
HAL Id: hal-01590587
https://hal.science/hal-01590587v1

Preprint submitted on 19 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Marginal Weibull diffusion model for wind speed
modeling and short-term forecasting

Alain Bensoussan, Alexandre Brouste

To cite this version:
Alain Bensoussan, Alexandre Brouste. Marginal Weibull diffusion model for wind speed modeling and
short-term forecasting. 2017. �hal-01590587�

https://hal.science/hal-01590587v1
https://hal.archives-ouvertes.fr


Marginal Weibull diffusion model for wind
speed modeling and short-term forecasting

Alain Bensoussan and Alexandre Brouste

Abstract We propose a dynamical model for the wind speed which is a Markov
diffusion process with Weibull marginal distribution. It presents several advantages,
namely nice modeling features both in terms of marginal probability density func-
tion and temporal correlation. The characteristics can be interpreted in terms of
shape and scale parameters of a Weibull law which is convenient for practitioners to
analyze the results. We calibrate the parameters with the maximum quasi-likelihood
method and use the model to generate and forecast the wind speed process. We
have tested the model with wind speed dataset provided by the National Renewable
Energy Laboratory. The model fits very well with the data. Besides, we obtain a
very good performance in point and probabilistic forecasting in the short-term in
comparison to benchmarks.

1 Introduction

The two parameter Weibull probability density function has become widely used to
fit wind speed datasets in the literature of wind energy (see [5, 9] and the reference
therein). It has been included in regulations concerning wind energy and in most
popular software on wind modeling like HOMER and WAsP1.

The energy production of a wind farm is directly related to the wind speed on the
site through the power transfer function of wind turbines. Operating a wind farm re-
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quires forecasting production in the incoming hours. From seconds to minutes, this
forecast allows an accurate indication to achieve smooth production on the elec-
tricity grid. From hours to half a day, it can be used to decide whether or not to
store for efficient trading on electricity markets. Finally daily production forecast-
ing helps in scheduling maintenance operations. These problems belong to the class
of stochastic optimization problems due to the intermittent nature of the wind and
the solutions depend mainly on the underlying model used for the wind speed.

Several dynamical models as classical time series (ARMA, FARIMA, . . . ),
Markov chains [6, 13, 18, 20], semi-Markov chains [7, 8] and neural networks [17]
have been considered in the literature for both modeling and short-term forecast-
ing. We have considered the Cox-Ingersoll-Ross (CIR) diffusion in [2] to model the
square of the wind speed. Diffusion processes in general provide efficient point and
probabilistic forecasts obtained from transition probability density functions. For
instance, the CIR model overperforms the persistence benchmark (i.e. last mea-
sured value as forecast value) in terms of one-step forecast mean square error
(MSE). Moreover, stochastic optimization problems with such continuous Markov
processes are handled conveniently.

In this paper, we propose a diffusion process for the wind speed whose marginal
law is Weibull. Temporal correlation structure of the stochastic process is also
parametrized. We show that the model is interesting as a wind generator model.
Indeed, the fact that characteristics are understandable in terms of shape and scale
parameters of a Weibull law helps practitioners analyzing the results. This model
also shows good performances in short-term forecasting for a large class of datasets
provided by the National Renewable Energy Laboratory (NREL). The model is
compared to the basic persistence benchmark and the Ornstein-Uhlenbeck diffusion
process both in terms of MSE (for point forecasts) and continuous ranked proba-
bility score (CRPS, for probabilistic forecasts) for short-term lead times (see also
[12] for definitions of other score and other benchmark for one-step ahead fore-
casting). Conversely to the CIR process, the transition probability density function
is no longer available anymore in closed form. Consequently, new calibration and
forecast methods are presented that differ from our previous work.

In section 2, the dynamic marginal Weibull diffusion model is presented. Point
forecast and probabilistic forecast methods are developed in section 3. In section 4,
the estimation method of the parameters of the aforementioned model is presented
and the dynamic model is calibrated on NREL dataset. Forecasting performances of
the different models are also summarized.

2 Dynamic model for the wind speed

Let ϑ = (ϑ1,ϑ2,ϑ3) be a 3 dimensional parameter in (R+
∗ )

3. Practitioners consider
the wind speed dataset as a Weibull law which probability density function is
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2
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In this section, we describe the model mentioned in the introduction. The 3-
parameters marginal Weibull diffusion process (Zt , t ≥ 0) is the solution of the
stochastic differential equation (sde)

Zt = z0 +
∫ t

0
v0(Zs,ϑ)ds+

∫ t

0
v1(Zs,ϑ)dβs, t ≥ 0, (2)

where (βt , t ≥ 0) is a standard Wiener process. Moreover the drift coefficient v0(·, ·)
and the diffusion coefficient v1(·, ·) are known functions that are described below.
The stochastic process (Zt , t ≥ 0) is an homogeneous Markov diffusion process
which can be characterized by its transition probability density function p(t, ·;x,ϑ)
representing the conditional probability density function of Zs+t given Zs = x (for
more information on Markov diffusion processes, see [1] or [11]). The long term
law of Zt (as t → ∞) is called the stationary distribution or invariant distribution.
It is denoted p(·;ϑ). If the initial condition z0 is random and follows the invariant
distribution, then the law of Zt is still the invariant distribution for all t ≥ 0. In this
setting, the stationary distribution of our model is Weibull with scale parameter ϑ2
and shape parameter ϑ3 (see equation (1)).

In this model, we fix the drift term equal to

v0(z,ϑ) = ϑ1

(
ϑ2Γ

(
1+

1
ϑ3

)
− z
)
. (3)

Here, the parameter ϑ1 is the temporal correlation parameter of the process. It can
be shown, if the initial condition is the invariant distribution, that the correlation
structure is given by

corr(Zs,Zt) = e−ϑ1(t−s). (4)

For more information, see Appendix 1. Also, the computation of the diffusion coef-
ficient v1(z,ϑ) to obtain marginal Weibull probability density function is postponed
to Appendix 2. Namely, the diffusion coefficient is given by
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v2
1(z,ϑ)=

2ϑ1ϑ2Γ
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−1e−udu

 .

(5)
For the marginal Weibull diffusion model the transition probability density func-

tion p(t,y;x,ϑ) cannot be obtained in closed form. Fortunately, it is the solution of
the Fokker-Planck (FP) equation

∂

∂ t
p(t,y;x,ϑ) =− ∂

∂y
(v0(y,ϑ)p(t,y;x,ϑ))+

1
2

∂ 2

∂y2

(
v1(y,ϑ)2 p(t,y;x,ϑ)

)
(6)

with initial condition p(0,y;x,ϑ) = δx(y) where δx(y) represents a Dirac distribu-
tion at point x.

3 One-step forecasting

The operator of a wind farm is interested in forecasting the production in the incom-
ing hours to provide the information to the entity in charge of the electric grid and
compete on electricity markets. From the transfer function of the wind turbine, the
production is directly related to the wind speed. So the problem boils down to the
short-term forecasting of the wind speed.

3.1 Definitions

Suppose that we fix the present time at t = 0 and that the initial observed wind speed
is Z̃0. Let us denote Z̃t the true (random and unknown) value of the wind speed at
time t > 0 and ψ̃(t, ·) its (unknown) probability density function (see Figure 1).

In this paper, a point forecast is an estimator of the wind speed Z̃t given the
knowledge of Z̃0. It is denoted by π(ZZ̃0

t ). We call persistence benchmark the current
knowledge

πper(Z
Z̃0
t ) = Z̃0. (7)

Following the diffusion model, the forecast value is defined by

πd(Z
Z̃0
t ) = Eϑ (Zt)

where Zt is the solution of (2) with initial condition z0 = Z̃0.
But, probabilistic forecast can also be proposed. It consists in defining an esti-

mator of the probability density function ψ̃(t, ·) of Z̃t given the knowledge of Z̃0.
It is denoted ψ̂(t, ·; Z̃0). It is worth mentioning that no probabilistic forecasts can
be specified in the basic persistence benchmark. In the diffusion model, it is natu-
ral to define the probabilistic forecast as the transition probability density function,
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Z̃0

p(t,Z̃
0 ,·)

Z̃t

π(ZZ̃0
t )

ψ̃
(t,Z̃

0 ,·)

Fig. 1 One-step ahead (short-term) forecasting error

namely
ψ̂(t, ·; Z̃0) = p(t, .; Z̃0,ϑ)

where p is the solution of (6).

3.2 Point forecasts and mean-square error

3.2.1 Point forecasts

For diffusion models, the point forecast is

πd(Z
Z̃0
t ) = Eϑ (Zt) =

∫
R

y p(t,y; Z̃0,ϑ)dy (8)

where Zt is the solution of (2) with initial condition z0 = Z̃0. In the particular case
of diffusion processes with a linear drift v0(z,ϑ) = ϑ1(α− z), it can be shown (see
Appendix 1) that the point forecast has the following closed-form

πd(Z
Z̃0
t ) = α +

(
Z̃0−α

)
e−ϑ1t . (9)
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The parameter α can be understood by practitioners as the mean value of the sta-
tionary distribution, namely

α =
∫
R

y p(y;ϑ)dy.

We recall that the parameter ϑ1 parametrizes the correlation structure and stands for
the mean-reverting speed. For the marginal Weibull diffusion model

α = ϑ2Γ

(
1+

1
ϑ3

)
.

It is worth mentioning that the Ornstein-Uhlenbeck process with

v0(z,ϑ) = ϑ1(α− z) and v1(z,ϑ) = σ (10)

and the Cox-Ingersoll-Ross process with

v0(z,ϑ) = ϑ1(α− z) and v1(z,ϑ) = σ
√

z (11)

have also linear drift (see also [2]) and consequently generate similar point forecast.

3.2.2 Mean-square error

Given a point forecast π(ZZ̃0
t ), the mean-square forecasting error is defined by

MSE(t) = E
((

π(ZZ̃0
t )− Z̃t

)2
)
. (12)

This indicator makes it possible to compare persistence model and diffusion model
point forecasts. For the persistence model defined in (7),

MSEper(t) = E
((

Z̃0− Z̃t
)2
)
.

Diffusion models (2) have the property that the well-specified MSE (namely MSE
(12) where Z̃t = Zt ) can be written as

MSE(t) = Eϑ

(
Z2

t
)
− (Eϑ (Zt))

2 = u(t,Z0)− (Eϑ (Zt))
2

in which u(t,x) solves the Feynman-Kac pde, i.e.

∂u
∂ t

= v0(x,ϑ)
∂u
∂x

+
v2

1(x,ϑ)

2
∂ 2u
∂x2

with
u(0,x) = x2.
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For instance, the MSE can be obtained in closed form for the Ornstein-Uhlenbeck
process and the Cox-Ingersoll-Ross process (see [2]). Direct computations lead to

MSE(t) =
σ2(1− e−2ϑ1t)

2ϑ1

for the Ornstein-Uhlenbeck process (10) with

lim
t→∞

MSE(t) =
σ2

2ϑ1
and MSE(t)∼0 σ

2t,

and, comparatively,

MSE(t) =
Z0σ2(e−ϑ1t − e−2ϑ1t)

ϑ1
+

ασ2(1− e−2ϑ1t)2

2ϑ1

for the Cox-Ingersoll-Ross process (11) with

lim
t→∞

MSE(t) =
ασ2

2ϑ1
and MSE(t)∼0 σ

2Z0t.

In the marginal Weibull setting, no closed form are available but numerical compu-
tations can be performed for the MSE with MSE(t)∼0 v2

1(Z0,ϑ)t.

3.3 Probabilistic forecasts and continuous ranked probability score

3.3.1 Probabilistic forecasts

For a diffusion model in general, the probabilistic forecast is given by its transition
probability density function

ψ̂(t, ·; Z̃0) = p(t, .; Z̃0,ϑ). (13)

The corresponding forecasting empirical cumulative distribution function is defined
by

F̂(u) =
∫ u

−∞

p(t,y; Z̃0,ϑ)dy.

3.3.2 Continuous ranked probability score

Different probabilistic forecasts can be compared in term of Continuous Ranked
Probability Score (CRPS). Let ψ̂(t, ·; Z̃0,ϑ) be a probabilistic forecast and F̂ its
corresponding cumulative distribution function. For any x ∈ R, continuous ranked
probability function can be defined by
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CRP(F̂ ,x) =
∫
R

(
F̂(u)−1{u≥x}

)2
du. (14)

The continuous ranked probability score (CRPS, see [10]) is defined by

CRPS(t) = E
(

CRP(F̂ , Z̃t)
)
. (15)

For the Gaussian distribution, the previous function is explicitly computable, namely

CRP(N (µ,σ2),x) =−σ

(
1√
π
−2ϕ

(
x−µ

σ

)
− x−µ

σ

(
2Φ

(
x−µ

σ

)
−1
))
(16)

where ϕ and Φ are respectively the probability distribution function and the cumu-
lative probability distribution function of a standard Gaussian random variable. For
a deterministic forecast,

CRP(δy,x) =
∫
R

(
1{u≥y}−1{u≥x}

)2 du = |y− x|. (17)

It is worth mentioning that for deterministic forecast, thanks to (17) the CRPS is
reduced to the mean absolute error (MAE) defined by

MAE(t) = E
(∣∣∣π(ZZ̃0

t )− Z̃t

∣∣∣) . (18)

Conversely to the CIR model [2], transition (forecast) probability density func-
tions are not in closed form. Consequently, computations of the CRPS requires using
the Fokker-Planck finite element numerical solving scheme that is sophisticated (see
section 3.3.3). In the following, we propose probabilistic forecasts methods based
on the approximation of the transition probability density function p(t, ·;x,ϑ).

3.3.3 Finite-Element-Method approximation of the transition probability
densities

Finite-Element-Method (FEM) scheme (see Appendix 3) computes the numerical
approximation of the transition probability density p(t, ·; Z̃0,ϑ) on a regular grid on
a compact Ω ⊂ R (the distribution is supposed to be zero outside Ω ).

3.3.4 Gaussian approximations of the transition probability densities

For a very short lead time t > 0, the Gaussian approximation for transition proba-
bility density function is valid. Consequently, we use the Gaussian distribution as
the probabilistic forecast with the first order or second order Itò-Taylor expansion
characteristics. For the first order expansion, we recall that the mean is given by

mx = x+ v0(x,ϑ)t



Marginal Weibull diffusion model for wind speed modeling and short-term forecasting 9

and variance by
σ

2
x = v2

1(x,ϑ)t.

Here v0 and v1 are given respectively by (3) and (5). For the second order expansion,
the mean is given by

mx = x+ v0(x,ϑ)t +
(

v0(x,ϑ)
∂

∂x
v0(x,ϑ)+

1
2

v2
1(x,ϑ)

∂ 2

∂x2 v0(x,ϑ)

)
t2

2

and the variance (see [14]) by

σ
2
x = x2 +

(
2v0(x,ϑ)+ v2

1(x,ϑ)
)

t +
(

2v0(x,ϑ)

(
x

∂

∂x
v0(x,ϑ)+ v0(x,ϑ)

v1(x,ϑ)
∂

∂x
v1(x,ϑ)

)
+ v2

1(x,ϑ2)

(
x

∂ 2

∂x2 v0(x,ϑ)+2
∂

∂x
v0(x,ϑ)

+
∂

∂x
v2

1(x,ϑ)+ v1(x,ϑ)
∂ 2

∂x2 v1(x,ϑ)

))
t2

2
−m2

x .

For the marginal Weibull diffusion model and linear drift diffusion models,

∂ 2

∂x2 v0(x,ϑ) = 0

and corresponding terms in the previous equation disappear.

4 Application to wind production for one turbine

A large class of datasets is provided by the National Renewable Energy Laboratory
(NREL). It offers from http://wind.nrel.gov wind speeds datasets for several years
for more than 25000 wind turbines.

The dataset is a time series that includes 52560 wind speeds measured at the
turbine rotor height every 10 minutes over 365 days in 2011 in US (ID 24310)
ranging from 0.08 m/s to 24.79 m/s. The dataset contains no null wind.

For comparison purposes, the dataset is divided into two subsets: the first 183
days (training dataset) to estimate the parameter ϑ and the remainding 182 days
(testing dataset) to compute the empirical MSE. Testing dataset is denoted (z0, . . . ,zN−1)
with N = 26208.

Time is considered in days. We denote ∆ the time mesh (here ∆ = 1
6×24 ). Let

us fix the first measure of the testing dataset at time 0 and the horizon time τ = k∆

with the integer k which represents the number of periods. In our dataset, this is the
number of periods of ten-minutes ; for instance k = 3 (τ = 0.5 h), k = 6 (τ = 1 h),
k = 18 (τ = 3 h), k = 36 (τ = 6 h), k = 72 (τ = 12 h) and k = 144 (τ = 24 h).
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The calibration method of the three parameters is presented in section 4.1 and the
effective computation on the training dataset is detailed in section 4.2. Forecasting
performance of the method is illustrated in section 4.3.

4.1 Calibration method

Let Θ be a bounded open subset of (R+
∗ )

3. We present in this section the calibration
method for the parameter ϑ = (ϑ1,ϑ2,ϑ3) ∈Θ in the marginal Weibull diffusion
model. In order to obtain the best estimate we use the maximum quasi-likelihood
estimator, that we describe now.

Let us consider an observation of the process (Zt , t ≥ 0) on a (regular) discrete
temporal grid

0 = t0 < t1 < .. . < tn.

The mesh is denoted ∆n =
tn
n . In the following, we denote Z(n) = (Zt1 , . . . ,Ztn) the

observation sample. The sequence Z(n) is a Markov chain and the corresponding
loglikelihood is given by

L (ϑ ,Z(n)) =
n

∑
i=1

log p(∆n,Zti ;Zti−1 ,ϑ) (19)

where the transition probability density p(t,y;x,ϑ) is given by the solution of the
Fokker-Planck equation (6).

In the Ornstein-Uhlenbeck process or CIR model presented in [2], a closed form
of the transition probability density is known and maximum loglikelihood estimator

ϑ̂n = max
ϑ∈Θ

L (ϑ ,Z(n))

can be computed numerically. But, for the 3-parameters marginal Weibull diffusion
process, this is not the case anymore.

Several methods are available in this context depending on the discretization time
scheme. For a large observation horizon tn and large mesh size ∆n, one can use an
approximation of the likelihood fonction (numerical approximation of the Fokker-
Planck equation in [15], Monte-Carlo simulation approximation [16], . . . ). A recent
review of possible methods in this setting is proposed in [19].

When the mesh is relatively small (below ∆n will be equal to 10 minutes), which
is the case we are considering, it is possible to use the quasi-likelihood approach.
For small ∆n, under proper assumptions, it is possible to approximate the transi-
tion probability density function (and consequently the likelihood) by a Gaussian
probability density function with the same mean and variance.
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The simplest approximation is the Euler method2, in which the transition proba-
bility density p(∆n,y;x,ϑ) is approximated by a Gaussian with mean

mx = x+ v0(x,ϑ)∆n (20)

and variance
σ

2
x = v2

1(x,ϑ)∆n. (21)

Consequently, the quasi-loglikelihood is given by

L ∗(ϑ ,Z(n)) =−n
2

log
(
2πv2

1(Zti−1 ,ϑ)∆n
)
− 1

2

n

∑
i=1

(
Zti −

(
Zti−1 + v0(Zti−1 ,ϑ)∆n

))2

v2
1(Zti−1 ,ϑ)∆n

.

(22)
The maximum quasi-likelihood (or quasi-loglikelihood) estimator is obtained by

ϑ̂
∗
n = max

ϑ∈Θ

L ∗(ϑ ,Z(n)).

Although the estimator is not in a closed form, it can be computed numerically. This
approximation is valid for a ”rapidly increasing experimental design” which means
∆n→ 0, n∆n→ ∞ and n∆ 2

n → 0 (see [14] for details).

4.2 Calibration of the different models

On the training set, the maximum quasi likelihood estimator presented in section 4.1
for the Weibull marginal diffusion model is

ϑ̂ ∗ =
(

ϑ̂
∗
1 , ϑ̂

∗
2 , ϑ̂

∗
3

)
= (1.19,6.07,2.06) .

In term of marginal pdf, the scale parameter is ϑ̂ ∗2 = 6.07 and the shape parameter
ϑ̂ ∗ = 2.06. For the Weibull, the mean is

µ̂Wd = ϑ̂
∗
2 Γ

(
1+

1

ϑ̂ ∗3

)
= 5.38m.s−1

and the standard deviation

σ̂Wd =

√√√√(ϑ̂ ∗2 )
2Γ

(
1+

2

ϑ̂ ∗3

)
− µ̂2

Wd = 2.73m.s−1.

2 The Gaussian approximation of the conditional density function p(∆ ,y;x,ϑ) proposed in [14]
uses the higher order Itò-Taylor expansion to approximate the mean and the variance. It is worth
emphasizing that the Euler method is the one order Itò-Taylor expansion.
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For the comparison, we choose to compare with persistence benchmark (which
needs no calibration) and the Ornstein-Uhlenbeck process (10). For the Ornstein-
Uhlenbeck process, maximum likelihood estimation gives

ϑ̂ =
(

ϑ̂1, α̂, σ̂
)
= (0.69,6.77,4.41) .

Ornstein-Uhlenbeck marginal probability distribution function is Gaussian of mean

µ̂OU = α̂ = 6.77m.s−1

and standard deviation

σ̂OU =
σ̂

2ϑ̂1
= 3.75m.s−1.

We can notice the difference of the mean and standard deviation in the two models.
Stationary distribution for the marginal Weibull diffusion model and the Ornstein-
Uhlenbeck process (respectively Weibull and Gaussian) are illustrated in Figure 2.
Correlation structure for the marginal Weibull diffusion model is also illustrated in
Figure 2. It shows that the marginal Weibull diffusion model clearly overperforms
the (Gaussian) Ornstein-Uhlenbeck process in terms of wind speed generation.

4.3 Forecasting errors computations

For successive times t j = j∆ , j = 0, . . . ,N− k, we want to compute the forecast of
Z̃t j+τ at time t j + τ . We denote

π

(
Z

t j ,z j
t j+τ

)
the forecast value knowing that Z̃t j = z j. The empirical mean square error (eMSE)
is given by

eMSE(τ) =

N−1−k

∑
j=0

(
π

(
Z

t j ,z j
t j+τ

)
− z j+k

)2

N− k
.

We compute the empirical MSE for all models described above. Namely,

1. For the persistence benchmark, π

(
Z

t j ,z j
t j+τ

)
= z j ;

2. For the dynamic 3 parameters marginal Weibull diffusion model with linear drift,
the point forecast is given by (9) or

π

(
Z

t j ,z j
t j+τ

)
= ϑ2Γ

(
1+

1
ϑ3

)
+

(
z j−ϑ2Γ

(
1+

1
ϑ3

))
e−ϑ1τ

where, in practice, ϑ = ϑ̂ ∗ is the maximum quasi-likelihood estimator of ϑ ob-
tained as indicated in section 4.1.



Marginal Weibull diffusion model for wind speed modeling and short-term forecasting 13

We summarize the results on bias and RSME (root square of the MSE) in the Table 1
containing lead times of relevance (τ = 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h).

τ = 0.5 h τ = 1 h τ = 3 h τ = 6 h τ = 12 h τ = 24 h

Weibull diffusion -0.01 (0.79) -0.02 (1.18) -0.05 (2.00) -0.09 (2.69) -0.14 (3.29) -0.22 (3.40)
Persistence benchmark 0.00 (0.80) 0.00 (1.20) 0.00 (2.08) -0.01(2.93) -0.01 (3.85) -0.02 (4.14)
Ornstein–Uhlenbeck 0.01 (0.79) 0.03 (1.19) 0.09 (2.02) 0.16 (2.75) 0.31 (3.42) 0.53 (3.48)

Table 1 Bias and RMSE in parenthesis (all measures in m/s) for lead times of relevance

In term of RMSE, the results are comparable for forecast below one hour lead
time. Marginal Weibull diffusion model overperforms the persistence benchmark
for forecasting over 1h and the Ornstein–Uhlenbeck process for forecasting over
6h. Finally, on this data set, this biais is small representing 4% of the mean wind
speed at 24h.

In the next Table 2, we summarized the result of CRPS and MAE computed
on the Weibull diffusion model with 1st-order Itò probabilistic forecast and FEM
probabilistic forecast both presented in section 3.3.3 and 3.3.4.

τ = 0.5 h τ = 1 h τ = 3 h τ = 6 h τ = 12 h τ = 24 h

FEM 0.36 [0.46] 0.56 [0.73] 1.04 [1.39] 1.46 [2.00] 1.81 [2.47] 1.74 [2.33]
1st order TI Gaussian 0.36 [0.46] 0.56 [0.73] 1.03 [1.40] 1.44 [2.00] 1.76 [2.43] 2.11 [2.82]

Persistence benchmark [0.46] [0.74] [1.44] [2.16] [2.91] [2.65]
Ornstein–Uhlenbeck 0.36 [0.46] 0 .57 [0.73] 1.05 [1.41] 1.50 [2.05] 1.89 [2.61] 1.86 [2.50]

Table 2 CRPS and MAE in brackets for lead times of relevance

Here again we can notice similar result for 3-parameters Weibull diffusion model
and 3-parameters Ornstein-Uhlenbeck forecasts in term of CRPS and MAE at very-
short term. The marginal Weibull diffusion model shows better result at medium
range lead times and after 6h delay. It is worth emphasizing that first order approxi-
mation is valid at lead times less than 12 h.

5 Conclusion

Cox-ingersoll-Ross process and marginal Weibull diffusion model, presented in [2]
and in this paper respectively, fit well the wind speed data and the wind speed
datasets at short term. The stationary behavior is convenient to provide a wind gen-
erator. For instance, it is possible to consider a model

Yt = f (t)Zt +g(t)
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where f (·) and g(·) are periodic functions (see for instance [3] for a related work.)
The characteristics of the marginal Weibull diffusion model are understandable in
terms of shape and scale parameter of a Weibull law that is appreciated by practi-
tioners to analyze the results.

Properties of diffusion process are important to study the problem of optimal
storage, optimal trading and optimal maintenance where wind speed and energy
production are the stochastic entries.
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project CAESARS (ANR-15-CE05-0024).

Appendix 1: Autocorrelation structure of homogeneous diffusion
processus with linear drift

Let (Zs,s≥ 0) be the solution of equation (2). Let us denote m(t,z0) = E(Zs). Since
v0(z,ϑ) = ϑ1 (α− z) is linear in z with

α = ϑ2Γ

(
1+

1
ϑ3

)
,

we have
dm(t,z0) = ϑ1 (α−m(t,z0))dt

with m(z0,0) = z0. Consequently,

m(z0, t) = α +(z0−α)e−ϑ1t . (23)

The joint distribution f (y,z) of the pair (Zs,Zt), s≤ t, is given by

f (y,z) = p(t− s,z;y,ϑ)p(s,y;z0,ϑ)

due to the Markov property. Consequently,

cov(Zs,Zt) =
∫
R2
(y−EZs)(z−EZt) f (y,z)dydz

=
∫
R
(y−EZs)p(s,z0,y)

(∫
R
(z−EZt)p(t− s,y,z)dz

)
︸ ︷︷ ︸

e−ϑ1(t−s)(y−EZs)

dy

= e−ϑ1(t−s)var(Zs)

which proves the result. In the case of the stationary distribution,

corr(Zs,Zt) = e−ϑ1(t−s)
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is obtained.

Appendix 2: Marginal Weibull diffusion coefficient

Following [4], it is possible to construct a marginal Weibull diffusion process, solu-
tion of the stochastic differential equation

Zt = z0 +
∫ t

0
v0(Zs,ϑ)ds+

∫ t

0
v1(Zs,ϑ)dβs, t ≥ 0, (24)

where (βt , t ≥ 0) is a Wiener process. Fixing the drift coefficient

v0(z,ϑ) = ϑ1

(
ϑ2Γ

(
1+

1
ϑ3

)
− z
)
,

the solution of equation (24) has an invariant density equals to the Weibull proba-
bility density function

f (z,ϑ) =
ϑ3

ϑ2

(
z

ϑ2

)ϑ3−1

exp

(
−
(

z
ϑ2

)ϑ3
)
, z≥ 0.

If the diffusion coefficient satisfies

v2
1(z,ϑ) =

2ϑ1

f (z)

(
ϑ2Γ

(
1+

1
ϑ3

)
F(z)−

∫ z

0
y f (y)dy

)
(25)

where F is the distribution function associated to the density f . Direct computations
lead to

F(z) = 1− exp

(
−
(

z
ϑ2

)ϑ3
)

and

∫ z

0
y f (y)dy = ϑ2

∫ ( z
ϑ2

)ϑ3

0
u

1
ϑ3 e−udu (change of variable u =

(
y

ϑ2

)ϑ3
).

Appendix 3: Finite Element Method for Fokker-Planck equation

Let us approximate the solution (p(t,y), t ≥ 0,y ∈ R) satisfying

∂ p
∂ t

=− ∂

∂y
(a(y)p)+

1
2

∂ 2

∂y2 (b(y)p) (26)
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with the initial condition p(0,y) = δx(y), x ∈R. For our problem a = v0 and b = v2
1.

By integrating (26) with respect to y, we get

∂

∂ t

∫
R

p(t,y)dy =
∫
R

(
− ∂

∂y
(a(y)p)+

1
2

∂ 2

∂y2 (b(y)p)
)

dy

= −a(y)p(t,y)+
1
2

∂

∂y
(b(y)p)

∣∣∣∣∞
−∞

=

(
1
2

b′(y)−a(y)
)

p(t,y)
∣∣∣∣∞
−∞

+
1
2

b(y)
∂

∂y
p(t,y)

∣∣∣∣∞
−∞

.

Consequently, using boundary conditions

lim
y→±∞

p(t,y) = 0 and lim
y→±∞

∂

∂y
p(t,y) = 0

dominating possible growth of a(·) and b(·) we get that the solution is norm pre-
serving, namely ∫

R
p(t,y)dy = 1, t ≥ 0.

Let us consider the approximation

û(t,y) =
N−1

∑
j=1

λ j(t)ϕ j(y)

where ϕi are the sequence of finite elements. This approximation satisfies (26) on
the compact Ω = supp(û)⊂R. Computing the variational formulation with respect
to the test function ϕi(y), i = 1, . . . ,N−1, we obtain

N−1

∑
j=1

λ
′
j(t)Ci, j−λ j(t)Ki, j = 0 (27)

with
Ci, j =

∫
Ω

ϕi(y)ϕ j(y)dy

and
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Ki, j =
∫

Ω

(
− ∂

∂y
(a(y)ϕ j(y))+

1
2

∂ 2

∂y2 (b(y)ϕ j(y))
)

ϕi(y)dy

= −a(y)ϕ j(y)ϕi(y)
∣∣∣∣
∂Ω

+
∫

Ω

a(y)ϕ ′i (y)ϕ j(y)dy

+
1
2

∂

∂y
(b(y)ϕ j(y))ϕi(y)

∣∣∣∣
∂Ω

− 1
2

∫
R

ϕ
′
i (y)

∂

∂y
(b(y)ϕ j(y))dy

=
∫
R

a(y)ϕ ′i (y)ϕ j(y)dy− 1
2

∫
R

ϕ
′
i (y)

∂

∂y
(b(y)ϕ j(y))dy

=
∫
R

(
a(y)− 1

2
b′(y)

)
ϕ
′
i (y)ϕ j(y)dy− 1

2

∫
R

b(y)ϕ ′i (y)ϕ
′
j(y)dy (28)

considering that ϕi(y) = 0 for y∈ ∂Ω . It is worth mentioning that the first derivative
of v1 is needed to compute (28).

Consequently, equation (27) can be rewritten as a multidimensional first order
linear EDO

Cλ
′(t)−Kλ (t) = 0 (29)

with the proper initial condition λ (0). Namely, in order to mimic the true initial
condition δx, x ∈ R, we consider for i = 1, . . . ,N−1∫

Ω

û(0,y)ϕi(y)dy = ϕi(x).

This can be written as

N−1

∑
j=1

λ j(0)
∫

Ω

ϕ j(y)ϕi(y)dy = ϕi(x)

or

Cλ (0) = Φx where Φx =

 ϕ1(x)
...

ϕN−1(x)

 .

Finally, fixing R ∈ N, we can apply an implicit Euler scheme to (29) on [0,τ],
τ > 0 with the mesh size τ

R .
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Fig. 2 On the left, histogram of the training NREL wind speed dataset (see section 4). Station-
ary distribution for the marginal Weibull diffusion model (plain line) and Gaussian Ornstein-
Uhlenbeck process (dashed line) fitted on the training dataset are superposed. On the right, em-
pirical autocorrelation of the training NREL wind speed dataset (plain black line) and calibrated
correlation structure of the marginal Weibull diffusion model (plain gray line).


