
HAL Id: hal-01590597
https://hal.science/hal-01590597

Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Community detection in dynamic graphs with missing
edges

Oualid Benyahia, Christine Largeron, Baptiste Jeudy

To cite this version:
Oualid Benyahia, Christine Largeron, Baptiste Jeudy. Community detection in dynamic graphs with
missing edges. IEEE Eleventh International Conference on Research Challenges in Information Science
(RCIS), May 2017, Brighton, United Kingdom. pp.372 - 381, �10.1109/RCIS.2017.7956562�. �hal-
01590597�

https://hal.science/hal-01590597
https://hal.archives-ouvertes.fr


Community Detection in Dynamic Graphs with

Missing Edges

Oualid Benyahia, Christine Largeron and Baptiste Jeudy
Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School,

Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France

Abstract

Social networks are usually analyzed and mined without taking into
account the presence of missing values. In this article, we consider dy-
namic networks represented by sequences of graphs that change over time
and we study the robustness and the accuracy of the community detec-
tion algorithms in presence of missing edges. We assume that the network
evolution can provide a complementary information allowing to neutralize
the missing data. To confirm our hypothesis, we designed an experimen-
tal framework to simulate the missing data and compare the communities
identified by the methods, with or without missing links. We explore
two types of methods. The first ones, based on tensor decomposition,
are adapted for dynamic networks. The second ones correspond to con-
ventional community detection algorithms able to handle simple graphs.
In our framework, the latter ones are adapted to dynamic graphs, ei-
ther by merging the data during the preprocessing step or by merging
the partitions during a post-processing step. The experimentation was
conducted on synthetic and real dynamic networks for which the ground
truth is available. The results confirm the best performances of the meth-
ods suited for dynamic networks when they present a complex community
structure.

Keywords — Dynamic Graph, Social Network, Missing Data, Com-
munity Detection.

1 Introduction

In the recent few years, social data has attracted great interest in the data
mining community and a variety of methods and software solutions have been
proposed to ease their analysis. However, many of these tools have been designed
on the assumptions that the network is totally known whereas, in practice,
real networks are dynamic and they cannot be fully observed. Missing data
can be due to various reasons. First, the large size of the network leads to
consider only a sample. For instance, in the case of Twitter, a distributed
crawler took four months to complete the data collection [14]. Second, even in
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a subgraph, the relationship between two entities may be unobservable during
the data acquisition, even if it exists. If this issue is well known in data mining
and machine learning, it has been less studied in social data.

Previous works have mainly investigated and confirmed the impact of missing
data on network properties such as the diameter, the centrality or the degree
distribution [28, 20, 8]. However, this problem has not been well studied for
other network analysis tasks.

In this article, we consider the community detection task which aims at
grouping the nodes into sets with dense connections internally and sparser con-
nections between groups [13]. We investigate, through extensive experiments
done on dynamic networks, the ability of classical algorithms to detect the un-
derlying community structure in presence of missing links.

The next section is dedicated to related work. The experimental framework
is detailed in Sect. 3 and 4, Sect. 5 presents the experiments. Finally, Sect. 6
states our conclusion.

2 Related Work

Dealing with the missing data is a common problem in data mining [33, 32].
These missing values can arise from different sources such as measurement er-
rors, non-responses, privacy settings, etc. Several techniques can be applied to
deal with missing values in collected data [33, 39]. The easiest solution consists
in ignoring these values or the records containing at least one missing value.
However, this can lead to a loss of information and serious bias. Other ap-
proaches aim at replacing the missing data using various techniques [33, 37, 21]
based notably on optimization methods [30, 40]. In the specific context of
social mining, the problems of link prediction [31] and network reconstruc-
tion [48, 6, 24] are closely related to the study of missing data. Another related
task is the matrix completion or recovery problem [23] where the objective is to
fill out the missing entries of a matrix based on the observed ones. However, for
the other tasks, the problem of missing data has been less studied even though
the networks are most often partially observable and consequently represented
by incomplete graphs. Thus, a main challenge is to estimate the impact of this
missing data on the outcome of the mining process and the accuracy of the
results.

Indeed, recent studies showed a negative effect of missing data on the struc-
tural properties of social networks [28, 38, 20]. In [28], the author highlights
the problem of missing data in social network analysis. Through an exploratory
analysis, he studies the effect of missing data on usual metrics (average degree,
clustering coefficient, assortativity of nodes, number and size of components and
average path length). The sensitivity of the metrics was assessed by simulating
different forms of missing data in social networks describing scientific collabo-
rations. In [41], the authors extend the work of [28] to understand the effects of
different types of missing data in the case of multilayer networks. In [12] as well
as in [8], the authors focus on the robustness of the centrality measures under
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the constraints of missing data. These works confirm that the analysis of the
network is severely biased by the presence of missing links.

Finally, the treatment of missing values and the solutions to replace them re-
mains seldom studied. In [20], the author explores a variety of data imputation
procedures, similar to those introduced in [38], like unconditional mean substi-
tution, preferential attachment substitution (preserving the degree distribution)
or the hotdocking substitution technique. He also studied the impact of these
solutions on network’s properties such as the clustering coefficient, the assor-
tativity, the reciprocity and the inverse geodesic distance. Several imputation
procedures have been designed in an application context: in [3], a model-based
imputation is proposed for predicting information in an incomplete road net-
work whereas in [18], the authors introduced a latent space imputation model
to predict links in a political network.

Furthermore, Kim and Leskovec [25] study the network completion problem
which consists in inferring the unobserved part of the network whereas Yan and
Gregory [49] explore two tasks (link prediction and the community detection)
with different scenarios to simulate the missing data. For these tasks, they
conclude that the performance of the methods is differently affected depending
on the type of missing edges.

However, none of these works take into account the network dynamic. In
this article, we assume that the network evolution can provide a complemen-
tary information allowing to neutralize the missing data. We study the effect
of missing data in dynamic networks and in the specific context of community
mining. If our hypothesis is true, the community detection algorithms able to
handle dynamic networks should be less penalized by missing links than algo-
rithms designed for static graphs. Through intensive experiments, our aim is to
analyze the robustness and the accuracy of the community detection algorithms
in presence of missing edges. For this purpose, an experimental framework has
been designed allowing to simulate the missing data according to two scenarios.
It is presented in the next section.

3 Methodology

In this section we introduce the proposed experimental framework.

3.1 Dynamic Network Representation.

A dynamic network G is a pair (V, E) where V is a set of N nodes (denoted
vi) and E ⊂ V2 × {1, · · · , T} is a set of undirected edges. Each edge is defined
by two nodes of V and a timestamp in {1, · · · , T} . We define the graph Gt =
(V, Et) describing the state of the network at a given timestamp (referred to as
a snapshot) where (vi, vj) ∈ Et iff (vi, vj , t) ∈ E .

This leads to a natural formalization of this network as a tensor where the
successive adjacency matrices Xt = {xijt} of Gt are combined in a three-way
tensor X ∈ RN×N×T . A tensor element xijt is equal to 1 if there exists an edge
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between the nodes vi and vj in the graph Gt and 0 otherwise. We suppose that
all the graphs (and thus tensors) are symmetric (xijt = xjit).

We also define the aggregated graph Gaggr = (V, Eaggr), where Eaggr = ∪tEt
(there is an edge (vi, vj) in Gaggr iff there is an edge (vi, vj , t) in any of the Gt).

3.2 Missing Edges Representation.

In a real dynamic network, some edges of G may be missed (be unobserved)
and eventually be considered incorrectly nonexistent. To simulate these miss-
ing/unobserved edges, we use a symmetric tensor W ∈ RN×N×T of the same
size as X . Its values wijt are equal to 0 if the edge between vi and vj at time
t is missing/unobserved and 1 otherwise. Another way to interpret W is that
wijt = 0 if the value of xijt is unknown.

We refer to the observed incomplete version of the initial dynamic network
G = (V, E) as Gm = (V, Em) where Em ⊂ E denotes the subset of the remaining
observed edges. The induced adjacency tensor Xm of Gm is therefore:

Xm =W ∗ X , i.e., xmijt = wijt.xijt (1)

We assume that the missing edge tensor W may be known or unknown
depending on the experimental scenario. The tensor X of the real network is
always unknown (except, of course, if there is no missing edge).

3.3 Generating Missing Edges.

To generate incomplete data, we start from an artificial or real-world network
G = (V, E). Then, given a desired ratio τ of missing edges, we choose τ.|E| edges
as missing using one of the two following scenarios.

Unbiased Missing Edges

In this scenario, we make the assumption that the missing edges are uniformly
and randomly sampled from all observed edges in the dynamic graph. For
instance, data may be observed with sensors (as in the classroom dataset) that
may fail to detect an interaction between two nodes with a given probability.
So, given τ , the τ · |E| missing edges are chosen, with an uniform probability,
from the observed edges E of the original dynamic network.

With this scenario, missing data is not really a so difficult problem, because
we can expect that the structure of the network remains stable in time. If it
is the case, this means that if an edge is missing at the time t, there is a high
probability for this edge to be present at another time.

Biased Missing Edges

In this second scenario, more difficult, we consider that if an edge between two
nodes vi and vj is missing at time t, then it is also missing at other timestamps.
In this case, all the information about the relation between vi and vj is lost. This
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means that the missing value tensorW does not depend on time: wijt = wijt′ for
all t and t′. This can model the fact that the network is only a partial view of the
world. For instance, two people working in the same office may communicate
verbally. Thus the relation between them is not present in a graph of email
communications.

To achieve this, missing edges are sampled uniformly from the aggregated
graph Gaggr. For each sampled edge (i, j), we set wijt = 0 for all t. This sam-
pling is performed until a proportion τ of edges is selected in G, i.e.,

∑
(ijt)(1−

wijt)xijt ≥ τ · |E| (in general, we cannot achieve equality because each sampled
edge in Gaggr corresponds to several edges in G).

4 Approaches for Community Mining in Dynamic
Networks

Several approaches have been introduced to detect communities in dynamic
networks among which, we can mention stochastic blockmodels [43], [26], [44]
clique percolation method extension [35], quality function optimization notably
adaptations of CNM algorithm [34], Louvain or Infomap methods [4, 2, 17]. In
this article, we suppose that the community detection in a dynamic network
aims to identify a unique partition of the vertices into non overlapping clus-
ters. We explore two approaches: The first one, based on tensor factorization
methods, is well adapted to dynamic networks since it processes all timestamps
simultaneously. It provides a global partition of the vertices into communities,
defined over the whole network. The second approach is to adapt conventional
algorithms able to find the communities on each snapshot graph Gt. It is based
either on partition aggregation or on graph aggregation Gaggr.

4.1 Methods Adapted for Dynamic Networks

The aim of tensor factorization methods [27] is to compute a low rank ap-
proximation of the dynamic graph tensor. This approximation captures the
underlying latent structures describing the temporal and structural correlation
between vertices.

Given the observed adjacency tensor Xm and a parameter R (the number of
components), we compute the canonical decomposition (CANDECOMP) [11],
also known as parallel factorization (PARAFAC) [16]. We refer to the canonical
decomposition as CANDECOMP/PARAFAC (CP) model. The factorization of
Xm leads to factor matrices A, B and C all with R columns.

xmijt =

R∑
r=1

airbjrctr

In our case, since Xm is symmetrical, A and B are equal. The matrix A de-
scribes the latent structures in the original graph and the matrix C the activity
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pattern of these components through time. Finding the right value for param-
eter R is a difficult problem [10]. In our case, since we know the ground truth
and since we focus on the missing data problem, we use the real number of
communities as R.

When the missing edge tensorW is known, several extensions of the original
CP methods have been proposed: EM-ALS [9, 47], CP-INDAFAC [45] and
CP-WOPT [1].

Extracting Community Partition from Tensor Factors

In order to match the factor components to distinct communities we use a clus-
tering algorithm (Kmeans) on the rows of the factor matrix A to get R distinct
clusters, describing membership of each node to his community. By this way,
we obtain a global partition PCP describing R non overlapping communities
defined on the whole evolving network:

PCP = {C1, ..., CR} (2)

Each node vi of the network G belongs to exactly one community Ci.

4.2 Methods Adapted for Static Networks.

We also use well-known community detection algorithms Louvain and Infomap.
The Louvain algorithm is a greedy agglomerative hierarchical clustering method
which optimizes the modularity measure [7]. Infomap exploits data compres-
sion for community identification by employing random walks to analyze the
information flow through a network [36].

These two algorithms are designed to identify community structures on static
graphs and in general, they are not adapted to deal with dynamic networks. For
this reason, we adapt them in two different ways:

Independent Community Mining

The static algorithms are executed independently on each observed graph snap-
shot Gmt of the observed dynamic network Gm. We thus obtain a sequence of
independent partitions Pstatic

t describing the communities of each graph snap-
shot:

Pstatic = {Pstatic
1 , · · · ,Pstatic

T } (3)

Community Mining on Aggregated Graph

Another approach consists in applying these static algorithms on the aggregated
graph Gaggr. This approach provides directly a global partition Pstatic

aggr .
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4.3 Evaluation

In the experiments, we study synthetic and real networks for which ground truth
is available. This allows to compare the partitions built by the algorithms with
those of the original networks. Depending on the datasets, the ground truth
is available either as a sequence of partitions P∗ = {P∗1 ,P∗2 , · · · ,P∗T } (for the
synthetic networks) or as a unique global partition ∀t ∈ {1, · · · , T},P∗t = P∗1 =
P∗ (for the primary school dataset).

The assessment of the accuracy of the different algorithms requires the use
of a distance or similarity measures between pairs of (sequence of) partitions. In
our experiments, we use the Normalized Mutual Information [42], the Jaccard
Index [22] and the Adjusted Rand Index [19].

However, as shown before, the ground truth and the outputs of the algo-
rithms may be either a unique partition or a sequence of T partitions (one for
each snapshot). To be able to compare these two kinds of results, we transform
sequences of partition P = {P1,P2, · · · ,PT } into a consensus partition, denoted
Consensus(P), as explained below.

Consensus Partition

Given a sequence of partitions P = {P1, · · · ,PT }, we construct a feature matrix
F of size N × T . The value Fit is equal to j if node vi belong to community
Cj in Pt. The nodes are then assigned to a unique community by performing a
clustering (with the Kmeans algorithm) on the rows of matrix F. The result of
the clustering is the consensus partition Consensus(P).

With this approach, each time the ground truth or the result of an algorithm
is a sequence of partitions, we apply the consensus to obtain a unique global
partition for the period {1, ..., T}.

To summarize, the global unique ground truth partition for each dataset can
thus be compared to the output of the algorithms:

• For the tensor algorithms (CP-ALS , CP-WOPT and CP-INDAFAC ), the
output is always a global unique partition.

For the static algorithms Louvain and Infomap, we use two approaches:

• Validation on aggregated partitions : in this case, the ground truth
is compared to the consensus partition Consensus(Pstatic) built on the
sequence of partitions Pstatic.

• Validation on aggregated graph : in this case, the static algorithms
are applied on the aggregated graph. So, the ground truth is compared to
the global partition Pstatic

aggr .

5 Experiments

We experimentally evaluate the performance of the algorithms (CP-ALS , CP-
WOPT , CP-INDAFAC , Louvain and Infomap) in presence of missing edges. We
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use one real network and two sets of synthetic networks built with generators
which also give the ground truth. Thus, we can compare this last one with the
partitions provided by the algorithms by means of the NMI and ARI scores and
Jaccard Index but, for sake of brevity, we only present the results according
to the NMI since they are approximatively the same for the other scores. We
consider the scenarios described previously to generate the missing edges with
values for the ratio τ varying from 10% to 90%. Moreover, for the static methods
(Infomap and Louvain) suited to handle simple graphs, we present the results
obtained either by aggregating the partitions built on each snapshot (denoted
Validation on aggregated partitions in the captions and reported in sub-figures
(a)) or by aggregating the snapshot graphs (denoted Validation on aggregated
graph on sub-figures (b)). The results of the tensor algorithms (CP-*) are
reported on both sub-figures (a) and (b) (they are the same on both since the
”aggregated graph” and ”aggregated partitions” apply only to static methods).

For each dataset, we present the average and the standard deviation of the
NMI as a function of the missing edge ratio. The averages and standard devia-
tions are computed on ten simulations done with different missing values tensors
W randomly generated for each scenario.

5.1 Primary School Network

Dataset

The first dataset [46] corresponds to a real temporal network describing the
interactions between 231 children and 10 teachers equipped with a proximity
sensor having an unique identifier (241 nodes). The sensor continuously moni-
tored the close-range (less than 1.5 meters) face-to-face contacts of individuals
and relayed the proximity relations to a receiving system that timestamps and
logs the data.

The data, collected over two consecutive days (October 2009 from 8:30 am to
5:15 pm) with a temporal resolution of 20 seconds, has been aggregated to obtain
a temporal network represented by T = 18 successive adjacency matrices. Each
identifier is associated to the class of the participant, so that we have a global
ground truth partition P∗ composed of 11 communities for this dynamic network
(10 communities for grouping children classes and an additional community for
teachers).

Results

Figure 1 and Fig. 2 show, respectively for the unbiased scenario and the
biased scenario, the NMI scores in function of the missing edges rates obtained
with the different algorithms.

The unbiased scenario, corresponding to missing edges selected randomly
is depicted in Fig. 1. For missing edge ratios up to 70%, the tensor methods
have good results but starts to decrease for higher missing edges ratios. With
aggregated partitions (Fig. 1a), the static methods Louvain and Infomap ob-
tain lower scores compared to the tensors methods, especially Louvain with an
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(a) Validation on aggregated partitions

(b) Validation on aggregated graph

Figure 1: NMI results on the primary school graph with missing edges sampled
according to the Unbiased missing edges scenario. In all figures, Validation
on aggregated partitions and Validation on aggregated graph are the same for
methods based on tensor decomposition (CP-*).

average score below 50% in most of the cases. As shown in Fig. 1b, when the
static algorithms (Louvain and Infomap) are applied directly on the aggregated
graph, they obtain results which remain stable even when 90% of the edges are
missing, with a clear advantage for Infomap over the other methods.

Consequently, on this dataset, the static methods Louvain and Infomap are
clear winner when applied on an aggregated graph. This is due to the fact that
the aggregated graph remains very stable even with high missing edge ratios.

With the biased scenario, which is most difficult because a missing edge is
selected over all the timestamps, we observe a degradation of all the results as
shown Fig. 2. The NMI scores for the tensor methods start to decrease rapidly
and severely when the ratio of missing edges is above 60%. For the static
methods (Louvain and Infomap), we can remark the same effect on (Fig. 2b)
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(a) Validation on aggregated partitions

(b) Validation on aggregated graph

Figure 2: NMI results on the primary school graph with missing edges sampled
according to the Biased missing edges scenario.

when they are applied on the aggregated graph (but they remains better than
tensor methods).

In conclusion, for this network presenting a relatively stable community
structure, the more edges are considered as missing the lower is the efficiency
of the tensor factorization algorithms. Moreover, these last ones are surpassed
by conventional static algorithms applied on the aggregated graph.

5.2 Synthetic Dynamic Graphs

Dataset

We used the generator DANCer [29, 5] to construct synthetic datasets. A
network is defined by a sequence of undirected attributed graphs having a well
defined partition of the vertices into non-overlapping communities at each snap-
shot. Thus, the ground truth partition is given by P∗t with t ∈ {1, · · · , T}.

The evolution of the network is obtained by removing or adding edges, by
migrating nodes from a community to another one, by splitting a community
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into two new sub-communities or by merging two existing communities into a
single community.

We generated 10 dynamic networks with the same set of parameters1 but
with different seeds. Each of them have 100 nodes, 2000 initial edges and an
initial community structure composed of 4 groups. These networks evolved over
T = 10 time steps.

The results are computed with 10 missing values tensors W randomly gen-
erated for each scenario.

Results

(a) Validation on aggregated partitions

(b) Validation on aggregated graph

Figure 3: NMI results on the synthetic graph DANCer Graph with missing
edges sampled according to the Unbiased missing edges scenario.

For the unbiased scenario of missing edges depicted in Fig. 3, the NMI
scores of all the tensor decomposition methods remain stable with high accuracy,

1K=4; n=100; Nb. Rep=10; Edges Within=10; Edges Between=3; MTE=2000; Proba
Micro=0.5; Add Btw. Edges=0.5; Remove Btw. Edges=0.5; Add Wth. Edges=0.3; Remove
Wth. Edges=0.5; Timestamps=10; Proba Merge=0.2; Proba Split=0.2. All other parameters
are set to 0.
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(a) Validation on aggregated paritions

(b) Validation on aggregated graph

Figure 4: NMI results on the synthetic graph DANCer Graph with missing
edges sampled according to the Biased missing edges scenario.

above 80%, and a low standard deviation, even with a large ratio of missing
edges.

For the static algorithms (Infomap and Louvain), we obtain different results
depending on the aggregation. When the partitions are determined at each
time step and then aggregated into a consensus partition, as shown Fig. 3a the
average NMI score remains good and stable until to a ratio τ equals to 70%.
Then it decreases severely with a high standard deviation. This emphasizes the
prevalence of the tensor decomposition methods, even with a great number of
missing edges. Conversely, as shown Fig. 3b, when an aggregated graph is used
to detect the communities, the static algorithms (Infomap and Louvain) give
the best NMI scores, with a slight advantage over the tensor methods, and their
result remain stable even with a high ratio of missing edges.

For the biased scenario, Fig. 4, the NMI score is almost the same for all
the algorithms. It starts to decrease rapidly when the ratio of missing edges
is approximately equals to 60%. Moreover we can not observe a significant
difference for the static algorithms when the validation is done on aggregated
partitions or on aggregated graph.
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The conclusion for this dataset is thus similar to the previous one: the static
methods on the aggregated graph perform better even if their advantage is less
pronounced than in the school dataset.

5.3 Synthetic Networks from Benchmark Model

Dataset

We also used a recent benchmark model for generating dynamic networks hav-
ing a periodic evolution of the communities [15]. This cyclic evolution of the
network is modeled by two dynamic processes applied to the communities: grow-
ing/shrinking and merging/splitting. In these two dynamic processes, two equal
sized communities start off as random graphs with internal link density pin, and
with link density pout between them (at t = 1).

In Merging/splitting process, edges are added between communities until
they become a random graph with only one community with a link density of
pin (at t = 0.5T ). Then, this process reverses (edges are removed) until the
communities are split again at t = T .

In growing/shrinking process, nodes are transferred from one community
to the other, until a fraction f of the nodes of one community have been moved.
At t = 0.25T , the size of the first community is maximal and and the size of
the second is minimal. The process reverses, and at t = 0.5T communities are
of equal size again, and at t = 0.75T the second community is at the maximal
size. Finally, at t = T the communities return to equal size. At all times, the
internal link density of both communities is maintained at pin and link density
between the two communities is maintained at pout.

We used the StdMixed configuration [15] which combines the two previous
processes with the parameter pin (Internal Communities link density) set to
0.5 and the other link densities, notably pout, set to 0.1. At t = 1, there
are four equal size communities with 60 nodes. The first two communities
follow the merging/splitting process, and the other two communities follow the
expand/contract process. The number of snapshots is T = 10.

Results

For the unbiased scenario, where the missing edges are randomly selected,
the partitions provided by the tensor decomposition methods have larger NMI,
even with a large number of missing edges, as shown Fig. 5.

With the validation on aggregated partitions, illustrated by Fig. 5a,
the static algorithms (Infomap and Louvain) also give good NMI scores when
the percentage of missing edges is lower than 60%. Then the score decreases
rapidly to reach 40% for Infomap and about 10% for Louvain. Figure 5b shows
the NMI score when the static algorithms Infomap and Louvain are applied on
an aggregated graph. The communities identified are less relevant compared to
those provided by the tensors decomposition methods, especially for Infomap
which fails completely to found the ground truth. We can note that the low score
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(a) Validation on aggregated partitions

(b) Validation on aggregated graph

Figure 5: NMI results on the synthetic configuration StdMixed with missing
edges sampled according to the Unbiased missing edges scenario.

obtained by Infomap (NMI = 0) for this very evolving community structure is
consistent with other experimental results recently published [50].

In fact, in this benchmark, the dynamic process governing the evolution of
the communities membership has a negative impact on the results of the static
methods.

For the biased scenario, the missing data impacts the accuracy of the
different algorithms as shown in Fig. 6a. In this case, the static methods on
the aggregated graph have the worse results (whereas they were better than the
aggregated partitions in the previous graphs). This can be explained by the fact
that since the structure of the communities changes a lot, the aggregated graph
tends to become complete (i.e., it tends to contain all possible edges).

Thus, for this kind of dynamic network, where the structure of the com-
munities changes a lot with a high discrepancy between different snapshots,
the tensor decomposition methods perform better, even with a high number of
missing edges.
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(a) Validation on aggregated partitions

(b) Validation on aggregated graph

Figure 6: NMI results on the synthetic configuration StdMixed with missing
edges sampled according to the Biased missing edges scenario.

5.4 Processing Time

To assess the processing time of the different static and dynamic community
detection algorithms, we conducted an experimentation on different DANCer
graphs with the same parameters except for the number of nodes (from 100 to
2000 nodes). The ratio of missing edges was between 10% and 90%. The results
for 1500 nodes are presented in Fig. 7. The results for other numbers of node
are similar.

In general, the static methods are faster (by a factor between 2 to 10) espe-
cially for larger number of nodes. Except for the highest level of missing edges
(90%), computation times do not depend much on the missing edge ratio. For
90% of missing edges, all the methods except Infomap have a large increase in
processing time. These are iterative methods that aim to optimize a function
(which measures the quality of the communities). This increase in processing
time means that these algorithms need more iterations to find a good partition.
This is probably because the ”gradient” of the optimized function (i.e., the in-
crease of this function at each step of the algorithms) is small (the communities

15



are not well separated), and thus finding the optimal takes more iterations.

Figure 7: Processing Time for DANCer Graph with 1500 nodes

6 Conclusion

We investigated the impact of missing edges on the performance and the effi-
ciency of several community detection algorithms in dynamic networks. The
dynamic algorithms, based on tensor decomposition methods have been com-
pared to two conventional algorithms dedicated the detection of communities in
static networks: Louvain and Infomap.

The study confirms that the network evolution can provide a complementary
information allowing to neutralize the missing data.

More precisely, in the case of a low discrepancy between the communities
at different timestamps, the static algorithms perform well to find the ground
truth partition, notably when they are applied on an aggregated version of the
graphs composing the network and, especially if the number of missing edges
is reasonably low. However, when the communities structure changes a lot,
the tensor decomposition methods provide partitions that are more significant
compared to those identified by the static algorithms.

It is worth noting than even with very high ratio of missing edges (80% or
even 90%), the NMI score remains above 50% in many cases. This shows that
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the dynamic networks contains lots of redundancy and that the algorithms are
able to use it.

This work should be pursued further, notably by considering versions of
Louvain or Infomap [4, 2, 17] recently introduced and dedicated to dynamic
networks. However it is not certain that they achieve better results when the
community structure is very evolving since they change the initialization in
order to force stability by beginning the detection at time t with the partition
obtained at time t− 1.

Moreover, we studied two scenarios to generate incomplete graphs, unbiaised
and biaised missing edges. We could consider more complex cases, like for
instance when missing edges are concentrated around a node or when they edges
are mainly removed at given timestamps. We have focused on non-directed and
non-weighted networks, we could also study the case of directed and weighted
graphs.
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