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Balance control using both ZMP and COM height variations:
A convex boundedness approach

Stéphane Caron and Bastien Mallein

Abstract— Developments for 3D control of the center of mass
(CoM) of biped robots are currently located in two local
minima: on the one hand, methods that allow CoM height
variations but only work in the 2D sagittal plane; on the other
hand, nonconvex direct transcriptions of centroidal dynamics
that are delicate to handle. This paper presents an alternative
that controls the CoM in 3D via an indirect transcription that
is both low-dimensional and solvable fast enough for real-
time control. The key to this development is the notion of
boundedness condition, which quantifies the capturability of
3D CoM trajectories.

I. INTRODUCTION

Three-dimensional control of the center of mass follows in
the wake of major achievements obtained in 2D locomotion
with the linear inverted pendulum mode (LIPM) [1]. The
core idea of the LIPM was to keep the CoM in a plane,
which made the model tractable and paved the way for
key discoveries, including the capture point [2] and capture-
point based feedback control [3], subsequently applied in
successful walking controllers [4], [5].

For a while, the ability to leverage vertical CoM motions
seemed lost on the way, but recent developments showed
a regain of interest for this capability [6], [7], [8]. All of
them share a design choice that can be traced back to the
seminal work of Pratt and Drakunov [9]: they interpolate
CoM trajectories in a 2D sagittal plane for the inverted
pendulum model (IPM) with fixed center of pressure. The
key result of [9] is the conservation of the “orbital energy”
of a CoM path, a variational principle that was later translated
into a predictive controller in an equally inspirational study
by Koolen et al. [7]. Ramos and Hauser [6] also noticed
that the capture point, interpreted as point where to step,
was a function of the CoM path, which they computed
via a single shooting method. Interestingly, Hopkins et al.
pointed out that vertical CoM motions is equivalent to turning
the constant ω of the LIPM into a time-varying function
ω(t) [10]. They brought to light a differential equation that
this function must satisfy, and used it to compute back ω(t)
from, once again, an a priori CoM-height trajectory.

Different as they may seem, the variational and point-
where-to-step approaches are two instances of the same
underlying concept: convergence of the system towards a
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steady state requires that its divergent component of motion
stays bounded. Lanari et al. [11], [12] showed how the
condition for this to happen involves an integral over the
future trajectory of the system (one can see a similar integral
in the orbital energy), which they named the boundedness
condition.

The solution we explore in this study differs from existing
approaches in that it considers ω(t) per se rather than as
a result of CoM trajectories. This change of perspective is
made possible by the derivation of the boundedness condition
for the 3D IPM (Section II), which is then cast into an
optimization problem for 2D and 3D control of the CoM
(Sections III and IV). The resulting predictive controller is
implemented and tested in Section V.

II. BOUNDEDNESS CONDITION OF THE IPM

The equation of motion of the inverted pendulum model
is:

c̈(t) = λ(t)(c(t)− r(t)) + g (1)

where c is the center of mass (CoM) of the robot, r is the
center of pressure (CoP) under its contacting foot, and g =
−gez is the gravity vector. The quantity λ has the unit of
a stiffness. It must be positive λ ≥ 0 by unilaterality of
contact, while the CoP r always belongs to the contact area.

A. Divergent component of motion

To alleviate calculations, let us formulate the divergent
component of motion [13] of this model as a velocity rather
than a point:1

ξ(t) = ċ(t)− ṙ(t) + ω(t)(c(t)− r(t)) (2)

where ω(t) is a solution to the differential equation [10]:

ω̇ = ω2 − λ (3)

The quantity ω has the unit of a damping. The interest
of its differential equation appears when differentiating the
divergent component of motion:

ξ̇ = (λ+ ω̇)(c− r) + ω(ċ− ṙ) + g− r̈ = ωξ+ g− r̈ (4)

The solution to this first-order differential equation is:

ξ(t) =

(
ξ(0) +

∫ t

0

e−Ω(τ)(g − r̈(τ))dτ

)
eΩ(t) (5)

where Ω is the antiderivative of ω such that Ω(0) = 0. In the
LIPM where the damping ω is a constant, Ω(t) = ωt and

1Consider the derivative of a product uv compared to that of a ratio u/v.
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this equation is equivalent to the well-known capture point
dynamics [13].

To be viable [14], the trajectory of the system must be
bounded, which implies that the above expression does not
diverge despite its exponential factor. This necessary condi-
tion for viability is known as the boundedness condition [11],
[12], and is written here:∫ ∞

0

(r̈(t)− g)e−Ω(t)dt = ξ(0) (6)

Note how this requirement involves both the CoP trajectory
r(t) and stiffness trajectory λ(t): the former is integrated
through r̈(t), while the latter is embedded in Ω(t).

B. Decoupling of the boundedness constraint

Let us express all coordinates in the inertial frame depicted
in Figure 1. In what follows, we will use the subscript
i (“initial”) to indicate values at t = 0, and f (“final”)
for stationary values obtained as t → ∞. The origin of
the inertial frame is taken at the stationary CoP position
rf = 0 where we want the robot to stop. The stationary CoM
position is then cf = zfez , with zf the desired stationary
CoM height. The two vectors ex and ey are horizontal (i.e.
orthogonal to gravity), and ex is chosen aligned with the
horizontal projection of rf − ci.

In reality, the center of pressure always lies on the contact
surface between the robot and its environment. Therefore,
CoPs r output by our controller must satisfy the feasibility
condition of lying on the contact surface. Denoting by n
the contact normal, this means that r and all its derivatives
are orthogonal to n; in particular, r̈(t) · n = 0 at all times.
Taking the dot product of Equation (6) with n then yields:∫ ∞

0

e−Ω(t)dt =
˙̄zi + ωiz̄i

g
(7)

where z̄
def
= (c · n)/(ez · n) is the height of the vertical

projection of c onto the contact surface.
Let us now define p(t)

def
=
[
rx(t) ry(t)

]
and c̄i

def
=[

xi yi

]
the horizontal projections of the CoP and CoM,

respectively. The horizontal projection of Equation (6) is:∫ ∞
0

p̈(t)e−Ω(t)dt = ( ˙̄ci − ṗi) + ωi(c̄i − pi) (8)

A double integration by parts of the left hand side of this
equation yields:∫ ∞

0

p̈(t)e−Ω(t)dt =

∫ ∞
0

p(t)λ(t)e−Ω(t)dt− (ṗi + ωipi)

Combining these last two equations, we obtain a temporal
formulation of the boundedness condition with separate
gravity and CoP components:

∫ ∞
0

e−Ω(t)dt =
˙̄zi + ωiz̄i

g∫ ∞
0

p(t)λ(t)e−Ω(t)dt = ˙̄ci + ωic̄i

Temporal Boundedness Condition

(9)

(10)

Contact
Area

Fig. 1. Definition of the inertial frame (ex, ey , ez). The frame is
rooted at the stationary CoP location rf . The instantaneous CoM location
is denoted by ci. Both vectors ex and ey lie in the horizontal plane, and
ex is aligned with the (horizontal projection of the) desired direction of
motion rf − ci.

Equations (9)–(10) are equivalent to (6) as (ex, ey,n) is a
(non-orthogonal) basis of the 3D Euclidean space.

In the familiar setting of the LIPM, the first equation boils
down to:∫ ∞

0

e−ωtdt =
1

ω
=

0 + ωz

g
⇐⇒ ω =

√
g

z
(11)

Meanwhile, taking p = 0 in the second one implies that
the traditional LIPM capture point is located at rf . This
observation illustrates how the boundedness condition (9)–
(10) encompasses the well-known model.

C. Change of variable

Define the adimensional quantity s(t) = e−Ω(t). This
variable ranges from 1 when t = 0 to 0 as t → ∞, and
its time derivatives are:

ṡ(t) = −ω(t)s(t) (12)
s̈(t) = λ(t)s(t) (13)

Thanks to the bijective mapping between s and t, we can
characterize ω and λ indistinctly as functions of s or t. Let
us choose the former, and denote by (·)′ derivatives with
respect to s. For instance, ω(t) = ω(s(t)) implies that:

dω

dt
(t) =

ds

dt
(t)

dω

ds
(s(t)) =⇒ ω̇ = ṡω′ = −sωω′ (14)

where we eventually omit arguments �(t) and �(s(t)) for
brevity. Applying the chain rule similarly yields:

dt =
ds

ṡ
= − ds

ω(s)s
(15)

λ = ω2 − ω̇ = ω(ω + sω′) = ω(sω)′ (16)

We can therefore formulate the boundedness condition (9)–
(10) in terms of the new variable s as:

∫ 1

0

1

ω(s)
ds =

˙̄zi + ωiz̄i

g∫ 1

0

p(s)(sω)′ds = ˙̄ci + ωic̄i

Timeless Boundedness Condition

(17)

(18)



With this change of variable, infinite integrals over time
solutions ω(t),p(t) are turned into finite integrals over
functions ω(s),p(s) of the new variable s. This approach
bears a close resemblance to the recently proposed concept
of spatial quantization [15].

III. SAGITTAL 2D BALANCE WITH FIXED COP

Let us consider first the case of 2D stabilization in
the plane (ex, ez) with a fixed CoP. Since rx = 0, the
boundedness condition becomes:

ωi = − ẋi

xi
(19)

żi + ωizi = g

∫ 1

0

1

ω(s)
ds (20)

Equation (19) implies via (5) that ẋ = −ωx, which integrates
to x(t) = xie

−Ω(t) = xis(t). We see how, in 2D balance con-
trol, the coordinates x and s are proportional. Interpolation
over x [7], [9] is therefore equivalent to interpolation over
s, and one can recognize in (20) the same principle as the
conservation of orbital energy [9]. The benefit of using s
rather than x will appear when we move to 3D control.

A. Viability condition

The viability condition zcrit ≥ 0 derived in [7] for λ ≥ 0
can be seen as a consequence of (20). Indeed, the lower-
bounding profile λ = 0 corresponds to (sω)′ = 0, that is to
say, sω = ωi. It follows that:∫ 1

0

ds

ω(s)
≥
∫ 1

0

ds

ω(s)
=

∫ 1

0

s

ωi
ds =

1

2ωi
(21)

zcrit = zi +
żi

ωi
− g

2ω2
i

=
g

ωi

[∫ 1

0

ds

ω(s)
− 1

2ωi

]
≥ 0 (22)

In practice, biped robots cannot exert arbitrary large contact
forces, and tend to break contact when ground pressure
becomes too low. To reflect this, we will thereafter consider
the stricter feasibility condition λ ∈ [λmin, λmax]. The cor-
responding viability condition can be derived in a similar
fashion by considering lower- and upper-bounding profiles:2

żi + ωizi ≤
g

λmax

[
ωi +

√
λmax − λmin

λmin

√
λmax − ω2

i

]
(23)

żi + ωizi ≥
g

λmin

[
ωi −

√
λmax − λmin

λmax

√
ω2

i − λmin

]
(24)

B. Computing feasible ω solutions

Let us partition the interval [0, 1] into N fixed segments
0 = s0 < s1 < . . . < sN = 1, for instance sj = j/N .
We compute solutions to the boundedness condition where
λ(s) is piecewise constant over this subdivision, that is, ∀s ∈
[sj , sj+1], λ(s) = λj . Define:

ϕ(s)
def
= s2ω2 ∆j

def
= s2

j+1 − s2
j (25)

2 A more detailed derivation is provided in the supplementary material:
https://scaron.info/files/icra-2018/supmat.pdf

Remarking that ϕ′ = 2sλ from Equation (16), we can
directly compute ϕ(s) for s ∈ [sj , sj+1] as:

ϕ(s) =

j−1∑
k=0

λk∆k + λj(s
2 − s2

j ) (26)

In what follows, we use the shorthand ϕj = ϕ(sj).
We can now calculate the right-hand side of the bounded-

ness condition (20):∫ 1

0

ds

ω(s)
=

N−1∑
j=0

∫ sj+1

sj

sds√
ϕj + λj(s2 − s2

j )
(27)

=

N−1∑
j=0

∫ ∆j

0

dv

2
√
ϕj + λjv

(28)

=

N−1∑
j=0

1

λj

[√
ϕj + λj∆j −

√
ϕj

]
(29)

=

N−1∑
j=0

∆j√
ϕj+1 +

√
ϕj

(30)

Note that the latter expression is convex in the variables
ϕ1, . . . , ϕN (by definition ϕ0 = 0), as shown in Appendix A.

Besides boundedness, solutions should enforce three con-
ditions:
• Feasibility: λmin ≤ λ ≤ λmax, expressed linearly in

terms of ϕ as ∆jλmin ≤ ϕj+1 − ϕj ≤ ∆jλmax;
• Initial state: ω should be equal to ωi at the initial index
s = 1, that is to say, ϕN = ω2

i ;
• Stationary state: a stationary COM height zf can also

be specified via ϕ1 = ∆0g/zf , or similarly a range of
heights zmin ≤ zf ≤ zmax used to approximate kinematic
reachability.

Wrapping all four conditions together and adding a regulariz-
ing cost function over variations of λ, we obtain Optimization
Problem 1. This problem is “almost” a quadratic program: it
has a quadratic cost function and linear constraints, except
for Equation (33) which is a one-dimensional nonlinear
equality constraint.

C. Model predictive control for 2D balance

Solving Problem 1 can be done fast enough for the
control loop, on the scale of 1–3 ms using a general-purpose
nonlinear solver (see Section V). At each control cycle, we
compute the optimum ϕ∗1, . . . , ϕ

∗
N of the problem and extract

its initial stiffness via:

λ∗i =
ω2

i − ϕ∗N−1

∆N−1
(31)

This value is then sent as reference to the lower-level
leg and attitude controllers until the next control cycle.
In the standard model-predictive fashion, the rest of the
optimal trajectory is discarded. As a matter of fact, the
trajectories ω(s) and λ(s) are never explicitly computed,
let alone their time counterparts. The operation is possible
(see Appendix B) but not necessary for control. Compared
to the controller from [7], this solution enforces feasibility

https://scaron.info/files/icra-2018/supmat.pdf


Optimization Problem 1 2D Balance Control

minimize
ϕ1,...,ϕN

N−1∑
j=1

[
ϕj+1 − ϕj

∆j
− ϕj − ϕj−1

∆j−1

]2

(32)

subject to
N−1∑
j=0

∆j√
ϕj+1 +

√
ϕj

=
˙̄zi + ωiz̄i

g
(33)

ϕN = ω2
i (34)

∀j, λmin∆j ≤ ϕj+1 − ϕj ≤ λmax∆j (35)
ϕ1 = ∆0g/zf (36)

constraints λmin ≤ λ ≤ λmax a priori, as opposed to an a
posteriori clipping that may cause free-falling phases in the
output trajectory.

IV. 3D BALANCE

In 3D balance where the initial velocity ċi is not necessar-
ily coplanar with the stationary state, the CoP cannot be fixed
and the initial damping ωi is not determined by Equation (19)
any more. The latter is replaced by a more general condition
over CoP trajectories:∫ 1

0

p(s)(sω)′ds = ˙̄ci + ωic̄i (37)

Subject to the feasibility conditions:

Ap ≤ b (38)

where the matrix A and vector b form the halfspace-
representation of the contact polygon. This polygon is readily
computed from contact geometry. For example, a rectangular
contact |(p ·ew)| ≤W , |(p ·eh)| ≤ H has four inequalities:

±
[
(ex · ew) (ey · ew)
(ex · eh) (ey · eh)

]
p ≤

[
W
H

]
(39)

A. Computing feasible CoP solutions

The structure of Equation (37) suggests a particular solu-
tion: let us take p(s) = pif(sω), where:
• f(ωi) = 1: initially, the CoP is located at ri;
• f(0) = 0: eventually, the CoP is located at rf ;
• f is increasing: we exclude solutions where the CoP

goes back and forth, that we deem suboptimal;
• f is integrable: let F denote its antiderivative such that
F (0) = 0. It is positive by monotonicity of f .

With this choice, the boundedness condition (37) becomes

pi =
˙̄ci + ωic̄i

F (ωi)
(40)

By monotonicity of f , the CoP trajectory is feasible if
and only if its initial position pi satisfies the feasibility
condition (38). Considering (40), this can be written:

bF (ωi)− (Ac̄i)ωi ≥ A ˙̄ci (41)

Optimization Problem 2 3D Balance Control

minimize
ϕ1,...,ϕN

N−1∑
j=1

[
ϕj+1 − ϕj

∆j
− ϕj − ϕj−1

∆j−1

]2

(32)

subject to
N−1∑
j=0

∆j√
ϕj+1 +

√
ϕj
− z̄i

g

√
ϕN =

˙̄zi

g
(44)

ω2
i,min ≤ ϕN ≤ ω2

i,max (45)

∀j, λmin∆j ≤ ϕj+1 − ϕj ≤ λmax∆j (35)
ϕ1 = ∆0g/zf (36)

Compared to the previous fixed-CoP setting where ωi was
fully determined, we see how the relaxed polygonal con-
straint Ap ≤ b now frees a range of possible choices for ωi.
At this stage, one can explore different CoP strategies via
the choice of a (preferably convex) function F . Let us focus
on the example of a power law, i.e. for some k > 1:

f(sω) =

(
s
ω

ωi

)k−1

=⇒ F (ωi) =
ωi

k
(42)

Equation (41) simplifies to:(
b

k
−Ac̄i

)
ωi ≥ A ˙̄ci (43)

Each line of this vector inequality provides a lower or upper
bound on ωi, depending on the sign of the factor in front
of it. These inequalities can then be summed up as ωi,min ≤
ωi ≤ ωi,max. Note that this computation is only carried out
once from the initial state, i.e. it is not part of the following
numerical optimization.

By definition of ϕ, ωi is equal to
√
ϕN , so that bounds

on ω are mapped directly into the optimization as ω2
i,min ≤

ϕN ≤ ω2
i,max. However, previously ωi also appeared in the

right-hand side of the nonlinear equality constraint (33). In
3D, this constraint becomes:

N−1∑
j=0

∆j√
ϕj+1 +

√
ϕj
− z̄i

g

√
ϕN =

˙̄zi

g
(46)

Both the function x 7→ −
√
x and the expression from

Equation (30) are convex, therefore this new expression is
convex as well. Wrapping up these developments, we obtain
Optimization Problem 2.

B. Model predictive control for 3D balance

Our pipeline for 3D balance is the same as in Section III.
Once the optimal solution ϕ∗1, . . . , ϕ

∗
N of Problem 2 is found,

stiffness and CoP are extracted as:

ω∗i =
√
ϕ∗N λ∗i =

ϕ∗N − ϕ∗N−1

∆N−1
p∗i =

˙̄ci + c̄iω
∗
i

F (ω∗i )
(47)

In the case of the power law (42), the CoP solution becomes:

p∗ = k

[
pi +

ṗi

ω∗i

]
(48)



Fig. 2. Saturation behavior of the 3D balance controller. The horizontal
distance from CoM to contact is denoted by d, n is the contact normal and
red discs indicate the initial CoP. The controller keeps the CoM trajectory
as close as possible to a LIPM via CoP variations. When this is not enough,
height variations are resorted to for additional braking.

Interestingly, we recognize here the expression of the
capture-point feedback control law [3], [5], [13], under the
usual requirement that k > 1, even though we are in the
context of 3D balance where λ and ω are time-varying.

Problem 2 is solved as fast as its 2D counterpart, on the
scale of 1–3 ms, but it is able to cope with both sagittal and
lateral velocity compensation. Its solutions tend to be flatter
thanks to a wider range of CoP positions. As a matter of
fact, by trying to keep the stiffness λ as constant as possible,
Problem 2 generates a hierarchical strategy: CoP variations
are used first; then, if need be, CoM height variations are
resorted to. This behavior is depicted in Figure 2.

C. Discussion

CoM trajectory generation using 6D contacts is a notori-
ously nonconvex problem due to angular momentum. Even
when a linear model is used and angular momentum is kept
constant [5], nonconvexity lingers in feasibility inequality
constraints [16]. Nonlinear optimal control has been explored
on direct transcriptions of this problem using e.g. multiple
shooting [17]; however, our experience in [18] met with
frequent solver failures caused by local optimum switches,
which required dedicated countermeasures. To avoid such
switches, Ponton et al. [19] proposed a convex relaxation of
the direct transcription of centroidal dynamics by bounding
the convex and concave parts of the angular momentum.

Compared to these previous works, the study we propose
here relies on an indirect transcription, i.e. optimization
variables are neither the CoM position nor its derivatives.
To reduce further the dimension of the problem, we made
the CoP trajectory a consequence p(s) = pif(sω) of the
damping profile ω, as opposed to e.g. a shooting method
where p and ω would be optimized jointly. Choosing a
linear CoP trajectory also impacts the existence of feasible
solutions, for instance when the feedback gain k is too large.
An effect that is by the way also present in all capture-point
feedback controllers [3], [4], [5], [10], [20].

Compared to e.g. [16], [17], [18], we did not explicitly
model frictional constraints in the present study. We observe
however, as noted in [7], that the friction force is maximal
at the beginning of the balancing trajectory. It can therefore
be constrained (if needed) within the presented framework
via additional instantaneous CoP inequalities (38).

V. STEPPING EXPERIMENTS

We implemented both balance controllers3 and evaluated
them in pymanoid4, an extension of OpenRAVE for hu-
manoid robotics. Optimization problems were formulated
with a spatial discretization sj = j/N with N = 10. They
were subsequently solved using the IPOPT solver,5 with
Jacobians and Hessians computed by automatic differenti-
ation via CasADi.6 Note that IPOPT is a general-purpose
nonlinear solver designed for large-scale problems, while the
problems at hand are small and have additional structure.
A dedicated solver can leverage this structure for improved
performance [21].

We ran a benchmark over randomized states and contact
locations for Problems 1 and 2. Both solvers were fed the
same initial states, and sampling was biased toward viable
states using the proxy distribution zcrit ∼ 1

2zf + σzU([0, 1]).
On an Intel Core i7-6500U CPU @ 2.50 Ghz, computation
times were identical: 1.8 ± 0.7 ms and 1.7 ± 0.6 ms for
the 2D and 3D problem, respectively (averages and standard
deviations over 10000 control cycles aggregated over 225
launches from different initial states). These times can be
improved by two orders of magnitude using the dedicated
solver introduced in the extension [21] of the present work.

We next considered a push recovery scenario for an HRP-4
humanoid evolving in a 3D model of an A350 aircraft under
construction. Due to e.g. an unexpected collision, or slippage
over a ground obstacle that is only detected after momentum
has built up, the robot is imparted with an initial velocity
of 1.4 m s−1. Although hand contacts would be equally
important in such scenarios, we focus here on the stance leg
trajectory. First, a foothold is chosen on the fuselage as the
kinematically reachable location with the lowest tilting. The
velocity in the resulting frame (Figure 1) consists of roughly
1.3 m s−1 in the desired direction of motion ex, 0.2 m s−1

in the lateral direction ey and 0.5 m s−1 along the vertical
ez . We confirmed that the robot is able to stop in 1.5 s using
using the CoP strategy (42) with k = 2 and a 10 cm CoM
height variation. The scenario is depicted in Figure 3 and in
the accompanying video.

VI. CONCLUDING NOTE

We saw how the boundedness condition can lead to an
alternative optimization for 3D control of the inverted pen-
dulum model. See [21] for an extension of this approach to
3D bipedal walking, addressing follow-up questions such as
contact switches and the efficient resolution of the underlying
numerical optimization.
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Fig. 3. 3D balance control using both CoP and CoM height variations.
The robot recovers from an undesired lateral push by stepping onto the
fuselage of an A350 aircraft under construction. An initial velocity of
1.4 m s−1 is absorbed in 1.5 s using both the ankle strategy and a 10 cm
CoM height variation.
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APPENDIX

A. Convexity of Equation (30)
Let us first consider the function g(x, y) = 1√

x+
√
y

. The
trace and determinant of its Hessian ∇2g are:7

tr(∇2g) =
x2 + 3(x+ y)

√
xy + y2

4(xy)3/2(
√
x+
√
y)3

(49)

det(∇2g) =
3

16(xy)3/2(
√
x+
√
y)4

(50)

Both are strictly positive quantities over the domain x, y > 0,
therefore ∇2g is positive definite and g is convex. Con-
sider now the function G(ϕ) defined by Equation (30)
over the vector ϕ of positive values ϕ1, . . . , ϕN : G(ϕ) =∑N−1
j=0 ∆jg(ϕj+1, ϕj). For any t ∈ [0, 1], G(tϕ+(1− t)ϕ′)

=

N−1∑
j=0

∆jg(tϕj+1 + (1− t)ϕ′j+1, tϕj + (1− t)ϕ′j)

≤
N−1∑
j=0

∆j

[
tg(ϕj+1, ϕj) + (1− t)g(ϕ′j+1, ϕ

′
j)
]

(51)

= tG(ϕ) + (1− t)G(ϕ′) (52)

Which establishes that G is convex.

B. Computing time trajectories
The piecewise constant values of λ(s) are directly given by

λj = (ϕj+1 − ϕj)/∆j . Computing the time trajectory λ(t)
is then equivalent to finding the switch times tj such that
s(tj) = sj . Solving the equation of motion (1) of the IPM
with constant λ, one can establish the recurrence relation:

tj = tj+1 +
1√
λj

log

(√
ϕj+1 +

√
λjsj+1

√
ϕj +

√
λjsj

)
(53)

The same relation can be applied to find the map s(t), giving
ω(t) = ω(s(t)) = [ϕj + λj(s(t)

2 − s2
j )]

1/2s(t)−1 for t ∈
[tj , tj+1] by Equation (26). Alternatively, one can solve the
differential equation (3) from tj to get directly:

ω(t) =
√
λj

1− υj tanh(
√
λj(t− tj))

υj − tanh(
√
λj(t− tj))

(54)

where υj = λj/ω(sj) = λjsj/ϕj .

7 To avoid painstaking calculations such as this one, we used the on-
line computational-knowledge engine Wolfram|Alpha provided by Wolfram
Research, Inc.: https://www.wolframalpha.com/

https://www.wolframalpha.com/
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