from the current proof assumptions and with all the transitive
consequences; (2) all sets of conditions (as conjunctions) are
composed into a disjunction, and its CNF is computed; (3)
for validity, each disjunctive clause must be valid, therefore it
must contain both a ≤ b and b ≤ a for some a, b.

In the resulting algorithms the conditions are tested using
the functions LfM, RgM. In a program with several clauses,
multiple calls to these functions can be easily avoided by
computing their values before the evaluation of the clauses
(the functional let from Lisp). However their use still
remains quite expensive, because the recursive calls will repeat
the descending of the tree. This problem (suggested by the
automatically generated algorithms) can be solved by changing
the data structure: one can store the respective values in each
node of the tree (preprocessing for computing them will be
linear), and then LfM, RgM will be evaluated in constant time.

V. CONCLUSIONS AND FURTHER WORK

We show how to use combinatorial techniques in order to
generate numerous witnesses for an existential goal, which in
an inductive proof will also lead to some induction schemata
which are not given from the beginning. Because of the large
number of possible witnesses, a direct proving approach (like
e.g. based on clausal resolution) would be very time and space
consuming.

From this case study one can see that our method allows
to discover new structures of the recursion which are not
specified by the induction principle, and moreover allows to
discover algorithms with nested recursion.

Correctness of the method is ensured by the soundness
of the inference rules, however completeness is still under
investigation.

Of course this approach to sorting of binary trees is not
really the most efficient — one could always construct first
the list of the members and then sort it and construct a tree.
This is also further work on the hybrid theory of lists and trees.
Nevertheless the exercise in synthesis of sorting and merging
the trees directly was very interesting from the point of view
of finding efficient proof techniques, and even for suggesting a
more efficient data structure (see the end of previous section).
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