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Balance control using both ZMP and COM height variations:
A convex boundedness approach

Stéphane Caron and Bastien Mallein

Abstract— Developments for 3D control of the center of
mass (CoM) are currently located in two local minima: on
the one hand, methods that allow CoM height variations
but only work in the 2D sagittal plane; on the other hand,
nonconvex centroidal models that are delicate to handle. This
paper presents an alternative that controls the CoM in 3D by
predictive control of a model with convex constraints. The key
to this development is the notion of boundedness condition,
which quantifies convexly the viability of CoM trajectories.

I. INTRODUCTION

Three-dimensional control of the center of mass (CoM)
follows in the wake of major achievements obtained
in 2D locomotion with the linear inverted pendulum
mode (LIPM) [1]. The core idea of the LIPM was to keep the
CoM in a plane, which made the model tractable and paved
the way for key discoveries, including the capture point [2]
and capture-point based feedback control [3], subsequently
applied to successful walking controllers [4], [5].

For a while, the ability to leverage vertical CoM motions
seemed lost on the way, but recent developments showed a
regain of interest for this capacity [6], [7], [8]. All of them
share a design choice that can be traced back to the seminal
work of Pratt and Drakunov [9]: they interpolate CoM
trajectories in a 2D sagittal plane for the inverted pendulum
model (IPM) with fixed center of pressure (CoP). The key
result of [9] is the conservation of the “orbital energy” of
a CoM path, a variational principle that was later translated
into a predictive controller in an equally inspirational study
by Koolen et al. [7]. Ramos and Hauser [6] also noticed
that the capture point, interpreted as point where to step,
was a function of the CoM path, which they computed via a
single shooting method. Interestingly, Hopkins et al. pointed
out that vertical CoM motions amount to turn the constant
ω of the LIPM into a time-varying function ω(t) [10]. They
brought to light a differential equation that this function must
satisfy, and used it to compute back ω(t) from, once again,
an a priori CoM-height trajectory.

Different as they may seem, the variational and point-
where-to-step approaches are two instances of the same un-
derlying concept: convergence of the system towards a steady
state requires that its divergent component of motion stays
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bounded. Lanari et al. [11] showed how the condition for
this to happen involves an integral over the future trajectory
of the system (one can see a similar integral in the orbital
energy), which they named the boundedness condition.

In what follows, we break from existing approaches by
working on ω(t) per se rather than as a result of CoM
trajectories. This is made possible by the derivation of the
boundedness condition for the 3D IPM (Section II), which is
then cast into an optimization problem for 2D and 3D control
of the CoM (Sections III and IV). The resulting predictive
controller is implemented and tested in Section V.

II. BOUNDEDNESS CONDITION OF THE IPM

The equation of motion of the inverted pendulum model
is:

c̈(t) = λ(t)(c(t)− r(t)) + g (1)

where c is the center of mass of the robot, r is the center
of pressure under its contacting foot, and g = −gez is
the gravity vector. This model evolves under the feasibility
conditions that λ ≥ 0 (unilaterality of contact) and that the
CoP r belongs to the contact area.

To alleviate calculations, let us formulate the divergent
component of motion [5] of this model as a velocity rather
than a point:

ξ(t) = ċ(t)− ṙ(t) + ω(t)(c(t)− r(t)) (2)

where ω(t) is a solution to the differential equation [10]:

ω̇ = ω2 − λ (3)

The interest of this choice appears when differentiating the
divergent component of motion:

ξ̇ = (λ+ ω̇)(c− r) + g − r̈ = ωξ + g − r̈ (4)

The solution to this first-order differential equation is:

ξ(t) =

(
ξ(0) +

∫ t

0

e−Ω(τ)(g − r̈(τ))dτ

)
eΩ(t) (5)

where Ω is the primitive of ω such that Ω(0) = 0. In the
LIPM where ω is a constant, Ω(t) = ωt and this equation is
equivalent to the well-known capture point dynamics.

To be viable [12], the trajectory of the system must be
bounded, which implies that the above expression does not
diverge despite its exponential factor. This necessary condi-
tion for viability is known as the boundedness condition [11],
and is written here:∫ ∞

0

(r̈(t)− g)e−Ω(t)dt = ξ(0) (6)
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Note how this requirement involves both the CoP trajectory
r(t) and leg-stiffness trajectory λ(t): the former is integrated
through r̈(t), while the latter is embedded in Ω(t).

A. Decoupling of the boundedness constraint

Let us express all coordinates in the inertial frame depicted
in Figure 1. In what follows, we will use the subscript
i (“initial”) to indicate values at t = 0, and f (“final”)
for stationary values obtained as t → ∞. The origin of
the inertial frame is taken at the stationary CoP position
rf = 0 where we want the robot to stop. (The stationary
CoM position is then cf = `ez for a desired leg length `.)
The two vectors ex and ey are horizontal, and ex is chosen
aligned with the horizontal projection of rf − ci. Note that,
despite being defined from the initial state of the system, the
frame is inertial.

The CoP r is feasible if and only if it lies on the contact
surface. Denoting by n the contact normal, this means that r·
n = 0, or equivalently that r can be written as a combination
r = αt + βb of two vectors (not necessarily orthogonal)
belonging to the contact surface. We choose:

t = cosφex + sinφez b = cos θey + sin θez (7)

where (t·n) = 0 implies that φ = arctan(−(ex·n)/(ez ·n)),
and similarly for θ. The coordinates of r in the inertial frame
become: rx(t)

ry(t)
rz(t)

 =

 α(t) cosφ
β(t) cos θ

α(t) sinφ+ β(t) sin θ

 (8)

With these notations, the boundedness condition (6) is:

ξx(0) =

∫ ∞
0

α̈(t) cosφ e−Ω(t)dt (9)

ξy(0) =

∫ ∞
0

β̈(t) cos θ e−Ω(t)dt (10)

ξz(0) =

∫ ∞
0

[
g + α̈(t) sinφ+ β̈(t) sin θ

]
e−Ω(t)dt (11)

By linear combination of these three expressions, condi-
tion (11) can be rewritten as:∫ ∞

0

e−Ω(t)dt =
˙̄zi + ωiz̄i

g
(12)

where z̄ = z − x tanφ − y tan θ = (c · n)/(ez · n). Next,
recall from Equation (2) that:

ξx(0) = ẋi + ωixi − (ṙx,i + ωirx,i) (13)

Integrating by parts Equation (9) twice yields:∫ ∞
0

r̈x(t)e−Ω(t)dt =

∫ ∞
0

rx(t)λ(t)e−Ω(t)dt−(ṙx,i+ωirx,i)

Now, combine these two equations to get:∫ ∞
0

rx(t)λ(t)e−Ω(t)dt = ẋi + ωixi (14)

Contact
Area

Fig. 1. Definition of the inertial frame (ex, ey , ez). The frame is
rooted at the stationary CoP location rf . The instantaneous CoM location
is denoted by ci. Both vectors ex and ey lie in the horizontal plane, and
ex is aligned with the (horizontal projection of the) desired direction of
motion rf − ci.

Applying the same steps from Equation (10) leads to a
similar equation of ry . In summary, we have reformulated
the boundedness condition as:

∫ ∞
0

e−Ω(t)dt =
˙̄zi + ωiz̄i

g∫ ∞
0

p(t)λ(t)e−Ω(t)dt = ˙̄ci + ωic̄i

Temporal Boundedness Condition

(15)

(16)

where p(t) =
[
rx(t) ry(t)

]
and c̄i =

[
xi yi

]
are the

horizontal projections of the CoP and CoM, respectively.
In the familiar setting of the LIPM, the first equation boils

down to:∫ ∞
0

e−ωtdt =
1

ω
=

0 + ωz

g
⇐⇒ ω =

√
g

z
(17)

Meanwhile, taking p = 0 in the second one implies that
the traditional LIPM capture point is located at rf . This
observation illustrates how the boundedness condition (15)–
(16) encompasses the well-known model.

B. Change of variable

Define the adimensional quantity s(t) = e−Ω(t). This
variable ranges from 1 when t = 0 to 0 as t → ∞, and
its time derivatives are:

ṡ(t) = −ω(t)s(t) (18)
s̈(t) = λ(t)s(t) (19)

Thanks to the bijective mapping between s and t, we can
characterize ω and λ indistinctly as functions of s or t. Let
us choose the former, and denote by (·)′ derivatives with
respect to s. For instance, ω(t) = ω(s(t)) and ω̇ = ṡω′.
From Equation (18), this means that ω̇ = −sωω′. Then,

dt =
ds

ṡ
= − ds

ω(s)s
(20)

λ = ω2 − ω̇ = ω(ω + sω′) = ω(sω)′ (21)



Applying this change of variable, the boundedness condi-
tion (15)–(16) becomes:

∫ 1

0

1

ω(s)
ds =

˙̄zi + ωiz̄i
g∫ 1

0

p(s)(sω)′ds = ˙̄ci + ωic̄i

Timeless Boundedness Condition

(22)

(23)

Solutions to the boundedness condition (22)–(23) are given
by the CoP coordinates and leg stiffness functions (ω,p),
which characterize trajectories of the inverted pendulum.

III. SAGITTAL 2D BALANCE WITH FIXED COP

Let us consider first the case of 2D stabilization in the
plane (ex, ez) with fixed CoP. Since rx = 0, the bounded-
ness condition becomes:

ωi = − ẋi
xi

(24)

żi + ωizi = g

∫ 1

0

1

ω(s)
ds (25)

Equations (24) implies via (5) that ẋ = −ωx, which inte-
grates to x(t) = xie

−Ω(t) = xis(t): in 2D balance control,
the coordinates x and s are proportional. Interpolation over
x [7], [9] is therefore equivalent to interpolation over s,
and one can recognize in (25) the same principle as the
conservation of orbital energy [9]. The benefit of using s
rather than x will appear when we move to 3D control.

A. Viability condition

The viability condition zcrit ≥ 0 derived in [7] for λ ≥ 0
can be seen as a consequence of (25). Indeed, the lower-
bounding profile λ = 0 corresponds to (sω)′ = 0, that is to
say, sω = ωi. It follows that:∫ 1

0

ds

ω(s)
≥
∫ 1

0

ds

ω(s)
=

∫ 1

0

s

ωi
ds =

1

2ωi
(26)

zcrit = zi +
żi
ωi
− g

2ω2
i

=
g

ωi

[∫ 1

0

ds

ω(s)
− 1

2ωi

]
≥ 0 (27)

In practice, biped robots cannot exert arbitrary large contact
forces, and tend to break contact when ground pressure
becomes too low. To reflect this, we will thereafter consider
the stricter feasibility condition λ ∈ [λmin, λmax]. The cor-
responding viability condition can be derived in a similar
fashion by considering lower- and upper-bounding profiles:

żi + ωizi ≤
g

λmax

[
ωi +

√
λmax − λmin

λmin

√
λmax − ω2

i

]
(28)

żi + ωizi ≥
g

λmin

[
ωi −

√
λmax − λmin

λmax

√
ω2
i − λmin

]
(29)

B. Computing feasible ω solutions

Let us discretize the interval [0, 1] into N fixed segments
0 = s0 < s1 < . . . < sN−1 < sN = 1, for instance sj =
i/N . We compute solutions to the boundedness condition
where λ(s) is piecewise constant over this subdivision, that
is, ∀s ∈ [sj , sj+1], λ(s) = λj . Define:

Φ(s)
def
= s2ω2 ∆j

def
= s2

j+1 − s2
j (30)

Remarking that Φ′ = 2sλ from Equation (21), we can
directly compute Φ(s) for s ∈ [sj , sj+1] as:

Φ(s) =

j−1∑
k=0

λk∆k + λj(s
2 − s2

j ) (31)

In what follows, we use the shorthand Φj = Φ(sj).
We can now calculate the right-hand side of the bounded-

ness condition (25):∫ 1

0

ds

ω(s)
=

N−1∑
j=0

∫ sj+1

sj

sds√
Φj + λj(s2 − s2

j )
(32)

=

N−1∑
j=0

∫ ∆j

0

dv

2
√

Φj + λjv
(33)

=

N−1∑
j=0

1

λj

[√
Φj + λj∆j −

√
Φj

]
(34)

=

N−1∑
j=0

∆j√
Φj+1 +

√
Φj

(35)

The latter expression is convex in the variables Φ1, . . . ,ΦN
(note that Φ0 = 0), as shown in Appendix A.

Besides boundedness, solutions should enforce three con-
ditions:
• Feasibility: λmin ≤ λ ≤ λmax, expressed linearly in

terms of Φ as ∆jλmin ≤ Φj+1 − Φj ≤ ∆jλmax;
• Initial state: ω should be equal to ωi at the initial index
s = 1, that is to say, ΦN = ω2

i ;
• Stationary state: a stationary COM height zf can also

be specified via Φ1 = ∆0g/zf , or similarly a range
of heights zmin ≤ zf ≤ zmax used to approximate
kinematic reachability.

Wrapping all four conditions together and adding a regulariz-
ing cost function over variations of λ, we obtain Optimization
Problem 1. This problem is “almost” a quadratic program: it
has a quadratic cost function and linear constraints, except
for Equation (38) which is a convex equality constraint.

C. Model predictive control for 2D balance

Solving Problem 1 can be done fast enough for the
control loop, on the scale of 1–3 ms using a general-purpose
nonlinear solver (see Section V for a precise statement). At
each control cycle, we compute the optimum Φ∗1, . . . ,Φ

∗
N of

the problem and extract its initial leg stiffness via:

λ∗i =
ω2
i − Φ∗N−1

∆N−1
(36)



Optimization Problem 1 2D Balance Control

minimize
Φ1,...,ΦN

N−1∑
j=1

[
Φj+1 − Φj

∆j
− Φj − Φj−1

∆j−1

]2

(37)

subject to
N−1∑
j=0

∆j√
Φj+1 +

√
Φj

=
˙̄zi + ωiz̄i

g
(38)

ΦN = ω2
i (39)

∀j, λmin∆j ≤ Φj+1 − Φj ≤ λmax∆j (40)
Φ1 = ∆0g/zf (41)

This value is then sent as reference to the lower-level
leg and attitude controllers until the next control cycle.
In the standard model-predictive fashion, the rest of the
optimal trajectory is discarded. As a matter of fact, the
trajectories ω(s) and λ(s) are never explicitly computed,
let alone their time counterparts. The operation is possible
(see Appendix B) but not necessary for control. Compared
to the controller from [7], this solution enforces feasibility
constraints λmin ≤ λ ≤ λmax a priori, as opposed to an a
posteriori clipping that may cause free-falling phases in the
output trajectory. This comes at the higher cost of nonlinear
optimization, versus a single matrix inversion.

IV. 3D BALANCE

The interest of expressing the boundedness condition in
terms of the variable s goes beyond sagittal 2D balance: it
also puts the problem in a form that is easier to manipulate
mathematically. In 3D balance where the initial velocity ċi is
not necessarily coplanar with the stationary state, the equality
constraint (24) vanishes, replaced by a general condition over
CoP trajectories:∫ 1

0

p(s)(sω)′ds = ˙̄ci + ωic̄i (42)

Subject to the feasibility conditions:

Ap ≤ b (43)

where the matrix A and vector b form the halfspace-
representation of the contact polygon, which is readily com-
puted from contact geometry. For example, a rectangular
contact |(p ·ew)| ≤W , |(p ·eh)| ≤ H has four inequalities:

±

[
(t·ew)
cosφ

(b·ew)
cos θ

(t·eh)
cosφ

(b·eh)
cos θ

]
p ≤

[
W
H

]
(44)

A. Computing feasible CoP solutions

The structure of Equation (42) suggests a particular solu-
tion: let us take p(s) = pif(sω), where:
• f(ωi) = 1: initially, the CoP is located at ri;
• f(0) = 0: eventually, the CoP is located at rf ;
• f is increasing: we exclude solutions where the CoP

goes back and forth, that we deem suboptimal;
• f is integrable: let F denote its primitive such that
F (0) = 0. It is positive by monotonicity of f .

Optimization Problem 2 3D Balance Control

minimize
Φ1,...,ΦN

N−1∑
j=1

[
Φj+1 − Φj

∆j
− Φj − Φj−1

∆j−1

]2

(37)

subject to
N−1∑
j=0

∆j√
Φj+1 +

√
Φj
− z̄i
g

√
ΦN =

˙̄zi
g

(47)

ω2
i,min ≤ ΦN ≤ ω2

i,max (48)

∀j, λmin∆j ≤ Φj+1 − Φj ≤ λmax∆j (40)
Φ1 = ∆0g/zf (41)

With this choice, the boundedness condition (42) becomes

pi =
˙̄ci + ωic̄i
F (ωi)

(45)

By monotonicity of f , the CoP trajectory is feasible if
and only if its initial position pi satisfies the feasibility
condition (43). Considering (45), this can be written:

bF (ωi)− (Ac̄i)ωi ≥ A ˙̄ci (46)

We see here the general principle at work: in 2D, the
strict constraint p = 0 imposed a single value for ωi;
in 3D, the relaxed polygonal constraint Ap ≤ b frees a
range of possible choices for ωi. By increasing the number
of potential solutions this will also ease the task of the
optimizer.

At this stage, the roboticist can explore different CoP
strategies via the choice of a (preferably convex) function
F . Let us focus on the example of a power law where, for
some k ≥ 1:

f(sω) =

(
s
ω

ωi

)k−1

=⇒ F (ωi) =
ωi
k

(49)

Equation (46) simplifies to:(
b

k
−Ac̄i

)
ωi ≥ A ˙̄ci (50)

Each line of this vector inequality provides a lower or upper
bound on ωi, depending on the sign of the factor in front
of it. Inequalities can thus be summed up in linear time as
ωi,min ≤ ωi ≤ ωi,max. Note that this computation is only
carried out once from the initial state, i.e. it is not part of
the following optimization.

By definition of Φ, ωi is equal to
√

ΦN , so that bounds
on ω are mapped directly into the optimization as ω2

i,min ≤
ΦN ≤ ω2

i,max. However, previously ωi also appeared in the
right-hand side of the convex equality constraint (38). In 3D,
this constraint becomes:

N−1∑
j=0

∆j√
Φj+1 +

√
Φj
− z̄i
g

√
ΦN =

˙̄zi
g

(51)

Fortunately, x 7→ −
√
x is a convex function. The sum of

two convex functions being convex, this new equality is
again convex. Wrapping up these developments, we obtain
Optimization Problem 2.



B. Model predictive control for 3D balance
Our pipeline for 3D balance is the same as in Section III.

Once the optimal solution Φ∗1, . . . ,Φ
∗
N of Problem 2 is found,

leg stiffness and CoP location are extracted as:

ω∗i =
√

Φ∗N λ∗i =
Φ∗N − Φ∗N−1

∆N−1
p∗i =

˙̄ci + c̄iω
∗
i

F (ω∗i )
(52)

In the case of the power law (49), the CoP solution becomes:

p∗ = k

[
pi +

ṗi
ω∗i

]
(53)

Interestingly, we recognize here the expression of the
capture-point feedback control law [3], [5], under the same
requirement k ≥ 1, even though we are in the context of 3D
balance where λ and ω are time-varying.

Problem 2 is solved at basically the same speed as its
2D counterpart, on the scale of 1–3 ms with the setting
described in Section V, but it is able to cope with both
sagittal and lateral linear momentum. Its solutions tend to be
flatter, which can be explained by the relaxed constraint (48)
compared to (39): with only one end fixed and a wider set of
choices for ωi, it is easier to find solutions where λ varies less
(favored by the quadratic cost function). By trying to keep
λ constant as best as possible, Problem 2 thus generates a
hierarchical strategy: CoP variations are used first; then, if
need be, CoM height variations are resorted to. This behavior
is depicted in Figure 2.

C. Discussion: how did the model become convex?
CoM trajectory generation using general contacts is a

notoriously nonconvex problem due to angular momentum.
Even when a linear model is used and angular momentum is
cancelled [5], nonconvexity lingers in feasibility inequality
constraints [13]. Nonlinear optimal control provides a way to
attack the problem using e.g. direct multiple shooting [14],
however our experience in [15] met with frequent solver
failures that required dedicated countermeasures. Ponton et
al. [16] proposed a convex relaxation of momentum dy-
namics by bounding the convex and concave parts of the
angular momentum. Yet, the model we derived has a single
convex equality constraint, with no approximation of system
dynamics nor feasibility constraints. Where is the difference?

Convexity is a property of the boundedness condition (22)
over ω. The design choice here that extends this convexity
to 3D balance is to make the CoP trajectory a consequence
p(s) = pif(sω) of ω, as opposed to e.g. a shooting method
where p and ω would be optimized jointly. It also means that
the choice of a CoP strategy encoded by f(sω) has an impact
on the existence of feasible solutions. This may happen for
instance in example (49)–(53) when the feedback gain k is
too large—which is by the way true for all capture-point
based feedback controllers [3], [4], [5], [10], [17].

V. STEPPING EXPERIMENTS

We implemented both balance controllers1 and evaluated
them in pymanoid2, an extension of OpenRAVE for hu-

1 https://github.com/stephane-caron/3d-balance
2 https://github.com/stephane-caron/pymanoid

Fig. 2. Saturation behavior of the 3D balance controller. The horizontal
distance from CoM to contact is denoted by d, n is the contact normal and
red discs indicate the initial CoP. The controller keeps the CoM trajectory
as close as possible to a LIPM via CoP variations. When this is not enough,
height variations are resorted to for additional braking.

manoid robotics. Optimization problems were solved using
the IPOPT solver,3 with Jacobians and Hessians computed
by automatic differentiation with CasADi.4 Note that IPOPT
is a general-purpose nonlinear solver designed for large-
scale problems, while the problems at hand are small and
have additional structure: they are quadratic programs with
a convex equality constraint. A specialized solver could
leverage this structure for improved performance.

To assess the performance of solving Problems 1 and 2,
we run a benchmark over randomized states and contact
locations. Both solvers were fed the same initial states, and
sampling was biased toward viable states using the proxy
distribution zcrit ∼ 1

2zf + σzU([0, 1]). On an Intel Core i7-
6500U CPU @ 2.50 Ghz, the computation times were almost
identical: 1.8 ± 0.7 ms and 1.7 ± 0.6 ms for the 2D and
3D problem, respectively (averages and standard deviations
over 10000 control cycles aggregated over 225 launches from
different initial states).

We then considered a push recovery scenario with an HRP-
4 humanoid evolving in a 3D model of an A350 aircraft
under construction. Due to e.g. an unexpected collision, or
slippage over a ground obstacle that is only detected after
momentum has built up, the robot is imparted with an initial
velocity of 1.4 m s−1. Although hand hand contacts would
be equally important in such wscenarios, we focus here on
the stance leg trajectory. First, a foothold is chosen on the
fuselage as the kinematically reachable location with the
lowest tilting. The velocity in the resulting frame (Figure 1)
consists of roughly 1.3 m s−1 in the desired direction of
motion ex, 0.2 m s−1 in the lateral direction ey and 0.5 m s−1

along the vertical ez . We confirmed that the robot is able to
stop in 1.5 s using using the CoP strategy (49) with k = 2
and a 10 cm CoM height variation. The scenario is depicted
in Figure 3 and in the accompanying video.

VI. CONCLUDING NOTE

We saw how boundedness conditions provide a model with
convex constraints for 3D control of the center of mass.
Future works towards a full-fledged walking controller will
need to address questions such as contact switches and heel-
to-toe CoP strategies.

3 https://projects.coin-or.org/Ipopt
4 http://casadi.org

https://github.com/stephane-caron/3d-balance
https://github.com/stephane-caron/pymanoid
https://projects.coin-or.org/Ipopt
http://casadi.org


Fig. 3. 3D balance control using both CoP and CoM height variations.
The robot recovers from an undesired lateral push by stepping onto the
fuselage of an A350 aircraft under construction. An initial velocity of
1.4 m s−1 is absorbed in 1.5 m s−1 using both the ankle strategy and a
10 cm CoM height variation.
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APPENDIX

A. Convexity of Equation (35)
Let us first consider the function g(x, y) = 1√

x+
√
y

. The
trace and determinant of its Hessian ∇2g are:5

tr(∇2g) =
x2 + 3(x+ y)

√
xy + y2

4(xy)3/2(
√
x+
√
y)3

(54)

det(∇2g) =
3

16(xy)3/2(
√
x+
√
y)4

(55)

Both are strictly positive quantities over the domain x, y > 0,
therefore ∇2g is positive definite and f is convex. Con-
sider now the function G(Φ) defined by Equation (35)
over the vector Φ of positive values Φ1, . . . ,ΦN : G(Φ) =∑N−1
j=0 ∆jg(Φj+1,Φj). For any t ∈ [0, 1], G(tΦ+(1−t)Φ′)

=

N−1∑
j=0

∆jg(tΦj+1 + (1− t)Φ′j+1, tΦj + (1− t)Φ′j)

≤
N−1∑
j=0

∆j

[
tg(Φj+1,Φj) + (1− t)g(Φ′j+1,Φ

′
j)
]

(56)

= tG(Φ) + (1− t)G(Φ′) (57)

Which establishes that G is convex.

B. Computing time trajectories
The piecewise constant values of λ(s) are directly given by

λj = (Φj+1 − Φj)/∆j . Computing the time trajectory λ(t)
is then equivalent to finding the switch times tj such that
s(tj) = sj . Solving the equation of motion (1) of the IPM
with constant λ, one can establish the recurrence relation:

tj = tj+1 +
1√
λj

log

(√
Φj+1 +

√
λjsj+1√

Φj +
√
λjsj

)
(58)

The same relation can be applied to find the map s(t), giving
ω(t) = ω(s(t)) = [Φi + λj(s(t)

2 − s2
j )]

1/2s(t)−1 for t ∈
[tj , tj+1] by Equation (31). Alternatively, one can solve the
differential equation (3) from tj to get directly:

ω(t) =
√
λj

1− υj tanh(
√
λj(t− tj))

υj − tanh(
√
λj(t− tj))

(59)

where υj = λj/ω(sj) = λjsj/Φj .

5 To avoid painstaking calculations such as this one, we recommend
using the online computational-knowledge engine Wolfram|Alpha provided
by Wolfram Research, Inc.: https://www.wolframalpha.com/

https://www.wolframalpha.com/
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