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Introduction 
- Clathrate hydrates are ice-like crystalline compounds 

consisting of cage-like structures formed by hydrogen-

bonded water molecules that enclose guest molecules 

stabilizing the lattice structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Hydrates can be used to  

remove salt or to clean  

water.  

 

 

 

 

- Phase equilibria data in the presence of different salts is 

needed. Unfortunately, there are still few studies in the 

literature 

 Objectives 
 

- Comparison between the quick and the slow 

procedure. 

 

- Determine the equilibrium temperatures of 

cyclopentane hydrates in the presence of NaCl, KCl, an 

equal-mass mixture NaCl-KCl, and CaCl2. 
 

- Developing three thermodynamic models to model 

cyclopentane hydrates in the presence of salts. One is 

based on standard liquid-solid water equations; another 

is based on Kihara parameters in van der Waals and 

Platteeuw approach, while the third is based on cage 

occupancy correlation. 

 

Results 
Comparison of two procedures in pure water 

- The equilibrium temperatures following the quick procedure are 

systematically higher than the ones following the slow procedure. 

- The equilibrium temperatures dropped strongly with an increase 

in salt concentration, whatever the kinds of salts 

Modelling 

- The equilibrium temperatures were determined following both the 

quick and the slow dissociation procedure. 

- The equilibrium temperatures following the quick procedure are 

systematically higher than the ones from the slow procedure. 

- Three approach have a good capacity to predict the equilibrium 

temperature, while the third can be a good suggestion as the 

deviation is almost zero for all kinds of salts. 
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The five cavity types and the three common unit crystals structures 

of the clathrate hydrates [1]  

1. Reactor 

2. Cryostat 

3. Impeller 

4. Agitator 

5. Cooling jacket 

6. Motor 

7. Temperature transmitter 

8.  Computer 

9. Temperature probe 

10. Drying oven 

11. Ion chromatography 

12. Camera  
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Temperature history in pure water: Slow dissociation 
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Our value is the same with the 

value reported by Dendy Sloan 

et al (7.7°C) [2], Dirdal et al 

(7.7°C) ([3] Sefidroodi et al 

(7.7°C) [4], while Han et al [5] 

reported 7.8°C. 

Our value is the same or 

very close to the value 

reported by Zylyftari et al 

(7.11°C) [6],  Masahiro et 

al (6.8°C) [7],  Baek et al 

(6.7-7.2°C) [8], Whitman 

et al (7°C) [9], and 

Zhang et al (7.02°C) [10] 

using either DSC or  low 

dissociation rate which 

are accurate methods. 

Added 

Hydrate 

formation   

Salts      Well Mixing 
500g 

Water     

114,38g  

CP   

12 

The slow procedure provided a more accurate data than 

the quick dissociation  

Quick dissociation Slow dissociation 

Salinity,  
% w/w 

Te-

quick 

in 

NaCl
, °C 

Te-

slow 

in 

NaCl
, °C 

Te in 

NaCl, 
°C [6]  

Te 

in 

NaC

l, °C 
[7] 

Te-

quick 

in 

KCl, 
°C 

Te-

slow 

in 

KCl, 
°C 

Te-quick in 

a 

mixture 

of NaCl-
KCl, °C 

Te-slow 

in a 

mixture 

of 

NaCl-
KCl, °C 

Te-quick 

in 

CaCl2, 
°C 

 

Te-slow 

in 

CaCl2, 
°C 

 

                  
0  7.7 7.1 7.11 - 7.7 7.1 7.7 7.1 7.7 7.1 
1 6.9 6.4 - - 7.2 6.9 7 6.7 7.1 6.8 
2 6.3 5.9 - - 6.6 6.1 6.5 6.0 6.8 6.3 
3.5 5.7 5 - - 6 5.5 5.9 5.4 6.2 5.6 
5 4.9 4.1 - 4.45 5.4 4.9 5.1 4.6 5.5 4.9 
8 3.5 2.4 - - 4.2 3.6 3.6 3.0 3,9 3,2 
10 2 0.9 1.16 1.25 3.6 2.4 2.4 1.9 2.5 1.8 
12 0.9 -0.4 - - 2.3 1.4 1.5 0.6 1.5 0.1 
14 -1 -1.8 - - 1.2 0.4 -0.2 -0,6  -1.0 -1.9 
16 -2.7 -3.8 - - 0.6 -0.5 -1.2  -2,1 -2.7 -4 
18 -5 -5.3 - - -1 -1.9 -3  -3,6 -5.5 -6.7 
20 -7.2 -7.8 -8.00 - -2.1 -3 -4.6  -5,4 -8.1 -9.6 
22 -9.7 -10.2 - - - - -6.1 -7,2 -12.0 -13.2 

23 
25 

-11 -11.6 -11.66 - - - - - -13.0 

-16.0 

-15.1 

-19.0 

Our data in pure 

water, 7.1 °C, is 

close to  7.11 °C 

reported by 

Zylyftari by using 

the DSC 

The approximately same values in 

the presence of NaCl 5%, 10%, 20% 

and 23% compared with Zylyftari et 

al [6] and Kishimoto et al [7]  

Approach n°1:  
Developing a new correlation  

ΔCfm (T) 

Salt solution (KCl, KCl-NaCl, 

CaCl2) aw,0 at 273,15K 

Experimental 

data in NaCl 

T, aw  

Predict the 

equilibrium 

temperatures, 

Ti,pred 

PHREEQC, aw,i   

at Ti,pred 
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equilibrium 
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Approach n°2:  
Statistical thermodynamic 
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Optimisation 
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 Calculate deviation 
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salt concentration, 

calculate  
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 Approach n°3:  
 Developing a new correlation 𝜃 = F(aw) 

 
Optimize Kiharaparameter 

ΔCfm (T) 

Approach n°1 
)exp()( TbaTFCmf 

Approach n°2 
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a b R (coefficient of 
determination) 

        
-(1E-19) 0.1813 0.835 

a (10-10 m) σ (10-10 m) ε/k 

0.8968 2.71 
  

264.5 
  

Kihara parameters for cyclopentane hydrate 

Approach n°3       panamaF www  2
  

m 
 

n 
 

p 
R (coefficient of 
determination) 

        
  
-0.0004772 

 
0.0004731 

 
0.9998800 0.9957110 

Versus σ at the minimum deviation with experimental data 

Typical form of the deviation between the predicted 

and the experimental data 

Predicted - equilibrium temperatures: Approach n°1 
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Predicted - equilibrium temperatures: Approach n°3 
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