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Confidence intervals for risk indicators in
semi-Markov models: an application to wind

energy production

I. Votsi∗ and A. Brouste

Laboratoire Manceau de Mathématiques
Université du Maine

Abstract

Mean times to failure are fundamental indicators in reliability and
related fields. Here we focus on the conditional mean time to fail-
ure defined in a semi-Markov context. A discrete time semi-Markov
model with discrete state space is employed, which allows for realistic
description of systems under risk. Our main objective is to estimate
the conditional mean time to failure and provide asymptotic properties
of its nonparametric estimator. Consistency and asymptotic normal-
ity results are provided. Our methodology is tested in a real wind
dataset and indicators associated with the wind energy production
are estimated.

1 Introduction

Semi-Markov models (SMMs) are stochastic models that are widely used
in reliability, survival analysis, seismology and many other scientific fields.
One of the main features of SMMs is that contrary to Markov models, they
describe systems whose evolution is based not only on their last visited state
but also on the elapsed time since this state. Due to this feature, popular
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“memory-full” lifetime distributions, such as the Weibull distribution, could
be employed in a semi-Markov framework.

Many reliability indicators have been introduced for SMMs including
hazard rates, availability and maintainability functions, mean times to fail-
ure etc. For advances in the topic concerning continuous time SMMs, see
Limnios and Oprişan (2001) and Limnios and Ouhbi (2006). For discrete
time SMMs, we address the interested reader to Votsi et al. (2014), Votsi and
Limnios (2015), Barbu et al. (2016), Georgiadis et al. (2013) and Georgiadis
(2017). Mean times to failure have been studied for continuous time SMMs
by Limnios and Ouhbi (2006), among other reliability indicators. The au-
thors introduced empirical, plug-in type estimators and studied their asymp-
totic properties. Here we focus on the discrete time case and study the
consistency and asymptotic normality of the estimators of the conditional
mean times to failure.

Markov models for wind modeling have been studied in numerous papers
(see Tang et al., 2015, and references therein). The more general SMMs
were first applied in the modeling of wind speed by D’Amico et al. (2013a) in
order to generate synthetic wind speed data. Indexed SMMs were introduced
by D’Amico et al. (2013c) to reproduce the autocorrelation of the speed
data. However, the energy production of the wind farm deeply relies not
only on the wind speed but also on the wind direction on the site through
its power transfer function. There exists only very few models describing
simultaneously the evolution of the wind speed and the wind direction (see
Ailliot et al., 2015; Ettoumi et al., 2003; Masala (2014) for instance). There
is thus a need for models which can reproduce both wind speed and wind
direction data.

First, we aim to fill the aforementioned gap in a semi-Markov context.
We propose SMMs as ready-to-use models guiding the decision-makers to
identify and manage risks related to the wind energy production. Second,
we focus on the operational management of a wind farm. To achieve that
goal we extend previous reliability studies (see D’Amico et al., 2013b) by
evaluating risk indicators that reflect the time-dependent nature of the risk.
These indicators may help to signal a change in the level of risk exposure.
We provide theoretical findings that enable us to construct confidence in-
tervals for the respective estimators. Third, we make use of both real data
coming from the private company EREN and simulated data coming from
the National Renewable Energy Laboratory (NREL, USA). In the previous
studies, the states of the SMMs correspond to wind speed data divided into a
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fixed number of equal length. Here we propose a novel form of classification
of states which is more coherent with the operational interest of the wind
energy production.

The remainder of the paper is organized as follows: In Section 2 the
notation and preliminaries of discrete time SMMs are presented. Section 3
describes risk indicators in a semi-Markov context. The relative statistical
estimation aspects are specialized in Section 3.2 and Section 3.4 depicts a
numerical example that enables us to validate our theoretical results. Sec-
tion 4 concerns wind energy production management via SMMs. Section 4.1
discusses a goodness-of-fit test to provide evidence for the necessity of a more
general model than the Markov model. In Section 4.2, the aforementioned
risk indicators are evaluated to provide feedback for the management of the
wind energy production. Finally, in Section 5, we give some concluding re-
marks.

2 Notation and preliminaries of SMMs

We briefly recall the main definitions from the theory of semi-Markov chains
(see, e.g., Barbu and Limnios, 2008). Consider a random system with finite
state space E = {1, 2, ..., s}. Let N be the set of nonnegative integers. We
suppose that the evolution in time of the system is described by the following
random sequences defined on a complete probability space:

1. The Markov chain J = (Jn)n∈N with state space E, where Jn is the
system’s state at the n−th jump time;

2. The N-valued sequence S = (Sn)n∈N, where Sn is the n−th jump time.
We suppose that S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . .
almost surely (a.s.);

3. The N-valued sequence X = (Xn)n∈N defined by X0 = 0 a.s. and
Xn = Sn − Sn−1 for all n ∈ N. Thus for all n ∈ N, Xn is the sojourn
time in state Jn−1, before the n−th jump.

The Markov renewal chain (J,S) (Fig. 1) is considered to be (time) ho-
mogeneous and is characterized by the semi-Markov kernel q = (qij(k); i, j ∈
E, k ∈ N) defined by

qij(k) = P (Jn+1 = j,Xn+1 = k|Jn = i),
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Figure 1: A typical trajectory of a Markov renewal chain.

where i, j ∈ E and k, n ∈ N. The process J is the embedded Markov chain
(EMC) of the Markov renewal chain (MRC) with transition kernel P =
(pij; i, j ∈ E), where pij = P (Jn+1 = j|Jn = i), and initial distribution
α = (α(i); i ∈ E), where α(i) = P (J0 = i). Let us notice that we allow
neither instantaneous transitions (qij(0) = 0, i, j ∈ E) nor self-transitions
(pii = 0, i ∈ E).

We further denote the counting process of jumps N(k) = max{n ≥ 0 :
Sn ≤ k}, k ∈ N. The semi-Markov chain Z = (Zk)k∈N associated with the
MRC (J,S) is defined by Zk = JN(k), k ∈ N. At the initial time, t = 0,
the state of the semi-Markov chain coincides with the state of the EMC,
i.e. Z0 = J0. We define the sojourn time distribution in state i ∈ E by
hi(k) = P (Xn+1 = k|Jn = i) =

∑
j∈E qij(k), k ∈ N, and the conditional

distribution of the sojourn time in state i ∈ E given that the next visited
state is j ∈ E by fij(k) = P (Xn+1 = k|Jn = i, Jn+1 = j), k ∈ N. We further
define the cumulative sojourn time distribution in state i ∈ E, denoted Hi(·),
by Hi(`) = P (Xn+1 ≤ `|Jn = i), ` ∈ N, and the corresponding survival
function, denoted H i(·), by H i(`) = P (Xn+1 > `|Jn = i), ` ∈ N. In addition
we denote by (Sin)n∈N the successive passage times in a fixed state i ∈ E and
by µii = Ei(Si1) the mean recurrence time in state i.
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3 Risk indicators in SMMs

Our main objective is to provide reliability indicators associated with the
wind energy production in order to identify opportunities for improving the
reliability performance within the wind industry. These indicators can guide
industry action to improve operating practices. In particular, we focus on
some key risk indicators: the mean times to failure, the mean up and down
times.

3.1 Conditional mean times to failure

First, we consider that the system of interest may be in either an operational
(up) state, that belongs to U = {1, . . . , s1}, or an a failure (down) state
belonging to D = {s1 + 1, . . . , s}, with 0 < s1 < s. Moreover, E = U ∪ D
and U ∩ D = ∅, U,D 6= ∅. One can think of the states of U as different
operating modes or performance levels of the system. On the other hand
the states of D can be seen as failures of the system with different modes.
Up and down states associated to wind energy production are described in
Section 4.

Second, we define by m = (m1, . . . ,ms)
> the column vector of mean

sojourn times, where mi = E(S1|Z0 = i) represents the mean sojourn time
of the SMC in state i ∈ E. The next assumptions have to be fulfilled in the
following:

A1 The SMC is irreducible and aperiodic (see Barbu and Limnios, 2008);

A2 The mean sojourn times are finite, i.e., mi <∞, for any i ∈ E.

The two previous assumptions ensure the existence of the stationary distribu-
tion of the SMC, which is a function of the stationary distribution of the EMC
denoted by ν = (ν(i); i ∈ E), s.t. ν(j) =

∑
i∈E ν(i)pij and

∑
i∈E ν(i) = 1.

In the sequel, we consider the partitions of P, m and ν to the subsets of
states U and D

P =

U D( )
P11 P12 U
P21 P22 D

,
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and

m =
( U D

m1 m2

)
, ν =

( U D

ν1 ν2

)
.

We recall that the system starts working at time k = 0. We denote by
TD the first passage time in subset D, i.e.

TD := inf{k ∈ N : Zk ∈ D} and inf{∅} =∞.

We introduce the conditional mean time to failure, MTTFi = E(TD|J0 = i),
for any starting state i ∈ E. We further denote by

MTTF = (MTTF1, . . . ,MTTFs1),

the column vector of the conditional mean times to failure. The Markov
renewal equation associated to the conditional mean time to failure is given
by (Barbu and Limnios, 2008)

MTTFi = mi +
∑
j∈U

pijMTTFj.

or equivalently,

MTTF = (I−P11)
−1m1.

Remark 1. For the matrix (I−P11) to be non-singular, the spectral radius
of the matrix P11 should be smaller than 1, which means that there exists
i ∈ {1, . . . , s1} such that

∑
j∈U P11(i, j) < 1. In the following, the matrix

(I−P11) is assumed to be non-singular.

3.2 Statistical estimation

In the literature concerning statistical inference of stochastic processes, there
are two types of observational procedures. One either observes a single re-
alization over the fixed time interval [0,M ], or observes K > 1 independent
and identical copies of the process, each over the fixed duration [0,M ]. In
this study, we follow the first procedure and consider a single realization of
the MRC (J,S), censored at fixed arbitrary time M ∈ N,

H(M) = (J0, S1, ..., JN(M)−1, SN(M), JN(M), UM),

where UM = M −SN(M) is the censored sojourn time in the last visited state
JN(M). For all i, j ∈ E and 1 ≤ k ≤M , we define:
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1. Nij(k,M) =
∑N(M)

n=1 1{Jn−1=i,Jn=j,Xn=k} is the number of transitions of
the EMC from i to j, up to time M , with sojourn time in state i equal
to k;

2. Nij(M) =
∑N(M)

n=1 1{Jn−1=i,Jn=j} is the number of transitions of the EMC
from i to j, up to time M ;

3. Ni(M) =
∑N(M)−1

n=1 1{Jn=i} is the number of visits to state i of the EMC,
before time M .

Given a sample path H(M) of the MRC, we define the empirical estimators

p̂ij(M) =
Nij(M)

Ni(M)
and q̂ij(k,M) =

Nij(k,M)

Ni(M)
,

for all i, j ∈ E and k ∈ N, k ≤ M . Then for all i ∈ E, ` ∈ N, the empirical
estimators of Hi(`) and H i(`) are given by

Ĥi(`,M) =
∑
j∈E

∑̀
k=0

q̂ij(k,M) and Ĥ i(`,M) = 1−
∑
j∈E

∑̀
k=0

q̂ij(k,M),

respectively. The previous estimators lead directly to the empirical, plug-in
type estimator

M̂TTF(M) = (I− P̂11(M))−1m̂1(M),

where P̂11(M) = (p̂ij(M); i, j ∈ U) and m̂1(M) = (m̂1(M), . . . , m̂s1(M))>

with m̂i(M) =
∑

`≥0 Ĥ i(`,M), for any state i ∈ U .
The asymptotic properties of the empirical estimator of the mean time to

failure were studied for continuous time SMMs by Limnios and Ouhbi (2006).
Here we obtain the strong consistency and the asymptotic normality of the
estimator of the conditional mean time to failure in the discrete time case.
Namely, we state the following two theorems:

Theorem 1. For any state i ∈ U , M̂TTFi(M) is strongly consistent, i.e.

M̂TTF i(M)
a.s.−−−−→

M→∞
MTTFi.
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Proof. To simplify the notation, we omit M from the estimators. Then we
have

M̂TTF−MTTF = (I− P̂11)
−1m̂1 − (I−P11)

−1m1

= (I− P̂11)
−1m̂1 + (I−P11)

−1m̂1

−(I−P11)
−1m̂1 − (I−P11)

−1m1

=
(

(I− P̂11)
−1 − (I−P11)

−1
)
m̂1 + (I−P11)

−1(m̂1 −m1).

First, we know that P̂n
11

a.s.−−−−→
M→∞

Pn
11 and by means of the dominated conver-

gence theorem (see Port (1994) for instance) we have that
∑∞

n=0 P̂n
11

a.s.−−−−→
M→∞∑∞

n=0 Pn
11. Then since

∑∞
n=0 Pn

11 = (I− P̂11)
−1, we obtain directly that

||(I− P̂11)
−1 − (I−P11)

−1|| a.s.−−−−→
M→∞

0,

where || · || is a matrix norm. Using further the strong consistency of the
empirical estimator of the mean sojourn time distribution (see Limnios and
Ouhbi, 2006), we get the desired result.

Theorem 2. For any state i ∈ U , the random variable M̂TTFi(M), is
asymptotically normal, in the sense that

√
M(M̂TTFi(M)−MTTFi)

L−−−−→
M→∞

N (0, σ2
MTTFi

),

with the asymptotic variance

σ2
MTTFi

=
∑
m∈E

a2imµmm

(
σ2
m +

∑
`∈E

(η` − η̃m)2pm` + 2
∑
`∈E

η`Qm`

)
,

where Qm` =
∑+∞

u=1(u − mm)qm`(u), aij = (I − P11)
−1
ij , η` =

∑
r∈U mrar`,

η̃m =
∑

j∈U pmjηj, and σ
2
m is the variance of the sojourn time in state m.

Proof. First, for any fixed state i ∈ E, we notice that

√
M(M̂TTFi(M)−MTTFi) =

√
M
(∑
j∈U

(âijm̂j − aijmj)
)

=
√
M
(∑
j∈U

(âij − aij)(m̂j −mj)

+
∑
j∈U

aij(m̂j −mj) +
∑
j∈U

(âij − aij)mj

)
.
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Second, for any fixed state j ∈ U , and as M tends to infinity, the random
variable

√
M(m̂j −mj) converges in distribution to a zero mean normal ran-

dom variable with asymptotic variance σ2
mj

= µjjσ
2
j (see Georgiadis, 2014).

Then, using Slutsky theorem (see, e.g., van der Vaart, 1998), we obtain
that ∑

j∈U

(âij − aij)(m̂j −mj)
L−−−−→

M→∞
0.

Thus, the random variable
√
M(M̂TTFi(M)−MTTFi)

has the same limit in distribution as
√
M
(∑
j∈U

aij(m̂j −mj) +
∑
j∈U

(âij − aij)mj

)
.

For any i, j ∈ U , the random variable

âij − aij = (I− P̂11)
−1
ij − (I−P11)

−1
ij

has the same limit in distribution as the random variable∑
r∈U

∑
`∈U

aira`jfr`,

where fr` = p̂r`− pr` (Sadek and Limnios, 2002, Theorem 4). Consecutively,

we have that for any state i ∈ U ,
√
M(M̂TTFi(M)−MTTFi) has the same

limit in distribution as
√
M
(∑
j∈U

aij(m̂j −mj) +
∑
j∈U

(∑
r∈U

∑
`∈U

aira`jfr`

)
mj

)
=
√
M
∑
j∈U

(
aij(m̂j −mj) +

∑
r∈U

(∑
`∈U

aira`jfr`

)
mj

)
.

We further apply the central limit theorem for MRCs (Pyke and Schaufele,
1964). We define the function f : E × E × N by

f(Jn−1, Jn, Xn) =
∑
j∈U

aijµjj(Xn −mj)1{Jn−1=j}

+
∑
j∈U

∑
r∈U

∑
`′∈U

aira`′jµrr

(
1{Jn−1=r,Jn=`′} − 1{Jn−1=r}pr`′

)
mj
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and show that

Am =
∑
`∈E

Am` =
∑
`∈E

+∞∑
u=1

f(m, `, u) qm`(u) = 0.

Second, we have that

Bm` =
+∞∑
u=1

f(m, `, u)2 qm`(u)

= a2imµ
2
mm

∞∑
u=1

(u−mm)2qm`(u)

+a2imµ
2
mm

(∑
j∈U

∑
`′∈U

a`′j(1{`=`′} − pm`′)mj

)2
pm`

+2a2imµ
2
mm

∑
j∈U

∑
`′∈U

a`′j(1{`=`′} − pm`′)mj

∞∑
u=1

(u−mm)qm`(u)

and

Bm =
∑
`∈E

Bm` = a2imµ
2
mmσ

2
m + a2imµ

2
mm

∑
`∈E

(η` − η̃m)2pm`

+2a2imµ
2
mm

∞∑
u=1

∑
`∈E

(η` − η̃m)qm`(u)(u−mm),

where η` =
∑

r∈U mrar` and η̃m =
∑

j∈U pmjηj. We further obtain that∑
m∈E

Bm

µii

µ∗ii
µ∗mm

=
∑
m∈E

a2imµmm

(
σ2
m +

∑
`∈E

(η` − η̃m)2pm` + 2
∑
`∈E

(η` − η̃m)Qm`

)
,

where Qm` =
∑∞

u=1(u−mm)qm`(u) and
µ∗ii
µii

= 1∑
j∈E νjmj

, for any state i ∈ E.

Finally we have that∑N(M)
n=1 f(Jn−1, Jn, Xn)√

M

L−−−−→
M→∞

N
(

0, σ2
MTTFi

)
,

where

σ2
MTTFi

=
∑
m∈E

a2imµmm

(
σ2
m +

∑
`∈E

(η` − η̃m)2pm` + 2
∑
`∈E

η`Qm`

)
,
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since
∑

`∈E η̃mQm` = 0.

The previous results enable us to construct asymptotic confidence inter-
vals for the conditional mean times to failure. First, for a fixed state i ∈ U ,
we obtain the plug-in type estimator of the asymptotic variance

σ̂2
MTTFi

=
∑
m∈E

â2imµ̂mm

(
σ̂2
m +

∑
`∈E

(η̂` − ̂̃ηm)
2
p̂m` + 2

∑
`∈E

η̂`Q̂m`

)
,

where Q̂m` =
∑+∞

u=1(u−m̂m)q̂m`(u), âij = (I−P̂11)
−1
ij , η̂` =

∑
r∈U m̂râr`, ̂̃ηm =∑

j∈U p̂mj η̂j, and σ̂2
m is the empirical estimator of the variance of the sojourn

time in state m. For notational simplicity we omit the M dependency on the
estimators. Second, since the estimators that define σ̂2

MTTFi
(M) are strongly

consistent, we use the dominated convergence theorem and obtain the strong
consistency of σ̂2

MTTFi
(M). Thus, given the two estimators σ̂2

MTTFi
(M) and

M̂TTF i(M), asymptotic confidence interval of MTTFi at level 100(1−γ)%,
γ ∈ (0, 1) can be built, that is[

M̂TTFi(M)− u1−γ/2
σ̂MTTFi

(M)√
M

, M̂TTF i(M) + u1−γ/2
σ̂MTTFi

(M)√
M

]
,

where uγ is the γ−quantile of the N (0, 1) distribution.

3.3 Additional risk indicators

In what follows, we evaluate additional risk indicators of repairable systems
whose evolution in time is governed by an SMM. First, we define the row
vector β = (β1, . . . , βs1), where βj is the probability that the system given
that it has just entered U , it will be in state j ∈ U , when it achieved its
stationarity. In particular, for all j ∈ U , we have that

β(j) = Pν(Jn = j|Jn−1 ∈ D, Jn ∈ U) =

∑
i∈D pijν(i)∑

`∈U
∑

i∈D pi`ν(i)
.

Then the mean up time is defined by MUT = Eβ(TD).
Similarly, we define the row vector γ = (γ1, . . . , γs−s1), where γj is the

probability that the system given that it has just entered D, it will be in
state j ∈ D, when it achieved its stationarity. For all j ∈ D, we have that

γ(j) = Pν(Jn = j|Jn−1 ∈ U, Jn ∈ D) =

∑
i∈U pijν(i)∑

`∈D
∑

i∈U pi`ν(i)
.
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Symmetrically, the mean down time is defined by MDT = Eγ(TU), where
TU := inf{k ∈ N : Zk ∈ U}. In what follows, we use the plug-in type,
nonparametric, estimators

M̂UT(M) =
ν̂1(M)m̂1(M)

ν̂2(M)P̂21(M)1r
and M̂DT(M) =

ν̂2(M)m̂2(M)

ν̂1(M)P̂12(M)1s−r
,

where ν̂(M) = (ν̂1(M), . . . , ν̂s(M)) is a row vector with ν̂i(M) = Ni(M)
N(M)

and
1r is the r−dimensional column vector of ones.

3.4 Validation

To validate our results and see how well the model achieves to estimate
the key indicator of the study, the conditional mean times to failure, we
adopt simulation methods. In particular, we use a Monte Carlo algorithm
to generate trajectories of an MRC in a fixed time interval [0,M ]. The
algorithm, in its general form, has as input the transition probability matrix
of the EMC and the conditional sojourn time distributions.

We generate 5000 trajectories of the MRC with length equal to M =
10000. The initial law a and the transition kernel P are given by

a =
(
1 0 0

)
and P =

 0 0.5 0.5
0.6 0 0.4
0.3 0.7 0

 ,

respectively. The sojourn times are distributed according to the discrete
Weibull distribution

fij(k) =

{
qk−1

b − qkb, if k ≥ 1,
0, if k = 0,

with parameters (q, b) = (0.1, 0.9) for the transitions 1 → 2 and 2 → 1,
(q, b) = (0.1, 2.0) for the transitions 2→ 3 and 3→ 2, and (q, b) = (0.6, 0.9)
for the transitions 3→ 1 and 1→ 3. In this case, the semi-Markov kernel is

q(k) =

 0 0.5f12(k) 0.5f13(k)
0.6f21(k) 0 0.4f23(k)
0.3f31(k) 0.7f32(k) 0

 , k ∈ N.

We denote by U = {1, 2} the subset of up states and by D = {3} the
subset of down states. Our objective is to estimate the conditional mean
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Figure 2: Histograms of the estimated conditional mean times to failure

M̂TTFi(M), i ∈ {1, 2}, based on simulated data. The vertical dashed lines
stand for the theoretical values, MTTFi, i ∈ {1, 2}.

times to failure from the simulated data and quantify their discrepancies
from the “true” (or theoretical) values. Figure 2 represents the empirical

distribution of M̂TTFi(M), for i = 1 (right) and i = 2 (left). At a first

sight, the empirical distribution of M̂TTFi(M) seems to be centered around
MTTFi (black dashed line), for any state i ∈ U . The estimated means and
variances are in good agreement with the theoretical values (Table 1).

State MTTFi E(M̂TTFi(M)) σ2
MTTFi

σ̂2
MTTFi

i = 1 3.5683 3.5691 0.0043 0.0042
i = 2 3.2507 3.2508 0.0040 0.0038

Table 1: Estimated means and variances of the conditional mean times to
failure and theoretical values.

4 Wind energy production management via

SMMs

For operating a wind farm, the manager focuses on the wind energy produc-
tion. The computation of the production takes into account the wind speed,
the topography and the roughness of the site, the wake effect of the relative
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positions of the turbines in each direction of the wind and the transfer power
function of the turbines. It is then of paramount importance to put forward
stochastic models that consider wind speeds, wind directions and production
characteristics. In this work, for simplicity, wake effects are not taken into ac-
count and the transfer function of the wind farm does not depend on the wind
direction. Furthermore the wind farm is reduced to a single wind turbine. For
this turbine, the production at nominal power starts at 13 m/s. We distin-
guish low production from medium production at 8 m/s. To define the SMM,

Figure 3: Wind directions and speeds states for operational management.
Now the system is in the state (E, 8-13 m/s). The transfer power function
of a 2MW wind turbine is superposed on the wind speeds histogram.

we consider the state space E = E1 × E2, where E1 is the set of direction
states and E2 is the set of wind speed states. For instance, the state spaces
E1 = (N,W, S,E) and E2 = (0− 3 m/s, 3− 8 m/s, 8− 13 m/s, 13− 25 m/s)
could be considered for wind directions and speeds, respectively (see Fig-
ure 3 for an illustration). Breaks correspond to the cut-in (3 m/s) and the
cut-off (25 m/s) wind speeds of a 2MW wind turbine. Table 2 in Appendix
A presents the classification of the states and the estimated mean sojourn
times along with the 95% asymptotic confidence intervals (see proof of The-
orem 2). Our objective is to evaluate the aforementioned risk indicators on
both simulated and real datasets. To the best of our knowledge, this is the
first wind modeling in a semi-Markov context, that employs both speed and
direction data to explore risk indicators. Before evaluating risk indicators
for real and simulated data, we present the necessity of employing an SMM
rather than a Markov model, by means of a goodness-of-fit test.
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4.1 Goodness-of-fit test and sojourn time distribution

If the semi-Markov chain Z reduces to a (time) homogeneous Markov chain
with transition probabilities p̃ij = P (Zk+1 = j|Zk = i) for any i, j ∈ E,
k ∈ N, then the semi-Markov kernel would be:

qij(k) = P (Jn+1 = j,Xn+1 = k|Jn = i)

= P (Z`+k = j, Z`+k−1 = i, . . . , Z`+1 = i|Z` = i)

= p̃ij p̃
k−1
ii .

If p̃ii < 1 and i 6= j the transition probabilities of the EMC become

pij =
∞∑
k=0

qij(k) = p̃ij

∞∑
k=0

p̃k−1ii =
p̃ij

1− p̃ii
,

whereas if i = j, then qij(k) = 0 for any k ∈ N, which implies that pij = 0.
The conditional sojourn time distribution does not depend on the next visited
state j since

fij(k) =
qij(k)

pij
= (1− p̃ii)p̃k−1ii ,

for any i, j ∈ E, k ∈ N∗. Concerning the sojourn time distribution, and for
any i ∈ E, k ∈ N∗, we have that

hi(k) = P (Xn+1 = k|Jn = i) =
∑
j 6=i

P (Xn+1 = k, Jn+1 = i|Jn = i)

=
(∑
j 6=i

p̃ij

)
p̃k−1ii = (1− p̃ii)p̃k−1ii ,

which means that the sojourn times are geometrically distributed with pa-
rameter p̃ii. To justify the application of the SMM, it is sufficient to show
that there exists a state whose the sojourn time distribution is significantly
different from the geometric distribution. To verify the validity of geomet-
rically distributed sojourn times, we use the chi-square goodness-of-fit test
(see Delignette-Muller and Dutang, 2016). The null hypothesis is that the
sojourn times are geometrically distributed. First, we fit the geometric distri-
bution to the sojourn times and compute the maximum likelihood estimator
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of the corresponding parameter p̃ii for any state i ∈ E and both real and sim-
ulated data (see Table 3 in Appendix B). Second, we compare the estimated
sojourn time distribution and the geometric with pre-defined parameter p̃ii,
for any state i ∈ E (see Figures 6 and 7 in Appendix B). For any state
i ∈ E (apart from state 13 in simulated data), the p-value is smaller than
0.05, and therefore the null hypothesis is rejected against the alternative at
0.05 significance level.

4.2 Evaluation of risk indicators on real and simulated
data

4.2.1 Real dataset

Here, we use a real dataset provided by the private company EREN. It con-
cerns one production site with wind speed and direction measurements every
ten minutes during one year (50958 records). To evaluate reliability indices,
such as the aforementioned risk indicators, we focus on wind speeds that take
their values over the interval 0 − 3 m/s. Down states (D) are combinations
of wind speeds belonging to 0− 3 m/s with any wind direction. In this case,
card(U) = 12 and card(D) = 4. We pay special attention to the mean time
to register a wind speed occupying the interval 0− 3 m/s, since it affirms no
wind energy production. In this context, the risk indicators could provide
feedback for the production management. We then present (Figure 4, upper
panel) the estimates of MTTFi for any initial up state i ∈ U along with its
95% confidence interval. For a given wind direction, the mean time to failure,
i.e. the mean time that is required for the turbine to stop working, increases
with the wind speed. For example, if the wind is blowing east and the speed is
3−8 m/s, then the production will stop after 15.57 hours on average, instead
of 18.55 hours that it would need if the current speed was 8− 13 m/s. For a
given wind speed, we observe that the results vary with the wind direction.
When the wind blows faster, the wind direction has a significant impact on
the risk indicator. For example, it is worth mentioning that the mean time
to failure is on average higher for wind blowing south with speed 8− 13 m/s
than for wind speed blowing north with speed 13 − 25 m/s. We can notice
that we obtain more precise estimations if the wind is blowing north. We go
one step further and concentrate on the mean time to register a wind speed
higher than 3 m/s, given that the current wind speed is lower than 3 m/s.
In other words, we are interested in the average time that the turbine needs
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to restore operation, given that it is not operational. Thereafter, we will call
this time conditional mean time to repair and denote it by MTTRi, for any
i ∈ D = {1, 2, 3, 4}. To estimate the conditional mean times to repair, we use

the empirical, plug-in type estimator M̂TTR(M) = (I− P̂22(M))−1m̂2(M).
We put emphasis on this indicator, since it highlights the activation of the
wind energy production. Therefore it can serve as a key form of feedback for
the production politics, by scheduling corrective interventions to reduce re-
pair costs, etc. In Figure 5 the conditional mean times to repair are displayed
along with their 95% confidence intervals. We conclude that if the current
wind direction is N , the wind production needs less time to restart than if
the wind is blowing west or east. The estimations are precise and the mean
times to make the turbine functioning are quite short (less than one hour).
Moreover, the expected time of stay in an up state (Section 3.3), i.e. the
expected functioning time of the turbine after its reparation, is 16.31 hours.
To be more precise, we are 95% confident that if the mean functioning time
after a reparation was known, it would be between 16.09 and 16.53 hours. On
the other side, the mean time that the turbine needs to become operational
after it stops production (Section 3.3), turns out to be 1.58 hours with a 95%
asymptotic confidence interval equal to (1.54, 1.61).

4.2.2 Simulated dataset

The risk indicators are now evaluated based on simulated data. The dataset
comes from the Wind Prospector of the National Renewable Energy Lab-
oratory (NREL) and is available at www.nrel.gov. Wind directions and
speeds are available every five minutes during one year on tens of thousands
American sites (105120 records). Using the state space partition described
previously, we estimate how long the turbine is expected to be operational.
The operational efficiency of the turbine and therefore the production man-
agement could be improved by determining a preventive maintenance policy
that includes risk indicators.

Figure 4 (lower panel) displays the estimated conditional mean times to
failure along with their 95% confidence intervals. Concerning the results,
the mean times to failure seem to have the same pattern for both simulated
and real data, when the wind blows slowly. Narrower confidence intervals
are obtained for simulated data w.r.t. the real data, which seems to ad-
vance the interruption of the production. Furthermore, high wind speeds
delay the interruption of the wind energy production. The total time that
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Figure 4: Empirical estimators of the conditional mean times to failure (in

hours), M̂TTFi(M), i ∈ U , evaluated for real data (EREN) (upper panel)
and simulated data (NREL) (lower panel).

the turbine is expected to function during an operating cycle, is estimated
to be equal to 12.7 hours with a 95% asymptotic confidence interval equal
to (12.48, 12.92). On the other hand, the average time that the turbine is
estimated to be non-operational, is equal to 1.53 hours and its confidence in-
terval (1.44, 1.61). Based on the previous results we conclude that the wind
direction has an important effect on the wind energy production and thus it
should be taken into account in the condition-based maintenance policy and
operational management such as storage or trading.

5 Concluding Remarks

In the present paper we employ discrete time SMMs with discrete state space
to evaluate risk indicators for wind modeling and energy production man-
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Figure 5: Empirical estimator of the conditional mean time to repair (in

hours), M̂TTRi(M), i ∈ D.

agement. Among the numerous indicators in reliability, we focus on the con-
ditional mean times to failure and show that their empirical estimators are
strongly consistent and asymptotically normal. We use our results towards
an application to real and simulated wind data. This is the first attempt
to study SMMs that include both wind speed and direction data with a
reliability orientation. To justify the necessity to employ an SMM versus
a Markov model, we construct a goodness-of-fit test. We extend previous
results on reliability indices for wind data modeled by SMMs (D’Amico et
al., 2015a,b), by evaluating key indicators that could provide evidence in the
management of a wind farm. The results highlight that the wind direction
plays a critical role in a semi-Markov setting, and therefore it should be taken
into account in maintenance and management decisions.

Due to the flexibility of the framework provided by SMMs, there exists a
variety of extensions that could be adapted to obtain risk indicators. Con-
ditional mean times to failure could be investigated when independent and
identical copies of the semi-Markov chain are observed, each over a fixed
duration, instead of one single copy over a fixed time interval. Further re-
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search includes their extension to higher order SMMs. In this context, the
stochastic evolution of the EMC depends on the jump time, i.e. the transi-
tion order. Finally, the employment of SMMs with a more refined structure,
for example models that allow for many degradation states (Malefaki et al.,
2014), could improve the understanding of wind data and eventually provide
decision support tools in wind industry.
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A Data summary and estimations

Speed Direction State i Frequency m̂i(M) 95%CI of mi

[0, 3] (45, 135] 1 1196 0.70 [0.54, 0.85]

[0, 3] (135, 225] 2 979 1.08 [0.95, 1.21]

[0, 3] (225, 315] 3 1342 1.16 [0.99, 1.32]

[0, 3] (315, 45] 4 980 1.51 [1.18, 1.85]

(3, 8] (45, 135] 5 6041 0.32 [0.26, 0.39]

(3, 8] (135, 225] 6 9339 0.81 [0.62, 1.00]

(3, 8] (225, 315] 7 7453 1.17 [0.90, 1.44]

(3, 8] (315, 45] 8 4813 0.58 [0.39, 0.77]

(8, 13] (45, 135] 9 1219 0.62 [0.54, 0.70]

(8, 13] (135, 225] 10 6240 0.56 [0.48, 0.65]

(8, 13] (225, 315] 11 4999 0.71 [0.61, 0.80]

(8, 13] (315, 45] 12 2605 0.58 [0.49, 0.67]

(13, 25] (45, 135] 13 37 1.26 [1.11, 1.41]

(13, 25] (135, 225] 14 1466 1.29 [1.16, 1.42]

(13, 25] (225, 315] 15 2057 1.45 [1.26, 1.63]

(13, 25] (315, 45] 16 192 1.37 [1.19, 1.56]

Table 2: States classification, frequencies and estimated mean sojourn times
(in hours) based on the real dataset (EREN).
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B Goodness-of-fit test

Real data (EREN) Simulated data (NREL)

State p̃ii p-value p̃ii p-value

1 0.27 3.52e− 09 0.12 2.96e− 06

2 0.30 3.59e− 12 0.15 1.80e− 04

3 0.24 1.66e− 13 0.14 1.22e− 02

4 0.29 1.40e− 10 0.10 1.18e− 15

5 0.13 1.22e− 120 0.10 6.75e− 29

6 0.13 1.93e− 195 0.05 1.43e− 83

7 0.12 2.32e− 259 0.05 6.14e− 55

8 0.12 1.41e− 99 0.04 4.38e− 32

9 0.24 1.14e− 16 0.13 1.47e− 05

10 0.15 9.37e− 125 0.06 4.62e− 52

11 0.14 9.32e− 142 0.04 8.70e− 44

12 0.11 7.25e− 55 0.05 4.02e− 29

13 0.51 2.30e− 03 0.37 5.47e− 01

14 0.21 7.96e− 42 0.06 3.11e− 27

15 0.14 5.45e− 38 0.03 4.80e− 36

16 0.29 4.32e− 04 0.05 1.31e− 07

Table 3: MLE of the parameter of the geometric distribution, p̃ii, i ∈ E, and
summary of the goodness-of-fit test for real and simulated data.
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Figure 6: Estimated and geometric sojourn time distributions for any state
i ∈ {1, . . . , 8}.
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Figure 7: Estimated and geometric sojourn time distributions for any state
i ∈ {9, . . . , 16}.
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