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Abstract

The aim of this paper is to explain how parameters adjustments can be integrated
in the design or the control of automates of trading. Typically, we are interested in the
online estimation of the market impacts generated by robots or single orders, and how
they/the controller should react in an optimal way to the informations generated by
the observation of the realized impacts. This can be formulated as an optimal impulse
control problem with unknown parameters, on which a prior is given. We explain how
a mix of the classical Bayesian updating rule and of optimal control techniques allows
one to derive the dynamic programming equation satisfied by the corresponding value
function, from which the optimal policy can be inferred. We provide an example of
convergent finite difference scheme and consider typical examples of applications.
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1 Introduction
The design of trading algorithms is based on two corner stones: first a model need to be
estimated, second an optimal trading policy has to be computed, given a prescribed criteria.
As in traditional portfolio management, the notions of volatility or correlation play an impor-
tant role and need to be estimated. At the level of an order book, one can also be interested
by the speed of arrival/cancelation of orders, etc. These refer to the concept of exogenous dy-
namics, which can be inferred offline, see e.g. [3, 13, 22] for references, and possibly adjusted
by using traditional filtering techniques, see e.g. [7, 14].
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More importantly, a trading robot has his own impact on the dynamics of the traded assets,
either because of market microstructure effects at the high frequency level, or because traded
volumes are non-neglectable with respect to the so-called market volume, see [9, 21] for
surveys as well as [10] for recent references. The knowledge of this impact is crucial. However,
unlike other market parameters, it can be observed only when the algorithm is actually
running.
As a matter of fact, the controller faces a classical dilemma: should he impulse the system
(pass orders) to gain immediately more information to the price of possible immediate losses,
or rather try to maximise his current expected reward with the risk of not learning for the
future? In any case, the optimal trading policy has to incorporate the fact that the knowledge
on the impact parameters will evolve along time, as the effects of the robot on the system
are revealed, and that the uncertainty on their value is a source of risk.
One way to analyse this situation is to use the multi-arms bandit recursive learning approach
of [19, 20]. By sending successive impulses to the system, one increases his knowledge on the
true distribution of the response function. It provides asymptotically optimal policies. The
main advantage is that it is model free. On the other hand it requires (weak) ergodicity-
type conditions which have little chance to be satisfied if the price/book order is actually
impacted. Moreover, the global flow of orders is not optimal, it starts to be optimal only in
the long range.

In this paper, we propose to use the classical Bayesian approach, see e.g. [15] for general refer-
ences. A similar idea has already been suggested in [1] in the context of optimal trading, in a
different and very particular framework (trend estimation in which the learning-anticipation
effect is not clearly taken into account). In this approach, one fixes an a priori distribution
on the true value of the parameters. When a new post-trade information arrives, this dis-
tribution is updated according to the Bayesian rule to provide an a posteriori distribution,
which will be used as a new prior for the next (bunch of) trade(s). This can, in theory,
address pretty general model-free optimal control problems, in the sense that the unknown
parameter can be the whole distribution of the response function. Still, the a posteriori
distribution will be dominated by the prior. If the true distribution is not dominated by the
prior, the sequence of estimators cannot converge to it. Also, in practice, computational time
constraints will force one to restrict to a class of parameterized distributions, so as to reduce
to a space of small dimension. Hence, it requires to choose a set of possible models. Our
procedure will only reveal what is the value of the parameters most likely to be, given this
prescribed framework. In practice, classes of models are already used by practitioners, but
parameters are difficult to estimate at a large scale in an automatic way and evolve according
to time and market conditions. From this perspective, we believe that our approach allows
us to address their estimation issues in an efficient way.
There are two ways to consider this updating mechanism. One is that it allows one to estimate
the true value of the parameters while acting in an optimal manner. This is the point of
view developed in [15], who provides conditions for a discrete time infinite horizon model
that ensure the convergence of the a posteriori law to the Dirac mass at the true parameter
value. Obviously, this requires identification conditions since we can observe the effect on the
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system only along the optimal policy, as well as some ergodicity conditions. Another point
of view is that it actually falls out automatically from dynamic programming considerations
when solving the optimal control problem associated to the initial prior.

We focus here on the second point of view: given a prior on the true parameter, how should
we act in a optimal way? After all, we want to be optimal given a prior, and not act on
the system just to refine the prior if this is not optimal. Obviously, if the algorithm has
to be used repeatedly on the same market, and if the conditions on the market are stable,
the a posteriori distribution obtained after running the algorithm can be used as a new,
more precise, prior for the next time it will be launched. The convergence issue to a Dirac
distribution is left for future researches. Again, this is more of academic interest.

We consider here the general abstract formalism introduced in [4] which aims at pertaining
for most models used in practice. In particular, we can work at the meta-order level (control
of smart-routines) or at the level of single orders (design of smart-routines or scheduling). In
the first case, we are interested by the optimal control of robots that are already given, this
is similar to [8]. We only observe the global impact of the robot, after it stops. The second
case concerns the design of the robots themselves, as in e.g. [2, 16, 19, 20]. A typical question
is whether an order should be passive or aggressive. When an aggressive order is posted,
we possibly observe an impact immediately (unless it is of small size). As for a (bunch of)
limit order(s), we infer the speed at which they have been executed, if they are before being
cancelled. The choice of the trading platform can be addressed similarly, etc.

The rest of this paper is organized as follows. After presenting the general framework of
[4], we provide their main characterizations: the value function is the solution of a quasi-
variational partial differential equation from which one can infer the optimal trading policy.
We then explain how the equation can be solved numerically. This is illustrated by toy models
inspired from the literature, on which simulated based optimal strategies are provided.

2 Abstract framework
Before to consider typical examples of application, we present here the abstract framework
proposed in the companion paper [4]. We believe that it is flexible enough to pertain for
most problems encountered in practice.

We model the driving noise by a d-dimensional Brownian motionW (defined on the canonical
space C([0, T ],Rd) endowed with the Wiener measure P). One could also consider jump type
processes, such as compound Poisson processes, the same analysis would apply.
The unknown parameter υ is supported by a (Polish) space (U,B(U)), and our initial prior
on υ is assumed to belong to a locally compact subset M of the set of Borel probability
measures on U (endowed with the topology of weak convergence). In the applications of
Section 4, the collection of possible priors can be identified as a subset of a finite dimensional
space (e.g. the parameters of a Gaussian distribution, the weights of law with finite support,
etc.). Then, M can be simply viewed as a finite dimensional space.
To allow for additional randomness in the measurement of the effects of trades on the system,
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we consider another (Polish) space E on which is defined a family (εi)i≥0 of i.i.d. random
variables with common measure Pε on E. On the product space Ω := C([0, T ],Rd)×U×EN,
we consider the family of measures {P ×m × P⊗Nε : m ∈M} and denote by Pm an element
of this family whenever m ∈ M is fixed. The operator Em is the expectation associated to
Pm. Note that W , υ and (εi)i≥0 are independent under each Pm.
For m ∈ M given, we let Fm = (Fmt )t≥0 denote the Pm-augmentation of the filtration
F = (Ft)t≥0 defined by Ft = σ((Ws)s≤t, υ, (εi)i≥0) for t ≥ 0. Hereafter, all the random
variables are considered with respect to the probability space (Ω,FmT ) with m ∈M given by
the context, and where T is a fixed time horizon.

2.1 The controlled system

Let A ⊂ [0, T ] × Rd be a (non-empty) compact set. It will be the set in which our controls
(trading policies) will take place. Given N ∈ N and m ∈M, we denote by Φ◦,mN the collection
of sequences of random variables φ = (τi, αi)i≥1 on (Ω,FmT ) with values in R+×A such that
(τi)i≥1 is a non-decreasing sequence of Fm-stopping times satisfying τj > T Pm − a.s. for
j > N . We set

Φ◦,m :=
⋃
N≥1

Φ◦,mN .

An element φ = (τi, αi)1≤i≤N ∈ Φ◦,m will be our impulse control and we write αi in the form

αi = (`i, βi) with `i ∈ [0, T ] and βi ∈ Rd Pm − a.s.

More precisely, the τi’s will be the times at which an impulse is made on the system (e.g. a
trading robot is launched), βi will model the nature of the order send at time τi (e.g. the
parameters used for the trading robot), and `i will stand for the maximal time length during
which no new intervention on the system can be made (e.g. the time prescribed to the robot
to send orders on the market).

From now on, we shall always use the notation (τφi , α
φ
i )i≥1 with αφi = (`φi , β

φ
i ) to refer to a

control φ ∈ Φ◦,m.

We allow for not observing nor being able to act on the system before a random time ϑφi
defined by

ϑφi := $(τφi , X
φ

τφi −
, αφi , υ, εi),

where Xφ is the controlled state process (stock prices, market volumes, wealth, etc.) that
will be described below, and

$ : R+ × Rd ×A× U× E→ [0, T ] is measurable, such that $(t, ·) ≥ t for all t ≥ 0. (2.1)

In the case where the actions consist in launching a trading robot at τφi during a certain time
`φi , we can naturally take ϑφi = τφi + `φi . If the action consists in placing a limit order during
a maximal duration `φi , ϑ

φ
i is the time at which the limit order is executed if it is less than

τφi + `φi , and τ
φ
i + `φi otherwise.
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We say that φ ∈ Φ◦,m belongs to Φm if

ϑφi ≤ τφi+1 and τφi < τφi+1 Pm-a.s. for all i ≥ 1,

and define

N φ :=
[
∪i≥1[τφi , ϑ

φ
i )
]c
. (2.2)

Let us now describe our controlled state process. Given some initial data z := (t, x) ∈ Z :=
[0, T ]× Rd, and φ ∈ Φm, we let Xz,φ be the unique strong solution on [t, 2T ] of

X = x+

(∫ ·
t

1Nφ(s)µ (s,Xs) ds+

∫ ·
t

1Nφ(s)σ (s,Xs) dWs

)
+
∑
i≥1

1{t≤ϑφi ≤·}
[F (τφi , Xτφi −

, αφi , υ, εi)−Xτφi −
]. (2.3)

Depending on the choice of the model, the different components of X can be the cumulative
gains of the algorithm, the number of holding shares, the mid-price, the size and positions of
the first bid and ask queues, the position of the trader in terms of limit orders in the different
queues, a factor driving the system, a flow of external information provided by experts, the
current market volume, etc. This can also be the time itself, if one wants to have time
dependent dynamics. This is quite flexible, and we will exemplify this in Section 4.

In the above, the function

(µ, σ, F ) : R+ × Rd ×A× U× E 7→ Rd × Rd×d × Rd is measurable.
The map (µ, σ) is continuous, and Lipschitz with linear growth

in its second argument, uniformly in the first one.
(2.4)

This dynamics means the following. When no action is currently made on the system, i.e. on
the intervals in N φ, the system evolves according to a stochastic differential equation driven
by the Brownian motion W :

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs on N φ.

When an order is sent at τφi , we freeze the dynamics up to the end of the action (of the robot,
of the execution/cancellation of the order) at time ϑφi . This amounts to saying that we do
not observe the current evolution up to ϑφi , or equivalently that no corrective action will be
taken before the end of the already launched operation at ϑφi . At the end of the action, the
state process takes a new value

Xϑφi
= F (τφi , Xτφi −

, αφi , υ, εi), i ≥ 1.

The fact that F depends on the unknown parameter υ and the additional noise εi models
the fact that the correct model is not known with certainty, and that the exact value of
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the unknown parameter υ can (possibly) not be measured precisely just by observing (ϑφi −
τφi , Xϑφi

−Xτφi −
).

In order to simplify the notations, we shall now write:

z′ := ($,F ). (2.5)

From now on, we denote by Fz,m,φ = (F z,m,φs )t≤s≤2T the Pm-augmentation of the filtration
generated by (Xz,φ,

∑
i≥1 1[ϑφi ,∞)) on [t, 2T ]. We say that φ ∈ Φm belongs to Φz,m if (τφi )i≥1

is a sequence of Fz,m,φ-stopping times and αφi is F z,m,φ
τφi

-measurable, for each i ≥ 1. Hereafter
an admissible control will be an element of Φz,m.

2.2 Bayesian updates

As already mentioned, acting on the system reveals some information on the true parameter
value: the prior distribution evolves along time. It should therefore be considered as a state
variable to remain time consistent and be able to derive a dynamic programming equation.
Note also that its evolution can be of interest in itself. One can for instance be interested by
the precision of our (updated) prior at the end of the control period, as it can serve as a new
prior for another control problem.

In this section, we describe how it is updated with time, according to the usual Bayesian
procedure. Given z = (t, x) ∈ Z, u ∈ U and a ∈ A, we write the law of z′[z, a, u, ε1], recall
(2.5), in the form

q(·|z, a, u)dQ(·|z, a),

in which q(·|·) is a Borel measurable map and Q(·|z, a) is a dominating measure on Z for
each (z, a) ∈ Z×A. This quantities can be inferred from the knowledge of z′ and the law of
ε1, see Section 4 for examples.
Given initial conditions z = (t, x) ∈ Z, an initial prior m ∈ M and a trading strategy
φ ∈ Φz,m, the conditional law M z,m,φ of υ at time s ≥ t is given by

M z,m,φ
s [C] := Pm[υ ∈ C|F z,m,φs ], C ∈ B(U). (2.6)

As no new information is revealed in between the end of an order and the start of the next
one, the prior should remain constant on these time intervals:

M z,m,φ = M z,m,φ

ϑφi
on [ϑφi , τ

φ
i+1) , i ≥ 0, (2.7)

with the conventions ϑφ0 = 0 and M z,m,φ
0 = m. But, M z,m,φ jumps at each time ϑφi at which

the effect of the last sent order is revealed, thus bringing a new information on the unknown
parameter υ. This prior update follows the classical Bayes rule1:

M z,m,φ

ϑφi
= M(M z,m,φ

τφi −
;Zz,φ

ϑφi
, Zz,φ

τφi −
, αφi ), i ≥ 1, (2.8)

1In order to ensure that Mz,m,φ remains in M whenever m ∈M, we assume that M(M; ·) ⊂M.

6



in which

M(mo; z
′
o, zo, ao)[C] :=

∫
C

q(z′o|zo, ao, u)dmo(u)∫
U

q(z′o|zo, ao, u)dmo(u)
, (2.9)

for (zo, z
′
o, ao,mo) ∈ Z2 ×A ×M and C ∈ B(U). We refer to [4] for a formal proof of this

intuitive fact.

Remark 2.1. Again, the parameter is unknown, but we can have an idea of what values are
more likely to be correct. As can be seen from (2.9), M z,m,φ remains absolutely continuous
with respect to m over time. The prior distribution should therefore have a support large
enough to include the true value, otherwise it will not be seen by the a posteriori distributions
as well. In practice, one can simply fix a uniform distribution on a rectangle, to which we are
certain that the true parameter belongs. If one is only interested by a crude approximation,
but want to minimize the computation time, one can simply specify several low/medium/high
values and concentrate the support of m0 on these (i.e. start with a combination of Dirac
masses).

Remark 2.2. For later use, note that the above provides the joint conditional distribution
of (Zz,φ

ϑφi
,M z,m,φ

ϑφi
) given F z,m,φτi

:

P[(Zz,φ

ϑφi
,M z,m,φ

ϑφi
) ∈ B ×D|F z,m,φ

τφi −
] = k(B ×D|Zz,φ

τφi −
,M z,mφ

τφi −
, αφi ) (2.10)

in which

k(B ×D|zo,mo, ao) :=

∫
U

∫
B

1D(M(mo; z
′, zo, ao))q(z′|zo, ao, u)dQ(z′|z, a)dmo(u).

2.3 Gain function

Given z = (t, x) ∈ Z and m ∈M, the aim of the controller is to maximize the expected value
of the gain functional2

φ ∈ Φz,m 7→ Gz,m(φ) := g(Zz,φ
T[φ],M

z,m,φ
T[φ] , υ, ε0),

in which T[φ] is the end of the last action after T :

T[φ] := sup{ϑφi : i ≥ 1, τφi ≤ T} ∨ T.

Note that we do not look at the value of Zz,φ at T but rather at T[φ] which is either T or
the end of the last trade sent before T . This is motivated by the use of robots: we do not
want to stop it at T if it is running, we rather prefer to wait till the end of the algorithm.
This is compensated by the fact that a penalty can be imposed when T [φ] is strictly larger
that T , through the objective function g. Also note that the terminal reward depends on the

2 g is assumed to be measurable and (for simplicity) bounded on Z×M×U× E.
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parameter υ. This is motivated by applications to optimal liquidation in which a final large
order may be sent at the end, to liquidate immediately the remaining shares.
As suggested earlier, the gain may not only depend on the value of the original time-space
state process Zz,φ

T[φ] but also on M z,m,φ
T[φ] , to model the fact that we are also interested by

the precision of the estimation made on υ at the final time. Also note that one could add
a running cost without additional difficulty, it can actually be incorporated into the state
process Zz,φ.

Given φ ∈ Φz,m, the expected reward is

J(z,m;φ) := Em [Gz,m(φ)] ,

and

v(z,m) := sup
φ∈Φz,m

J(z,m;φ)1{t≤T} + 1{t>T}Em [g(z,m, υ, ε0)] (2.11)

is the corresponding value function (note that it is extended after T , which will be convenient
later on). Observe that v depends on m through the set of admissible controls Φz,m and the
expectation operator Em, even if g does not depend on M z,m,φ

T[φ] .

3 Value function characterization and numerical approx-
imation

3.1 The dynamic programming quasi-variational equation

The aim of this section is to explain how one can derive a pde characterization of the optimal
expected gain. As usual, it should be related to a dynamic programming principle. In our
setting, it should read as follows: Given z = (t, x) ∈ Z and m ∈M, then

v(z,m) = sup
φ∈Φz,m

Em[v(Zz,φ
θφ
,M z,m,φ

θφ
)], (3.1)

for all collection (θφ, φ ∈ Φz,m) of Fz,m,φ-stopping times with values in [t, 2T ] such that

θφ ∈ N φ ∩ [t,T[φ]] Pm − a.s. ,

recall the definition of N φ in (2.2).
Let us comment this. First, one should restrict to stopping times such that θφ ∈ N φ. The
reason is that no new impulse can be made outside of N φ, each interval [τφi , ϑ

φ
i ) is a latency

period. Second, the terminal gain is evaluated at T[φ], which in general is different from T .
Hence, the fact that θφ is only bounded by T[φ].

We continue our discussion, assuming that (3.1) holds and that v is sufficiently smooth. Let
us denote Zz,◦ the dynamics of the state process when no order is sent. Then, the above
implies in particular

v(z,m) ≥ Em[v(Zz,◦
t+h,m)]
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for 0 < h ≤ T − t. This corresponds to the sub-optimality of the control consisting in making
no impulse on [t, t+h]. Applying Itô’s lemma, dividing by h and letting h go to 0, we obtain

−Lv(z,m) ≥ 0

in which
Lϕ := ∂tϕ+ 〈µ,Dϕ〉+

1

2
Tr[σσ>D2ϕ].

On the other hand, it follows from (3.1) and Remark 2.2 that

v(z,m) ≥ sup
a∈A

Em[v(z′[z, a, υ, ε1],M(m; z′[z, a, υ, ε1], z, a))] = Kv(z,m)

where

Kϕ := sup
a∈A

∫
ϕ(z′,m′)dk(z′,m′|·, a). (3.2)

This corresponds to the sub-optimality of sending an order immediately. As for the time-T
boundary condition, the same reasoning as above implies

v(T, ·) ≥ KTg and v(T, ·) ≥ Kv(T, ·),

in which

KTg(·,m) =

∫
U

∫
E

g(·,m, u, e)dPε(e)dm(u). (3.3)

By optimality, v should therefore solve the quasi-variational equations

min {−Lϕ , ϕ−Kϕ} = 0 on [0, T )× Rd ×M (3.4)
min {ϕ−KTg, ϕ−Kϕ} = 0 on {T} × Rd ×M. (3.5)

To ensure that the above operator is continuous, we assume that, on R+ × Rd ×M,

KTg is continuous, and Kϕ is upper- (resp. lower-) semicontinuous,
for all upper- (resp. lower-) semicontinuous bounded function ϕ. (3.6)

Finally, we assume that comparison holds for (3.4)-(3.5). A sufficient condition is provided
in [4].

Assumption 3.1. Let U (resp. V ) be a upper- (resp. lower-) semicontinuous bounded viscos-
ity sub- (resp. super-) solution of (3.4)-(3.5). Assume further that U ≤ V on (T,∞)×Rd×M.
Then, U ≤ V on Z×M.

We can now state the main result of [4].

Theorem 3.1 ([4]). Let Assumption 3.1 hold. Then, v is continuous on Z ×M and is the
unique bounded viscosity solution of (3.4)-(3.5).
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3.2 An example of numerical scheme

When the comparison result of Assumption 3.1 holds, one can easily derive a convergent
finite different scheme for (3.4)-(3.5).

We consider here a simple explicit scheme based on [11, 12]. We let h0 be a time-discretization
step so that T/h0 is an integer, and set Th0 := {th0j := jh0, j ≤ T/h0}. The space Rd

is discretized with a space step h1 on a rectangle [−c, c]d, containing Nx
h1

points on each
direction. The corresponding finite set is denoted by Xh1

c .
The first order derivatives ∂tϕ and (∂ϕ/∂xi)i≤d are approximated by using the standard
up-wind approximations:

∆h0
t ϕ(t, x,m) := h−1

0 (ϕ(t+ h0, x,m)− ϕ(t, x,m))

∆h0
h1,i
ϕ(t, x,m) :=

{
h−1

1 (ϕ(t+ h0, x+ eih1,m)− ϕ(t, x,m)) if µi(x) ≥ 0
h−1

1 (ϕ(t, x,m)− ϕ(t+ h0, x− eih1,m)) if µi(x) < 0,

in which ei is i-th unit vector of Rd.
As for the second order term, we use the fact that each point x ∈ Rd can be approximated
as a weighted combination

x =
∑

x′∈Ch1 (x)

x′ω(x′|x)

of the points x′ lying on the corners Ch1(x) of the cube formed by the partition of Rd it belongs
too. Then, given another small parameter h2 > 0, we approximate Tr[σ(x)σ(x)>D2ϕ(t, x,m)]
by Th2

h0,h1
[ϕ](t, x,m) defined as

(h2d)−1

d∑
i=1

[ϕ]h1(t+ h0, x+
√
h2σ

i(x),m) + [ϕ]h(t+ h0, x−
√
h2σ

i(x),m)

− 2h−1
2 ϕ(t, x,m)

in which σi is the i-th column of σ and

[ϕ]h(t, x,m) :=
∑

x′∈Ch1 (x)

ω(x′|x)ϕ([t]h, x
′,m) with [t]h := min[t, 2T ] ∩

(
Th0 ∪ [T, 2T ]

)
,

is a piecewise linear approximation of ϕ. In the case where only the first row σ1· of σ is not
identically equal to 0, one can use the usual simpler approximation

(h1)−1‖σ1·‖2
(
ϕ(t+ h0, x+

√
h1e1,m) + ϕ(t+ h0, x−

√
h1e1,m)

)
− 2(h1)−1‖σ1·‖2ϕ(t, x,m).

Similarly, we approximate Kϕ by

Kh0,h1ϕ(t, x,m) := sup
a∈A

∫
[ϕ]h(max(t+ h0, t

′), x′,m′)dk(t′, x′,m′|t, x,m, a).
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Letting h := (h0, h1, h2), and setting

Lhϕ := ∆h0
t ϕ+

∑
i≤d

µi∆h0
h1,i
ϕ+

1

2
Th2
h0,h1

[ϕ], (3.7)

our numerical scheme consists in solving

min
{
−Lhϕ , ϕ−Kh1ϕ

}
= 0 on (Th0 \ {T})× (Xh1

c \ ∂Xh1
c )×M, (3.8)

min{ϕ−KTg , ϕ−Kh1ϕ} = 0 on {T} × (Xh1
c \ ∂Xh1

c )×M, (3.9)
ϕ−KTg := 0 on ([0, T ]× ∂Xh1

c ×M) ∪ ((T, 2T ]× Rd ×M). (3.10)

We specify here a precise boundary condition on ∂Xh1
c but any other (bounded) boundary

condition could be used. Finally, we extend vch to the whole space by setting vch = [vch]h on
[0, T ]× Rd ×M.
This scheme is always convergent as (h2, h1/h2, h0/h1)→ 0 and c→∞.

Proposition 3.1. Let vch denote the solution of (3.8)-(3.9)-(3.10). If Assumptions 3.1 holds,
then vch → v as (h2, h1/h2, h0/h1)→ 0 and then c→∞.

Proof. Using Lemma 3.1 below, one easily checks that our scheme satisfies the conditions
of [6, Theorem 2.1.]. In particular, |vch| ≤ sup |g| < ∞. Then, the convergence holds by the
same arguments as in [6, Theorem 2.1.], it suffices to replace their assertion (2.7) by Lemma
3.2 stated below. �

Remark 3.1. We did not discuss in the above the problem of the discrete approximation of
M. Applications will typically be based on a parameterized family M = {mθ, θ ∈ Θ}, for a
subset Θ of a finite dimensional space. We can then further approximate Θ by a sequence of
finite sets to build up a numerical scheme. Similarly, the set of control values A need to be
approximated in practice. If the corresponding sequences of approximations are dense, then
convergence of the numerical scheme will still hold.

We conclude this section with the technical lemmas that were used in the above proof.

Lemma 3.1. If (un)n≥1 is a bounded sequence of functions on Z ×M and (zn,mn)n≥1 is a
sequence in Z×M that converges to (z◦,m◦), then

lim inf
n→∞

(h0, h1)→ (0, 0)

Kh0,h1un(zn,mn) ≥ Ku◦(z◦,m◦) ,where u◦ := lim inf
n→∞

(z′,m′)→ ·

un(z′,m′),

and

lim sup
n→∞

(h0, h1)→ (0, 0)

Kh0,h1un(zn,mn) ≤ Ku◦(z◦,m◦) ,where u◦ := lim sup
n→∞

(z′,m′)→ ·

un(z′,m′).
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Proof. We first rewrite

Kh0,h1un(zn,mn) = sup
a∈A

∫
un,h(z

′,m′)dk(z′,m′|zn,mn, a) (3.11)

where un,h(z′,m′) := [un]h1(max(tn + h0, t
′), x′,m′). Let ūn◦,h◦ be the lower-semicontinuous

envelope of infn≥n◦,h≤h◦ un,h. From (3.11), we get, for n ≥ n◦ and h ≤ h◦,

Kun,h(zn,mn) ≥ Kūn◦,h◦(zn,mn),

and, by (3.6), passing to the limit inf as (n, h)→ (+∞, 0) leads to

lim inf
(n,h)→(+∞,0)

Kun,h(zn,mn) ≥ Kūn◦,h◦(z◦,m◦).

Moreover, ūn◦,h◦ ↑ u◦ point-wise. The required result is then obtained by monotone conver-
gence.

Lemma 3.2. Let (un)n≥1 be a sequence of lower semi-continuous maps on Z×M and define
u◦ := lim inf(z′,m′,n)→(·,∞) un(z′,m′) on Z ×M. Assume that u◦ is locally bounded. Let ϕ be
a continuous map and assume that (z◦,m◦) is a strict minimal point of u◦ − ϕ on Z ×M.
Then, one can find a bounded open set B of [0, T ] × Rd and a sequence (zk,mk, nk)n≥1 ⊂
B ×M × N such that nk → ∞, (zk,mk) is a minimum point of unk − ϕ on B ×M and
(zk,mk, unk(zk,mk))→ (zo,m◦, u◦(zo,mo)).

Proof. Since M is assumed to be locally compact, it suffices to repeat the arguments in the
proof of [5, p80, Proof of Lemma 6.1]. �

3.3 Construction of ε-optimal controls

It remains to explain how to deduce the optimal policy. At each of point (t, x) of the time-
space grid and for each prior m, one computes

(ˆ̀(t, x,m), b̂(t, x,m)) ∈ arg max

{∫
vch(z

′,m′)dk(z′,m′|(t, x),m, (`, b)), (`, b) ∈ A

}
.

If vch(t, x,m) is equal to the above maximum, then we play the control (ˆ̀(t, x,m), b̂(t, x,m)),
otherwise we wait for the next time step. This is the usual philosophy: we act on the system
only if this increases the expected gain. As already argued, here the gain should not only
be considered as an improvement of the current future reward, it can also be a gain in the
precision of our prior which will then lead to better future rewards.

This produces a Markovian control which is optimal for the discrete time problem associated
to our numerical scheme, and asymptotically optimal for the original control problem. We
shall use this algorithm for the toy examples presented in the next section.
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4 Applications to optimal trading
This section is devoted to the study of two examples of application. Each of them corresponds
to an idealized model, the aim here is not to come up with a good model but rather to show
the flexibility of our approach, and to illustrate numerically the behavior of our backward
algorithm.

4.1 Immediate impact of aggressive orders

We consider first a model in which the impact of each single order sent to the market is taken
into account. It means that αi represents the number of shares bought exactly at time τi, so
that `i = 0, for each i. This corresponds to A = {0} ×B in which B ⊂ R+ is a compact set
of values of admissible orders. Therefore, one can identify A to B in the following, and we
will only write b for a = (0, b) ∈ A and βi for αi = (`i, βi).
Our model can be viewed as a scheduling model or as a model for illiquid market. The first
component of X represents the stock price. We consider a simple linear impact: when a
trade of size βi occurs at τi, the stock price jumps by

X1
ϑi

= X1
τi− + βi(υ + εi)/2

in which υ ∈ R is the unknown linear impact parameter, (εi)i≥1 is a sequence of independent
noises following a centered Gaussian distribution with standard deviation σε. The coefficient
1/2 in the dynamics of X1 stands for a 50% proportion of immediate resilience.
It evolves according to a Brownian diffusion between two trades and has a residual resilience
effect:

dX1
t = σdW 1

t + dX4
t and dX4

t = −ρX4
t dt, (4.1)

where σ, ρ > 0 and X1
0 ∈ R are constants. The process X4 represents the drift of X1 due to

the non immediate resilience and X4
0 = 0. When a trade occurs, it jumps according to

X4
ϑi

= X4
τi− + βi(υ + εi)/2.

We call it spread hereafter. This is part of the deviation from the un-impacted dynamic.
The third component, which describes the total cost, evolves as

X2
ϑi

= X2
τi− +X1

τi−βi + (υ + εi)
β2
i

2
.

Finally, the last component is used to keep track of the cumulative number of shares bought:

X3
ϑi

= X3
τi− + βi.

We are interest in the cost of buying N shares, and minimize the criteria

Em[eηL(XT ,υ) ∧ C]
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where η > 0 is a risk aversion parameter, C > 0, and

L(XT , υ) := X2
T +X1

T (N −X3
T ) + (υ + ε0)

(N −X3
T )2

2

represents the total cost after setting the total number of shares bought to N at T .
If the prior law m on υ is a Gaussian distribution, then q(·|t, x, b, u) is a Gaussian density
with respect to

dQ(x′|t, x, b) = dx1′dδx2+bx1′ (x
2′)dδx3+b(x

3′)dδx4+(x1′−x1)(x
4′)

and the transition map

M(m; t′, x′, t, x, b)[C] =

∫
C

q(x′|t, x, b, u)dm(u)∫
R q(x′|t, x, b, u)dm(u)

,

maps Gaussian distributions into Gaussian distributions, which, in practice, enables us to
restrict M to the set of Gaussian distributions. More precisely, if (mυ(τi−), συ(τi−)) are the
mean and the standard deviation of Mτi−, then the values corresponding to the posterior
distribution Mϑi are

συ(ϑi) = 1{συ(τi−)6=0}

(
1

συ(τi−)2
+

1

σ2
ε

)− 1
2

,

mυ(ϑi) = mυ(τi−)1{συ(τi−)=0} +

(
X1
ϑi
−X1

τi−

σ2
ε

+
mυ(τi−)

συ(τi−)2

)
1{συ(τi−)6=0}.

Comparing to the general result of the previous section, we add a boundary condition
v(t, x1, x2, N, x4) = 1 and restrict the domain of X3 to be {0, . . . , N}. Since this param-
eter x3 is discrete this does not change the nature of our general results.
Note also that the map Ψ(t, x,m) = N − x3 defined on [0, T ] × R2 × {0, . . . , N} × R ×M
actually satisfies the conditions provided in [4] to ensure that Assumption 3.1 holds.

We now discuss a numerical illustration. We consider 30 seconds of trading and N = 25
shares to buy. We take η = 1, x0 = 100 and σ = 0.4x0 which corresponds to a volatility of
40% in annual terms. The trading period is divided into intervals of 1 second-length. The
size of an order βi ranges in {1, 2, 3, 4, 5}. We take σε = 10−4 and ρ such that the spread
X4 is divided by 3 every second if no new order is sent. We start with a prior given by
a Gaussian distribution with mean mυ(0) and standard deviation σv(0). Finally, we take
C = 10200 which makes this threshold parameter essentially inefficient while still ensuring
that the terminal condition is bounded.
In Figure 1, we plot the optimal strategy for συ(0) = 5.10−4 and mv(0) = 5.10−2 in terms of
(X2, X3). Clearly, the level of spread X4 has a significant impact: when it is large, it is better
to wait for it to decrease before sending a new order. This can also be observed in Figure 2
which provides a simulated path corresponding to an initial prior (mv(0) = 2.10−2, συ(0) =
10−3): after 15 seconds the algorithm alternates between sending an order and doing nothing,

14



i.e. waiting for the spread to be reduced at the next time step. On the top right graph, we
can also observe that the low mean of the initial prior combined with a zero initial resilience
leads to sending an order of size 3 at first, then the mean of the prior is quickly adjusted to
a higher level and the algorithm slows down immediately.
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Figure 1: Evolution of β in terms of (X3, X4) at time 0s (top), 15s (left) and 25s (right), for
(mυ, συ) = (5.10−2, 5.10−4).
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Figure 2: Evolution of β (top left), price before (circles) and after (triangles) the impact
(top right), mυ (bottom left), συ (bottom right), with time in second. The true value of υ is
5.10−2. x-axis: time in seconds.
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Let us now consider the case ρ = 0, i.e. without dynamic resilience, with a trading period
of 60 seconds and N = 50. In Figure 3, we provide the optimal policy (number of traded
shares) in terms of the number X3 of already traded shares and the prior’s mean parameter
mυ for different times. Not surprisingly the algorithm is more aggressive as the prior’s mean
decreases and the remaining number of shares to buy increases. It is rather stable in time
(compare t = 0s with t = 30s) up to the end where it is forced to accelerate to avoid a large
final impact cost. It is also much more aggressive compared to the case ρ > 0 presented
above: we can no more make profit of the decrease of the resilience term X4, and there is no
reason to wait.
In Figure 4, we provide a simulated path of (X,α,mυ, συ) that shows how the prior on the
unknown coefficients υ can adapt to changing market conditions. The red dashed lines and
circles correspond to the same path of Brownian motion and the same realized noises (εi)i≥1

as the black solid lines and crosses, but the true parameter is changed from 5.10−2 to 5.10−4

after 5 seconds. It is more aggressive quite quickly after the shock as the prior adapts to the
new small level of impact. Note that the total number of shares is bought slightly before 30s,
so that the prior do not change anymore after this date.
In Figure 5, we plot the log of the value function minus the cost 5.103 of buying the total
shares without impact (similar to the implementation shortfall), in terms of the different
quantities of interest.

18



Figure 3: Evolution of α in terms of (mυ, X
3) at time 0s (top), 30s (left) and 55s (right), for

συ = 5.10−4.
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Figure 4: Evolution of α (top), συ (left), mυ (right) with time. Black crosses and black solid
lines: the true value of υ is 5.10−2. Red circles and red dashed lines: the true value of υ is
5.10−2 for the first 5 seconds, and then jumps to 5.10−4.
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Figure 5: Top: ln(v) − 5.103 in terms of (x3,mυ) for συ = 5.10−4 and t = 0. Bottom:
ln(v)− 5.103 in terms of συ for (x3,mυ) = (0, 2.10−2) at t = 0.
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4.2 Random execution times: application to strategies using limit-
orders

In this section, we consider a limit-order trading model. X1 now represents a mid-price (of
reference) and, between two trades, has the dynamic

dX1
t = σdW 1

t . (4.2)

An order is of the form (`, β) in which ` is the maximal time we are ready to wait before
being executed, while β is the price at which the limit order is sent3. For simplicity, each
order corresponds to buying one share.
We assume that the time θ it takes to be executed follows an exponential distribution of
parameter ρ(υ,X1

τ − β), given the information at time τ . One can send a new order only
after ϑ := τ + ` ∧ θ.
Hence, given a flow of orders φ = (τi, `i, βi)i≥1, the number X3 of shares bought evolves
according to

X3 = X3
ϑi

on [ϑi, τi+1)

X3
ϑi

= X3
τi− + 1{θi≤`i},

in which ϑi := τi+`i∧θi. Each θi follows an exponential distribution of parameter ρ(υ,X1
τi
−βi)

given F z,m,φτi− . As in the previous model, X3 is restricted to {0, . . . , N}. The total cost X2 of
buying the shares has the dynamics

X2 = X2
ϑi

on [ϑi, τi+1)

X2
ϑi

= X2
τi− + βi1{θi≤`i}.

We want to minimize

E
[
eX

2
T[φ]

+1.02(N−X3
T[φ]

)+ 5.102

2
(N−X3

T[φ]
)2 ∧ C

]
,

in which 1.02 is the best ask (kept constant) and 5.102 is an impact coefficient. This corre-
sponds to the cost of liquidating instantaneously the remaining shares (N − x3)+ at T . This
model is a version of [2], [16], [18], see also [17].

Direct computations show that the prior process M evolves according to

M = Mϑi on [ϑi, τi+1)

Mϑi = M1(Mτi−;Zϑi , Zτi−, αi)1{θi≤`i} + M2(Mτi−;Zϑi , Zτi−, αi)1{θi>`i}

in which

M1(m; t′, x′, t, x, l, b)[B] :=

∫
B
ρ(u, x1 − b)e−ρ(u,x1−b)t′dm(u)∫

R+ ρ(u, x1 − b)e−ρ(u,x1−b)t′dm(u)

3Dark pool strategies could be considered similarly, in this case, β would rather describe the choice of the
trading plateform
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Figure 6: Solid: u = 0.8. Dashed: u = 0.3

and

M2(m; t′, x′, t, x, l, b)[B] :=

∫
B
e−ρ(u,x1−b)ldm(u)∫

R+ e−ρ(u,x1−b)ldm(u)

for all Borel set B.
In the case where M is the convex hull of a finite number of Dirac masses, then the weights
associated to M can be computed explicitly.

Here again, the map Ψ(t, x,m) = N − x3 satisfies the conditions provided in [4] to ensure
that Assumption 3.1 holds.

We now consider a numerical illustration. We take C = 10200. The time horizon is T = 15
minutes. To simplify, we fix the reference mid-price to be X1 ≡ 1 (i.e. σ = 0) and restrict to
` = 1, i.e. an order is sent each minute. We take N = 10. One can send limit buy orders in
the range B := {0.90, 0.92, 0.94, 0.96, 0.98}.
As for the intensity of the execution time, we use an exponential form as in [16]: ρ(u, x1−b) =
λ(u)e−20(0.98−b) in which λ(u) = − ln(1− u). This means that the probability to be executed
at the price 0.98 within one minute is u. Orders are sent each minute, but we use a finner
time grid in order to take into account that it can be executed before this maximal time-
length. The original prior is supported by two Dirac masses at u = 0.3 and u = 0.8. The
corresponding probabilities of being executed within one minute are plotted in Figure 6.
Our time step corresponds to 15 seconds, so that every 15 seconds the controller can launch
a new order if the previous one has been executed before the maximal 1 minute time-length.
In Figure 7, we plot the difference, in logarithms, between the value functions obtained
in the latter case and for a time step of 1 minute (in which case a new order cannot be
launched before one minute). Clearly, the possibility of launching new orders in advance is
an advantage.
In Figure 8, we plot the optimal policy at time t = 0 and t = 7.5 minutes. As expected, the
algorithm is more aggressive when the probability of having υ = 0.8 is higher.
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Figure 7: Launching new orders in advance, if the previous one is executed, is an advantage.

In Figure 9, we plot a simulated path. The red and black lines and points correspond to the
same realization of the random variables at hand, but for different values of the real value of
υ. Black corresponds to the most favorable case υ = 0.8, while red corresponds to υ = 0.8 for
the first 7.5 minutes and υ = 0.3 for the remaining time. The initial prior is P[υ = 0.8] = 9%.
Again, the algorithm adapts pretty well to this shock on the true parameter. We also see
that it is more aggressive when the prior probability of being in the favorable case is high.
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Figure 8: Top: t = 0. Bottom: t = 7.5 minutes
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Figure 9: Black crosses and solid lines: υ = 0.8. Red circles and dashed lines: υ = 0.8 before
t = 7.5 minutes and υ = 0.3 after ; x-axis= time in minutes.
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