
HAL Id: hal-01590347
https://hal.science/hal-01590347v2

Submitted on 31 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Direct Time Parallel Solver by Diagonalization for the
Wave Equation

Martin J Gander, Laurence Halpern, Johann J Rannou, Juliette Ryan

To cite this version:
Martin J Gander, Laurence Halpern, Johann J Rannou, Juliette Ryan. A Direct Time Parallel Solver
by Diagonalization for the Wave Equation. SIAM Journal on Scientific Computing, 2019, 41 (1),
pp.A220-A245. �10.1137/17M1148347�. �hal-01590347v2�

https://hal.science/hal-01590347v2
https://hal.archives-ouvertes.fr

A DIRECT TIME PARALLEL SOLVER BY DIAGONALIZATION
FOR THE WAVE EQUATION

MARTIN J. GANDER, LAURENCE HALPERN, JOHANN RANNOU, JULIET RYAN

Abstract. With the advent of very large scale parallel computers, it has become more and more
important to also use the time direction for parallelization when solving evolution problems. While
there are many successful algorithms for diffusive problems, only some of them are also effective
for hyperbolic problems. We present here a mathematical analysis of a new method based on the
diagonalization of the time stepping matrix proposed by Maday and Rønquist in 2007. Like many
time-parallelization methods, at first this does not seem to be a very promising approach: the
matrix is essentially triangular, or, for equidistant time steps, actually a Jordan block, and thus
not diagonalizable. If one chooses however different time steps, diagonalization is possible, and one
has to trade off between the accuracy due to necessarily having different time steps, and numerical
errors in the diagonalization process of these almost non-diagonalizable matrices. We present for the
first time such a diagonalization technique for the Newmark scheme for solving wave equations, and
derive a mathematically rigorous optimization strategy for the choice of the parameters in the special
case when the Newmark scheme becomes Crank-Nicolson. Our analysis shows that small to medium
scale time parallelization is possible with this approach. We illustrate our results with numerical
experiments for model wave equations in various dimensions, and also an industrial test case for the
elasticity equations with variable coefficients.

1. Introduction. Using the time direction in evolution problems for paralleliza-
tion is an active field of research; see [13] for an overview. Most of the methods devel-
oped for this purpose are iterative, see for example the parareal algorithm [33], whose
convergence was analyzed in [26] for linear problems. It was also shown in [26] that for
the transport equation no speedup is possible with the parareal algorithm; for further
analyses in the hyperbolic case, see [12]. A sharp convergence estimate of the parareal
algorithm for non-linear problems can be found in [9]. Later, a variation of the parareal
algorithm using spectral deferred correction [38] led then to the PFASST algorithm
[5], which is a multilevel method. Space-time multigrid methods were also devel-
oped (see [31] and references therein), and a new such method using only standard
components can be found in [22] with excellent strong and weak scaling properties for
parabolic problems. There is also the non-invasive MGRIT algorithm [8, 6], and it was
shown in [21] that MGRIT is equivalent to an overlapping parareal algorithm, which
led to a detailed non-linear convergence analysis for MGRIT [21]. Early versions of
these space-time multigrid methods were based on waveform relaxation [34, 47], and
there are also very successful Schwarz waveform relaxation methods for the time par-
allel solution of evolution partial differential equations [25, 28, 17, 11, 16, 1], and the
more recent Dirichlet-Neumann and Neumann-Neumann waveform relaxation meth-
ods [37, 32, 19]. These are among the very few space-time iterative methods that
are effective for hyperbolic problems [18, 15, 42, 20], since they use the finite speed
of propagation for good space-time decompositions; see also the related tent-pitching
approach [30] which removes the need for iteration completely by following in the de-
composition the characteristics. A different approach for hyperbolic problems are the
Krylov parareal methods [7, 23, 24, 45], which however have an important overhead
due to orthogonalization.

As an alternative, one can use direct space-time parallel solvers, like RIDC [4],
which is ideal for multicore architectures with 4 to 8 cores, and generates high order
solutions in time in parallel at the runtime cost of an Euler time stepper. For linear
hyperbolic problems, there is also the ParaExp algorithm [14] which is based on a
fully overlapping decomposition and Krylov techniques. A further direct approach

1

based on the diagonalization of the time stepping matrix was introduced in [36].
This approach contains however parameters which must be carefully selected for the
method to be successful. A first estimate for these parameters for a Backward Euler
discretization of the heat equation was obtained in the short manuscript [10]. The
idea of diagonalization can already be found in [2, 3] at the level of implicit Runge-
Kutta methods, but not with parallelization in mind. Wave equations are however
more delicate, and require more refined techniques leading to more accurate estimates
for the parameters.

We present a new such direct time parallel method based on diagonalization for
wave equations discretized by the Newmark scheme. Our analysis for the special case
of Crank-Nicolson shows that with this approach not an arbitrarily large number of
processors can be used to parallelize in time, only about 3-4 times more than for
RIDC for example, but as for RIDC, this number becomes a multiplicative factor for
the processors used for parallelization in space: for example if 1000 processors were
used for parallelization in space, and diagonalization permits the use of 20 processors
in time, overall 20000 processors could then be used to solve the wave equation in
parallel, instead of only 1000 without parallelization by diagonalization. We consider
as our model partial differential equation (PDE) the second order wave equation,

(1.1)
∂ttu−∆u = 0 in Ω× (0, T),

u = 0 on ∂Ω,
(u, ∂tu)(·, 0) = (f, g) in Ω.

A popular implicit time integrator for the wave equation (1.1) is the Newmark scheme
[40]: let ∆h be a space discretization of the Laplacian ∆, and we thus want to discretize
üh −∆huh = 0 in time, where üh := ∂ttuh. In the Newmark scheme, the additional
unknown u̇h := ∂tuh is introduced, and one then approximates both uh and u̇h on the
time partition 0 = t0 < t1 < t2 < · · · < tN = T , kn := tn − tn−1, by a time stepping
rule involving the two parameters β and γ,

(1.2)
un+1
h = unh + kn+1u̇

n
h + k2n+1((1

2 − β)ünh + βün+1
h),

u̇n+1
h = u̇nh + kn+1((1− γ)ünh + γün+1

h),
ünh −∆hu

n
h = 0,

with given initial data u0h and u̇0h.

Let It be the N×N identity matrix associated with the time domain and Ix be the
J × J identity matrix associated with the spatial domain. Setting u := (u1h, . . . , u

N
h),

and similarly for u̇ and ü, and defining the matrices

B1 =

1
k1
− 1
k2

1
k2

0

0
. . .

. . .

− 1
kN

1
kN

 , B2 =

0
1 0 0

0
. . .

. . .

1 0

 ,

C1 =

βk1

(1
2 − β)k2 βk2 0

0
. . .

. . .

(1
2 − β)kN βkN

 , C =

γ

(1− γ) γ 0

0
. . .

. . .

(1− γ) γ

 ,

2

the scheme (1.2) can be written in the compact form

(1.3)
(B1 ⊗ Ix)u = (B2 ⊗ Ix)u̇ + (C1 ⊗ Ix)ü + F,
(B1 ⊗ Ix)u̇ = (C ⊗ Ix)ü +G,
ü− (It ⊗∆h)u = 0,

with the right hand sides

F = (
1

k1
u0h + u̇0h + (

1

2
− β)k1∆hu

0
h, 0, · · · , 0), G = (

1

k1
u̇0h + (1− γ)∆hu

0
h, 0, · · · , 0).

Solving the second equation in (1.3) for u̇ using that for the Kronecker product (B1⊗
Ix)(B2 ⊗ Ix) = (B1B2 ⊗ Ix), we get u̇ = (B−11 ⊗ Ix)((C ⊗ Ix)ü +G), which we insert
into the first equation to obtain

(B1 ⊗ Ix)u = ((B2B
−1
1 C + C1)⊗ Ix)ü + (B2B

−1
1 ⊗ Ix)G+ F.

The matrix B3 := B2B
−1
1 C + C1 is a lower triangular matrix whose diagonal is that

of C1. Hence B3 is invertible, and we can solve for ü to obtain

ü = (B−13 ⊗ Ix)
(

(B1 ⊗ Ix)u− (B2B
−1
1 ⊗ Ix)G− F

)
.

Inserting this into the last equation in (1.3), we find

(1.4) (B ⊗ Ix − It ⊗∆h)u = f ,

with

(1.5) B = B−13 B1, f = (B−13 ⊗ Ix)((B2B
−1
1 ⊗ Ix)G+ F).

Equation (1.4), is the matrix tensor-product form of the Newmark scheme for the
wave equation in mixed form. It is equivalent to (1.2), and since the matrices are
well-conditioned, it gives numerically the same solution. The velocity vector can be
recovered using the equation

u̇ = (B−11 ⊗ Ix)((C ⊗∆h)u +G).

The key idea to solve a space-time problem written in tensor-product form (1.4) in
a time parallel fashion from [36] is to diagonalize B. Since all matrices are lower
triangular, B is lower triangular, and the diagonal of B equals (1

βk21
, · · · , 1

βk2N
). If all

the time steps are different, then B is indeed diagonalizable, B = SDS−1, where the
diagonal matrix D contains the eigenvalues 1

βk2n
on the diagonal, and (1.4) can be

written as

(1.6) (S ⊗ Ix)(D ⊗ Ix − It ⊗∆h)(S−1 ⊗ Ix)u = f .

One can then solve (1.6) parallel in time performing the following 3 steps:

(1.7)

(a) g = (S−1 ⊗ Ix)f ,
(b) (1

βk2n
−∆h)wn = gn, 1 ≤ n ≤ N,

(c) u = (S ⊗ Ix)w.

The main work, namely the N linear systems in space in step (b), can all be solved in
parallel using N processors, or if the spatial problems were already parallelized using

3

M processors, one could then overall use N×M processors. We call this approach time
parallelization by diagonalization. It was first introduced and analyzed numerically for
wave propagation in [43, 44], motivated by the original invention in [35, 36] for diffusive
problems the authors called tensor-product space-time solvers. We will analyze here
specifically the Crank-Nicolson scheme, which corresponds to β = 1

4 and γ = 1
2 in

the Newmark scheme (1.2), and leads to the unconditionally stable time-integration
operator of maximum accuracy most often used in practice. To see in what sense the
parameter choice β = 1

4 and γ = 1
2 corresponds to Crank-Nicolson, we first replace

the last equation in (1.2) into the first two for these values of the parameters,

un+1
h = unh + kn+1u̇

n
h +

k2n+1

4 (∆hu
n
h + ∆hu

n+1
h),

u̇n+1
h = u̇nh + kn+1

2 (∆hu
n
h + ∆hu

n+1
h).

Now from the second equation, we have 1
4 (∆hu

n
h + ∆hu

n+1
h) = (u̇n+1

h − u̇nh)/(2kn+1),
which when inserted into the right hand side of the first equation gives

(1.8)
un+1
h = unh + kn+1

2 (u̇nh + u̇n+1
h),

u̇n+1
h = u̇nh + kn+1

2 (∆hu
n
h + ∆hu

n+1
h),

which is clearly Crank-Nicolson applied to the mixed formulation of the wave equation,
which with vh := u̇h is given by

u̇h = vh
v̇h = ∆huh.

Crank-Nicolson is second order accurate in time, and unconditionally stable. With a
similar computation as for the Newmark scheme, we also obtain the tensor-product
form (1.4) for the Crank-Nicolson scheme with

(1.9) B = (C−1B1)2, f = (C−1 ⊗ Ix)((B1C
−1 ⊗ Ix)F +G),

β = 1
4 , γ = 1

2 , and the same G, but with F = (1
k1
u0h + 1

2 u̇
0
h, 0, · · · , 0).

2. Analysis of time parallelization by diagonalization. Using the time par-
allel solver (1.7) based on diagonalization requires some care: first, the time stepping
matrix B is only diagonalizable if the time steps are all different, and this can lead
to a larger discretization error compared to using equidistant time steps. Second, the
condition number of the eigenvector matrix S increases exponentially with the num-
ber of time steps N to be done in parallel, which leads to inaccurate results in steps
(a) and (c) of (1.7) because of roundoff error. One therefore needs to carefully and
accurately estimate these two errors, to determine how many time steps can indeed
be performed in parallel using (1.7) without loosing accuracy.

In order to obtain such estimates in the wave equation case, we use a Fourier

transform in space with Fourier variable ξ, and obtain ∂2û
∂t2 +|ξ|2û = 0, which indicates

that we need to study for fixed T and a > 0 the algorithm (1.7) applied to the ordinary
differential equation (ODE)

(2.1) ü+ a2u = 0, t ∈ (0, T),

with initial conditions u(0) = f and u̇(0) = g. The Crank-Nicolson scheme for (2.1)
is

(2.2)
un = un−1 + 1

2kn(u̇n + u̇n−1),

u̇n = u̇n−1 − a2

2 kn(un + un−1),

4

0 0.2 0.4 0.6 0.8 1

t

0

0.1

0.2

0.3

geometric time stepping mesh

equidistant time stepping mesh

Fig. 2.1. Geometric time stepping mesh for q = 1.1, a typical value of the parameter we will
determine with our analysis, compared to an equidistant time stepping mesh

with initial conditions u0 = f and u̇0 = g. Let U := (u, 1a u̇) be the solution of
(2.1) including the derivative term which will be important for our estimates, and
Un := (un, 1a u̇

n) be the discrete approximation defined by (2.2). We can then rewrite
the continuous and discretized problems as

(2.3) dtU + aJU = 0, (I+
akn
2
J)Un = (I−akn

2
J)Un−1, J :=

(
0 −1
1 0

)
,

with initial condition U(0) = U0 = (f, ga). For a given N , we now consider time
steps given by a geometric partition1 Tq := (k1, · · · , kN), kn(q) := qn−1k1 as it was

suggested in [35]. The constraint
∑N
n=1 kn = T determines uniquely the value of the

geometric time steps,

(2.4) kn =
qn∑N
j=1 q

j
T.

We call Un(Tq) the corresponding sequence of solutions. The equidistant timestep

k̃ = T
N is obtained for q = 1. An example of such a geometric time mesh is given in

Figure 2.1 for a typical value q = 1.1 our analysis will determine, and for comparison
also an equidistant time mesh is shown.

2.1. Estimation of the error due to the geometric time stepping. We
now present an accurate estimate for the change in the truncation error caused by
using a geometric time stepping with

(2.5) q = 1 + ε, ε a tunable parameter,

compared to using equal time stepping, by studying the distance between UN (Tq) and
UN (T1).

Theorem 2.1 (Asymptotic truncation error estimate). For fixed a, T and N ,
we obtain for ε small the error estimate

(2.6) ‖UN (T1+ε)− UN (T1)‖ = φ(
aT

2N
,N)ε2‖U0‖+O(ε3),

1Nick Higham, after a presentation of the first author, and later also an anonymous referee,
suggested considering a random partition. We tested this and did not find any advantage over the
geometric partition in our numerical experiments. The geometric partition allows us to provide a
complete analysis for the best choice of the parameters in the method, while for the analysis of
random time steps it is not clear how one would have to proceed.

5

where φ(y,N) := N(N2−1)
6

y3

(1+y2)2 .

Proof. We first diagonalize the two systems (2.3) in the complex plane: let

P :=

(
1 1
i −i

)
, D :=

(
−1 0
0 1

)
,

which implies that P−1JP = iD and P−1(I − αJ)P = I − iαD. Defining

µ(t) := e−iat, λn :=
1− iakn2
1 + iakn2

, and µn :=

n∏
p=1

λp,

we obtain the diagonalized continuous and discrete solutions

U(t) = P

(
µ̄(t) 0

0 µ(t)

)
P−1U0, Un = P

(
µ̄n 0
0 µn

)
P−1U0.

For a given N , we now estimate the change induced by the non equidistant time steps.
For any partition T = (k1, · · · , kN) of the interval (0, T), we compare the solution

UN (T) to the solution UN (T̃) obtained by the equidistant mesh T̃ = (k̃, · · · , k̃) with
k̃ = T/N . Defining

µ(T) :=

N∏
n=1

1− iakn2
1 + iakn2

,

we find that

(2.7) UN (T)− UN (T̃) = P

(
µ(T)− µ(T̃) 0

0 µ(T)− µ(T̃)

)
P−1U0.

Taking norms, and noting that ‖PV ‖2 = 2‖V ‖2 and ‖P−1V ‖2 = 1
2‖V ‖

2, we get

(2.8)
‖UN (T)− UN (T̃)‖ = |µ(T)− µ(T̃)|‖U0‖,
‖UN (T̃)− U(T)‖ = |µ(T̃)− e−iaT |‖U0‖.

The second formula is the truncation error at the end of the time interval for equidis-
tant timesteps. We next need to estimate the error in µ, for which we use the following
result.

Lemma 2.2. For fixed a, T and N , we have

(2.9) |µ(T)− µ(T̃)| = a3k̃

4(1 + a2k̃
2

4)2
‖T − T̃ ‖2 +O(||T − T̃ ||3).

Proof. We write µ(T) as

µ(T) =

N∏
n=1

λ(kn), λ(k) =
1− iak2
1 + iak2

.

By the second order Taylor-Young formula, we have

µ(T) = µ(T̃) + µ′(T̃) · (T − T̃) +
1

2
µ′′(T̃) · (T − T̃) · (T − T̃) +O(||T − T̃ ||3).

6

We now compute the derivative,

(2.10)
∂µ

∂kn
(T̃) = µ(T̃)

λ′(kn)

λ(kn)
= µ(T̃)

−ia
1 + a2k̃

2

4

,

and therefore obtain for the linear term

µ′(T̃) · (T − T̃) = µ(T̃)
−ia

1 + a2k̃
2

4

∑
n

(kn − k̃) = 0.

For the quadratic term, we differentiate (2.10) again with respect to kn,

(2.11)
∂2µ

∂k2n
(T̃) = µ(T̃)a2

−1 + iak̃2

(1 + a2k̃
2

4)2
,

∂2µ

∂kn∂kj
(T̃) = µ(T̃)a2

−1

(1 + a2k̃
2

4)2
,

and therefore obtain

µ′′(T̃) · (T − T̃) · (T − T̃) = −a2µ(T̃)

∑
n,j(kn − k̃)(kj − k̃)− iak̃2

∑
n(kn − k̃)2

(1 + a2k̃
2

4)2
,

which gives

µ(T) = µ(T̃)− a2µ(T̃)

2

∑
n,j(kn − k̃)(kj − k̃)− iak̃2

∑
n(kn − k̃)2

(1 + a2k̃
2

4)2
+O(||T − T̃ ||3).

The first sum in the numerator is zero, and hence

µ(T)− µ(T̃) =
iµ(T̃)a3k̃

∑
n(kn − k̃)2

4(1 + a2k̃
2

4)2
+O(||T − T̃ ||3),

which gives (2.9) when taking the modulus, since the quadratic term is purely imagi-

nary and |µ(T̃)| = 1.

It remains to estimate ‖T − T̃ ‖2, which is done in
Lemma 2.3. The difference between the geometric and equal time partition sat-

isfies the estimate

(2.12) ‖T − T̃ ‖2 =

N∑
n=1

(kn − k̃)2 = k̃
2N(N2 − 1)

12
ε2 +O(ε3).

Proof. The time step kn in (2.4) has for ε small the expansion kn = k̃(1 + αnε+

βnε
2 + o(ε2)), with αn = n − N+1

2 and βn = n(n − N − 2) + (N+1)(N+5)
6 . These

coefficients satisfy the relations
∑
n αn =

∑
n βn = 0,

∑
n α

2
n = N(N2−1)

12 , which leads
to (2.12).

We can now finish the proof of Theorem 2.1 by inserting (2.4) into (2.8) to obtain

‖UN (T)− UN (T̃)‖ =
a3k̃

4(1 + a2k̃
2

4)2
k̃
2N(N2 − 1)

12
ε2‖U0‖+O(ε3).

7

2.2. Estimation of the roundoff error due to diagonalization. The space-
time system (1.4) becomes in the scalar case

(B + a2I)u = f ,

and to diagonalize this system, we need to diagonalize the matrix B, which will involve
unipotent lower triangular Toeplitz matrices.

Definition 2.4. A unipotent lower triangular Toeplitz matrix of size N is of the
form

(2.13) T (x1, . . . , xN−1) =

1

x1
. . .

...
. . .

. . .

xN−1 . . . x1 1

 .

The next Lemma gives a closed form eigendecomposition of the time stepping matrix
B, and is proved using the techniques of q− hypergeometric series (see the book of
Gasper and Rahman, Basic Hypergeometric series [27]).

Lemma 2.5 (Eigendecomposition of B). If kn = qn−1k1 with q 6= 1, then B has
the eigendecomposition B = V DV −1, with D = diag(4

k2n
), and V and its inverse are

unipotent lower triangular Toeplitz matrices given by

V = T (p1, . . . , pN−1), with pn :=

n∏
j=1

1 + qj

1− qj
,(2.14)

V −1 = T (q1, . . . , qN−1), with qn := q−n
n∏
j=1

1 + q−j+2

1− q−j
.(2.15)

Proof. The matrix B = (C−1B1)2 is diagonalizable if and only if all time steps kn
are different. The eigenvalues are then 4

k2n
, and the eigenvectors are those of C−1B1.

An eigenvector of C−1B1 is such that (B1− 2
kn
C)X(n) = 0, and the matrix B1− 2

kn
C

is lower bidiagonal, which leads to a recursive formula for the coefficients X(n) of the
eigenvectors, {

X
(n)
1 = X

(n)
2 = · · ·X(n)

n−1 = 0,

X
(n)
n+1 = kn+kn+1

kn−kn+1
X

(n)
n , · · · , X(n)

N = kn+kN
kn−kN X

(n)
N−1.

Since the normalization is arbitrary, we can choose X
(n)
n = 1, which gives

X
(n)
j =

0 for j < n,
j∏

l=n+1

kn+kl
kn−kl for j > n.

The matrix of eigenvectors V := (X(1), · · · , X(N)) is lower triangular and unipotent,
i.e. the diagonal elements equal 1. In case of the geometric mesh, it has the particular
structure

Vij = X
(j)
i =

i∏
l=j+1

kj + kl
kj − kl

=

i∏
l=j+1

qj + ql

qj − ql
=

i∏
l=j+1

1 + qk−j

1− qk−j
=

i−j∏
l=1

1 + ql

1− ql
,

8

which shows that Vij is a function of i−j only, and therefore V is a unipotent Toeplitz
matrix. Consider now the inverse of V . First, it is easy to see that it is also unipotent
Toeplitz. To establish (2.15) is equivalent to prove that

(2.16) for 1 ≤ n ≤ N − 1,

n∑
j=0

pn−jqj = 0, with the convention that p0 = q0 = 1.

To show this result, we need to define Heine’s q−hypergeometric series (Heine 1847),

(2.17) 2ϕ1(a1, a2; b; q;x) :=

∞∑
n=0

(a1; q)n(a2; q)n
(q; q)n(b; q)n

xn,

where we assume that b is not an integer negative power of q, and the q−rising
factorial is

(a; q)k :=

k−1∏
i=0

(1− qia), (a; q)∞ :=

∞∏
i=0

(1− aqi).

The Heine’s summation formula states that for any two real numbers a1 and a2, and
for any b with |b/(a1a2)| < 1, we have

(2.18) 2ϕ1(a1, a2; b; q; b/a1a2) =
(b/a1; q)∞(b/a2; q)∞
(b; q)∞(b/a1a2; q)∞

.

We now use Heine’s summation formula to conclude the proof: let N be an integer
larger than 1; setting a1 = q−N and a2 = a yields the q-Chu-Vandermonde formula

(2.19) 2ϕ1(q−N , a; b; q;
b

a
qN) =

(b/a; q)N
(b; q)N

.

Since (q−N ; q)n = 0 as soon as n ≥ N + 1, the series on the left is a finite sum, and
we obtain

(2.20)

N∑
n=0

(q−N ; q)n(a; q)n
(q; q)n(b; q)n

(
b

a
qN
)n

=
(b/a; q)N
(b; q)N

.

This is an equality between rational fractions in q, which is valid for all q different from
0, 1, and all a 6= 0 and all b which are not an integer negative power of q. Choosing
a = −q and b = −q−N+2, we have

(2.21) (b/a; q)N = (q−N+1; q)N = (1− q−N+1) · · · (1− q−N+1qN−1) = 0,

and thus the right hand side in (2.20) vanishes, and we get

(2.22)

N∑
n=0

(−q; q)n(q−N ; q)n
(q; q)n(−q−N+2; q)n

qn = 0.

We express now pn in terms of q−analogues,

(2.23) pn =

n∏
i=1

1 + qi

1− qi
=

n−1∏
i=0

1 + qqi

1− qqi
=

(−q; q)n
(q; q)n

.

9

Defining q̃N−n :=
(q−N ; q)n

(−q−N+2; q)n
qn and qN−n :=

q̃N−n
q̃0

, (2.22) becomes

N∑
n=0

pnq̃N−n =

N∑
n=0

pnqN−n = 0.

Introducing the definition of qN−n and performing similar steps as in (2.23) backwards
shows that qn is equal to the value in (2.14), and the proof is complete.

In the steps (a) and (c) of the direct time parallel solver (1.7) based on diagonal-
ization, the condition number of the eigenvector matrix S has a strong influence on
the accuracy of the results, and normalizing the eigenvectors from Lemma 2.5 with
respect to the `2 norm leads to an asymptotically better condition number,

(2.24) S := V D̃, D̃ = diag(
1√

1 +
N−n∑
i=1

|pi|2
).

We now study the roundoff error when solving the system (B+a2I)u = f numerically
using the diagonalization

(2.25) S(D + a2I)S−1u = f .

Due to roundoff, we will obtain an approximate solution û, and the difference between
the exact solution u and û is classically related to the condition number of the matrix
S. We first also give such an estimate, but later provide a more accurate one using
the structure of the problem at hand.

Lemma 2.6. Let u be the exact solution of (B + a2I)u = f , and û be the numer-
ically computed solution using the factored form (2.25), and let u denote the machine
precision. Then for any norm,

(2.26)
‖u− û‖
‖u‖

≤ cond(B)
‖δB‖
‖B‖

≤ (2N + 1)u ‖B−1‖ ‖ |S| |S−1| ‖ ‖D + aI‖,

where |S| denotes the matrix containing the elements of S in modulus.
Proof. Using backward error analysis [29], the computed solution satisfies the

perturbed systems

(S + δS1)ĝ = f , (D + a2I + δD)ŵ = ĝ, (S−1 + δS2)û = ŵ,

and since S and S−1 are triangular and D is diagonal we get (see [29])

|δS1| ≤ Nu|S|+O(u2), |δS2| ≤ Nu|S−1|+O(u2), |δD| ≤ u|D + aI|+O(u2).

Solving numerically (B + a2I)u = f using the factored form (2.25) is equivalent to
solving exactly (S + δS1)(D + a2I + δD)(S−1 + δS2) û = f , which is of the form

(B + δB)û = f , |δB| ≤ (2N + 1)u|S| |S−1| |D + aI|+O(u2).

The relative error then satisfies (see [29])

(2.27)
‖u− û‖
‖u‖

≤ cond(B)
‖δB‖
‖B‖

≤ ‖B−1‖ ‖δB‖,

10

and inserting ‖δB‖ from before gives the result in (2.26).

We next provide an asymptotic estimate for the term ‖ |S| |S−1|‖ on the right in (2.26)
in the case of a geometric time partition using the infinity norm.

Lemma 2.7 (Asymptotic condition number estimate). For q = 1 + ε, we have

‖ |S| |S−1| ‖∞ ∼
22(N−1)

(N − 1)!
ε−(N−1),(2.28)

cond∞(S) ∼ 2(N−1)N

bN2 c!b
N−1
2 c!

ε−(N−1).(2.29)

Proof. Note first that |qn| ∼ |pn| ∼ 2n

n! εn . We next define γn :=
√

1 +
∑N−n
j=1 |pj |2

and d̃n := 1
γn

, which implies that D̃ = diag(d̃n). Then γn ∼ |pN−n|, and we obtain

(2.30)

‖S‖∞ = max
n

n∑
j=1

|pn−j |
γj

∼ max
n

n∑
j=1

|pn−j |
|pN−j |

∼ max
n

n∑
j=1

(N − j)!
(n− j)!

(ε
2

)N−n
∼ N.

By definition S−1 = D̃−1V −1 = D̃−1T (q1, · · · , qN−1), that is the line n of T (q1, · · · , qN−1)
is multiplied by γn. Therefore

(2.31)

‖S−1‖∞ = max
n

γn

n−1∑
j=0

|qj | ∼ max
n

γn|qn−1| ∼ max
n

γn|pn−1|

∼maxn |pN−n||pn−1| ∼
(

2

ε

)(N−1)

max
1≤n≤N−1

1

(n− 1)!(N − n)!
.

The last term on the right hand side can be explicitly computed by noting that

max
1≤n≤N−1

1

(n− 1)!(N − n)!
=

1

(N − 1)!
max

1≤n≤N−1

(
N − 1

n− 1

)
=

1

(N − 1)!

(
N − 1

bN−12 c

)
,

which follows from the Pascal triangle, and thus we get

max
1≤n≤N−1

1

(n− 1)!(N − n)!
=

1

bN2 c!b
N−1
2 c!

.

Combining (2.30) and (2.31) then yields (2.29). Similarly, we also obtain

‖ |S| |S−1| ‖∞ = max
i

∑
j

(|S| |S−1|)ij = max
i

i∑
j=1

i∑
k=j

|pi−k| |qk−j |

∼ 2N−1

εN−1

N∑
k=1

1

(N − k)!(k − 1)!

and explicitly summing the last term on the right,
∑N
k=1

1
(N−k)!(k−1)! = 2N−1

(N−1)! , leads

to the desired estimate (2.28).

We are now ready to give a precise asymptotic error estimate of the roundoff error
that is induced by the diagonalization in the direct time parallel solver (1.7):

11

Theorem 2.8 (Asymptotic roundoff error estimate). Let u be the exact solution
of (B+a2I)u = f , and û be the computed solution from the direct time parallel solver
(1.7) applied to (2.1), and let u denote the machine precision. Then

(2.32)
‖u− û‖∞
‖u‖∞

. ψ1(
aT

2N
,N)u ε−(N−1),

where ψ1(y,N) :=
22(N+1)

(N − 1)!
(1 + 2N(N − 1))(1 + y2).

Proof. The form of the matrices involved is very well adapted to estimates in the
`∞ norm. We evaluate the various quantities in (2.26) starting with the norm of B−1,
which we can obtain by computing B−1 = (B−11 C)2 explicitly and noting that the
infinity norm comes from the last line, which gives

‖B−1‖∞ = (2k1)2
(

1 +
2q(qN−1 − 1)(qN − 1)

(q − 1)2

)
.

Now for q = 1 + ε, we get by expanding

‖B−1‖∞ ∼ (2k1)2(1 + 2N(N − 1)).

We now use that D = diag(4
k2i

), and obtain

(2.33)

‖B−1‖∞‖D+aI‖∞ ∼ (2k1)2(4/k21+a2)(1+2N(N−1)) ∼ 16(1+
a2k21

4
)(1+2N(N−1)).

Inserting (2.33) into (2.26) gives

‖u− û‖∞
‖u‖∞

. 16(1 +
a2k21

4
)(1 + 2N(N − 1))u ‖ |S| |S−1| ‖∞ .

Replacing the last term on the right hand side using (2.28) leads to

(2.34)
‖u− û‖∞
‖u‖∞

.
22(N+1)

(N − 1)!
(1 + 2N(N − 1))

(
1 +

a2k21
4

)
u ε−(N−1).

Approximating k1 by k̃ as ε goes to zero finally gives

‖u− û‖∞
‖u‖∞

.
22(N+1)

(N − 1)!
(1 + 2N(N − 1))

(
1 +

(
aT

2N

)2
)
u ε−(N−1),

which proves the result.
Remark 2.9. The more usual round off estimates use the condition number of the

matrix S in (2.26) instead of the norm of |S| |S−1|. Then using (2.29), the estimate
(2.32) would become

(2.35)
‖u− û‖∞
‖u‖∞

. ψ2(
aT

2N
,N)u ε−(N−1),

where ψ2(y,N) := N(1+2N(N−1)) 2N+3

bN2 c!b
N−1

2 c!
(1 + y2), which we will see is comparable to our

first estimate.
We next present a sharper estimate using the special structure of S and S−1.

12

Lemma 2.10. For any f , for any diagonal matrix ∆, let u = S∆S−1f , and û be
the computed value of u. Then

(2.36) ‖u− û‖∞ .
22(N−1)

(N − 1)!
ε−(N−1) u ‖∆‖∞ ‖f‖∞.

Proof. Standard truncation error estimates as in Theorem 2.8 show that the
approximate value of SDS−1f gives an error which can be bounded by

|S∆S−1f−S∆S−1f | ≤ ‖f‖∞ ‖∆‖∞ u

1

1 + |p1|+ |q1|
...

|pN−1|+ |pN−2|(|q1|+ 1) + · · ·+ |qN−1|+ |qN−2||p1|+ · · ·+ |q1|+ 1

+O(u2).

Considering the leading term in ε, suppose that ε and N are such that the largest
coefficient pN−1 satisfies |pN−1|u� 1, to obtain

‖S∆S−1f − S∆S−1f‖∞ . ‖f‖∞ ‖∆‖∞ u

N−1∑
n=0

|pjqN−1−j |.

We can estimate the sum using an asymptotic expansion,

N−1∑
n=0

|pjqN−1−j | ∼
N−1∑
n=0

2n

n!
ε−n

2N−1−n

(N − 1− n)!
ε−(N−1−n) ∼ 22(N−1)

(N − 1)!
ε−(N−1),

and we obtain

(2.37)
‖S∆S−1f − S∆S−1f‖∞

‖f‖∞
. ‖∆‖∞

22(N−1)

(N − 1)!
ε−(N−1)u,

which concludes the proof.
We can now prove the following sharper estimate for the roundoff error:
Theorem 2.11 (Sharper asymptotic roundoff error estimate). For any f , let

u = S(D + aI)−1S−1f , and û be the computed value of u. Then

(2.38)
‖u− û‖∞
‖U0‖

. ψ3(
aT

2N
,N)u ε−(N−1),

where ψ3(y,N) := 22N− 1
2 N

(N−1)!
1

y2+1 .

Proof. We have ‖(D + a2I)−1‖∞ = 1
a2+ 4

k2
N

, and replacing ∆ by (D + a2I)−1 in

(2.36), we obtain

(2.39) ‖u− û‖∞ .
22(N−1)

(N − 1)!
ε−(N−1) u

1

a2 + 4
k2N

‖f‖∞.

We need now an estimate of ‖f‖∞, with

(2.40) f = C−1(B1C
−1F0 +G0)e1, F0 =

1

k1
f +

g

2
, G0 =

1

k1
g − a2

2
f.

13

We first explicitly compute the inverse of C and obtain the lower triangular matrix
C−1ij = 2(−1)i−j , i ≥ j. We can then evaluate the terms in (2.40) to get

(C−1e1)i = 2(−1)i−1 =⇒ (C−1B1C
−1e1)i = 4(−1)i−1

 1

k1
+ 2

i∑
j=2

1

kj

 ,

where the sum equals zero for i = 1. Using that the time steps are geometric, kj =
qj−1k1, we define

si := 1 + 2

i−1∑
j=1

1

qj
for i ≥ 2, s1 = 1,

and obtain (C−1B1C
−1e1)i = 4

k1
(−1)i−1si, which we introduce into (2.40) to get

fi = (−1)i−1(
4

k1
F0si + 2G0) = (−1)i−1

(
4

k1
si(

1

k1
f +

g

2
) + 2(

1

k1
g − a2

2
f)

)
.

Taking the modulus and rearranging terms leads to

|fi| =
∣∣∣∣ 4

k21
f

(
si −

a2k21
4

)
+

2

k1
g(si + 1)

∣∣∣∣ .
Defining y1 := k1a

2 , we obtain

|fi| =
∣∣∣∣ 4

k21
f(si − y21) +

2a

k1

g

a
(si + 1)

∣∣∣∣ =
4

k21

∣∣∣f(si − y21) + y1
g

a
(si + 1)

∣∣∣ .
For sufficiently small k1, y1 is smaller than 1, and since si > 1 and the sequence si is
increasing, we obtain

‖f‖∞ ≤
4

k21
(|f |sN +

|g|
a

(sN + 1)) ≤ 4

k21
(sN + 1)(|f |+ |g|

a
) ≤ 4

√
2

k21
(sN + 1)‖U0‖.

We use now that q is close to 1 to estimate asymptotically

sN + 1 = 2(1 +

N−1∑
j=1

1

qj
) = 2

N−1∑
j=0

1

qj
= 2

1− 1
qN

1− 1
q

. 2N,

and therefore

‖f‖∞ .
8N
√

2

k21
‖U0‖.

This allows us to also estimate ‖f‖∞ in (2.39) asymptotically,

‖u− û‖∞ .
22(N−1)

(N − 1)!
ε−(N−1) u

1

a2 + 4
k2N

8N
√

2

k21
‖U0‖.

We now combine the last two terms asymptotically using that

4
k21

a2 + 4
k2N

∼ 1

1 + y2
, y :=

aT

2N
,

and obtain (2.38).
We show in Figure 2.2 graphically that ψ1(aT2N , N) and ψ2(aT2N , N) are comparable,

while ψ3(aT2N , N) is substantially smaller, and thus gives a much sharper estimate.

14

-50

-40

-30

15

-20

-10

0

10

20

4010

aT

20

N

5
0

1

2

3

Fig. 2.2. Comparison of the logarithm of the functions ψj , j = 1, 2, 3

10
-2

10
-1

10
0

10
-10

10
-5

10
0

10
5

10
-2

10
-1

10
0

10
-10

10
0

10
10

10
20

Fig. 2.3. Discretization and parallelization errors, together with our theoretical bounds. Left:
T = 5, a = 1, N = 10, Right: T = 10, a = 1, N = 20

2.3. Optimization of the algorithm parameters. To start, we perform a
numerical experiment for the scalar model problem (2.1) with a = 1 and initial con-
ditions u(0) = 1, u̇(0) = 0. We show in Figure 2.3 first as a reference the measured
discretization error on an equidistant time partition with N points (called ’error 1’,
and independent of ε). Next we plot the error due to the geometric time partition,
which increases when ε is increasing (called ’error 2’), and our theoretical estimate
φε2 from Theorem 2.1, which is rather sharp, since it coincides in the figure with the
numerically measured values, except for large ε. We finally also plot the roundoff
error we measure due to the diagonalization procedure, which decreases when ε is in-
creasing (called ’error 3’), and our theoretical bound ψ3ε

−(N−1)u from Theorem 2.11.
From these plots, we can see that an optimized choice of ε would balance these two
errors, and for the case on the left with T = 5 and N = 10 (10 processors) it would
be ε∗ ≈ 4.5e − 2. In this case, the additional errors due to the time parallelization
would remain much smaller than the actual discretization error one would have on an
equidistant time grid. For the case on the right in Figure 2.3 with T = 10 and N = 20
(20 processors), the best choice would be ε∗ ≈ 1e− 1, and now the additional errors
due to the parallelization would be of the same order as the actual discretization error
one would have on an equidistant time grid.

To determine a formula for the best ε∗, we can bound the actual error of the
parallel time integrator by adding and subtracting uN (T1) and also uN (Tq), with

15

q = 1 + ε, and using the triangle inequality, we obtain at time T an error estimate
between the exact solution at time T = tN and the last value ûN of the approximate
solution computed by diagonalization, namely

(2.41)
|u(tN)− ûN |
‖U0‖

≤ |u(tN)− uN (T1)|
‖U0‖︸ ︷︷ ︸

≤ error 1

+
|uN (T1)− uN (Tq)|

‖U0‖︸ ︷︷ ︸
≤ error 2

+
|uN (Tq)− ûN |
‖U0‖︸ ︷︷ ︸

≤ error 3

.

The first term error 1 is the truncation error of the sequential method using equal
time steps, see also Figure 2.3. The second term error 2 is due to the geometric
time partition and was estimated asymptotically in Theorem 2.1 to be φε2. The
last term error 3 can be estimated using Theorem 2.11. Because the second term is
decreasing in ε and the last term is growing in ε, see also Figure 2.3, we equilibrate
them asymptotically and obtain

Theorem 2.12 (Optimized geometric time partition). Suppose the time steps are
geometric, kn = qn−1k1, and q = 1 + ε with ε small. Let u be the machine precision.
Fix a, T and N . For ε = ε∗(aT,N) with

(2.42) ε∗(aT,N) =

(
3 22N

(N2 − 1)(N − 1)!

1 + y2

y3
u

) 1
N+1

, with y =
aT

2N
,

the error due to time parallelization is asymptotically comparable to the one produced
by the geometric time partition.

Proof. Equilibration of the error produced by the geometric mesh and the diago-

nalization means imposing φ(y,N)ε2 = ψ3(y,N)u ε−(N−1), and thus ε∗ =
(
ψ3

φ (y,N)u
) 1

N+1

,

where ψ3 is defined in Theorem 2.11, and φ is defined in Theorem 2.1. Introducing
these quantities and simplifying leads to (2.42).

We see in Figure 2.3 that the theoretically predicted optimized ε∗ marked by
a rhombus is a good estimate of the numerical best parameter. We next show in
Figure 2.4 on the left the optimized value ε∗(aT,N) from Theorem 2.12 as a function
of the two arguments aT and N . Choosing ε = ε∗(aT,N), the ratio between the
additional errors due to parallelization to the truncation error of the fixed time step
method (error 2/error 1) is shown in Figure 2.4 on the right, together with the relative
truncation error for a fixed time step method in red (error 1). We see that one can
use approximately 20 processors (N = 20) for a reasonably large range of aT by
only increasing the error with the same order one would have had using a sequential
integrator on a fixed time mesh, and when using 10 processors, the additional errors
due to time parallelization are negligible (about 10% of the errors on an equidistant
time grid). When using 40 processors however (N = 40), a five fold error has to be
expected, due to the parallelization, compared to the sequential time stepping on a
fixed time mesh, and this when choosing the best possible value ε = ε∗(aT,N). This
shows that one can not parallelize with the diagonalization technique in time using
an arbitrarily large number of processors.

Remark 2.13. To obtain an estimate for the best ε to chose in the wave equa-
tion case, we recall the Fourier transform in space with Fourier variable ξ which
corresponds to our parameter a. We can thus apply our results from the ODE anal-
ysis with a2 = |ξ|2, where ξ is the dominant frequency in the solution we are trying
to calculate. If we have no information about the dominant frequency in the solution,
we can also use the upper bound ξ2max := π2/h2 in 1D (h the mesh size in space),

16

0.0010.0010.001
0.001

0.010.010.01
0.01

0.030.03
0.03

0.03

0.05
0.05

0.05

0.05

0.075
0.075

0.075

0.075

0.09

0.09

0.09

0.09

0.1

0.1

0.1

0.1

0.11

0.11

0.11

0.1
1

0
.1

2

0.12

0.12

0.1
2

0
.1

3

0
.1

3

0
.1

4

0
.1

4

2 4 6 8 10 12 14

aT

5

10

15

20

25

30

35

40

N

0.00010.00010.0001
0.0001

0.01
0.01

0.01

0.01

0.1
0.1

0.1
0.1

1
1

1

1

1

5

5

5

5

5

0
.0

1

0
.0

1

0
.0

1

0
.0

1

0.1

0.
1

0
.1

0
.1

0
.1

0.3

0.3

0.3

0.3

0.3

1

1

1

1

2 4 6 8 10 12 14

aT

5

10

15

20

25

30

35

40

N

Fig. 2.4. Left: optimized choice ε∗(aT,N) from Theorem 2.12. Right: ratio of the additional
errors due to parallelization to the truncation error of the fixed step method with this choice of
ε∗(aT,N) (error 2/error 1), and relative truncation error for a fixed time step method in red (error
1)

-1
10

0

1

xt

0.5 0.5
1 0

-1
0 1

0

1

xt

0.5 0.5
01

-1
0 1

0

1

xt

0.5 0.5
1 0

Fig. 3.1. Approximate solutions obtained by the time parallel algorithm using diagonalization.
Left: ε = 0.015. Middle: ε = ε∗ = 0.05. Right: ε = 0.3

and |ξmax|2 := π2/h21 + π2/h22 (h1 and h2 the two mesh sizes in space in 2D), since
φε∗(aT,N)2 is growing in aT , see Figure 2.4 on the right2. Note that the growth
seems to slow down for large values of aT , so that one can even estimate the value of
ε∗(aT,N) outside the plotted range of aT .

3. Numerical Experiments. We now test our theoretical results on the wave
equation (1.1) in one and two spatial dimensions, and also on an industrial test case
using the equations of elasticity, where we use time windowing in order to integrate
over a larger number of time steps than authorized by the diagonalization technique.

3.1. The wave equation in one dimension. We solve the wave equation
in one dimension on [0, 1], with homogeneous Dirichlet boundary conditions and as
initial conditions u0(x) = sin(πx), u1(x) = 0. The spatial mesh is h = 1

10 , and we
use N = 10 time steps on the time interval (0, 1). We first show in Figure 3.1 three
numerical solutions obtained for three different geometric time partitions using the
diagonalization approach. We clearly see on the left that the ε chosen is too small, the
solution becomes inaccurate and presents strong oscillations due to the roundoff error
introduced by the diagonalization. On the right ε is too big, and the solution is less
accurate for the second part of the time interval. In the middle, we chose the optimal

2In fact we need only spectral information of the spatial operator to determine the relevant range
of a, and thus can also handle variable coefficients, see the example in Subsection 3.3.

17

10
-2

10
-1

10
0

10
-10

10
-5

10
0

10
5

10
-2

10
-1

10
0

10
-10

10
0

10
10

10
20

Fig. 3.2. Discretization and parallelization errors in 1d, together with our theoretical bounds
for the PDE. Left: T = 1, N = 10. Right: T = 2, N = 20

10
-2

10
-1

10
0

10
-10

10
-5

10
0

10
5

10
-2

10
-1

10
0

10
-10

10
0

10
10

10
20

Fig. 3.3. Discretization and parallelization errors in 2d, together with our theoretical bounds
for the PDE. Left: T = 1, N = 10. Right: T = 2, N = 20

ε∗ and obtain an accurate solution, comparable to the one computed sequentially
on a fixed step size partition. In Figure 3.2 we show the corresponding measured
discretization and diagonalization errors compared to our theoretical bounds. We see
again on the left that for T = 1 using N = 10 (10 time steps corresponding to
computing with 10 processors), using the optimized choice of ε leads to a very small
error increase compared to the already existing truncation error, as in the ODE case
in Figure 2.3. For N = 20 however (corresponding to using 20 processors) on a twice
as long time interval T = 2, the errors due to parallelization are now comparable to
the existing truncation error on an equally spaced time grid, and as in the ODE case,
one can not use more than about 20 processors for the time parallelization of the wave
equation without introducing substantial additional errors due to the parallelization
method based on diagonalization.

3.2. The wave equation in two dimensions. We now solve the wave equation
on the unit square, with homogeneous Dirichlet boundary conditions and as initial
conditions u0(x, y) = sin(πx) sin(πy), u1(x, y) = 0, using h = 1

10 in space. In Figure
3.3 we show again the corresponding measured discretization and diagonalization
errors compared to our theoretical bounds, and we see that the results are very similar
to the one dimensional case.

We also implemented this algorithm on a computer cluster adding to the initial

18

algorithm a time windowing process in order to compare costs and accuracy for a larger
number of time steps, and to truly evaluate parallel performance. Time windowing
means that the initial global time interval (0, T̃) is first partitioned into so called time
windows of length T , and then the diagonalization technique is applied sequentially
to the time windows, starting with the first one, then continuing with the second one,
and so on. We denote by NWin the number of time windows, where each time window
consists of N time steps to apply the diagonalization technique in each time window.
The algorithm now performs 5 steps for each time window, namely

(3.1)

(1) F = (1
k1
u0h + 1

2 u̇
0
h, · · · , 0)

G = (1
k1
u̇0h + 1

2∆hu
0
h, 0, · · · , 0)

(a) g = (S1 ⊗ Ix)F + (S2 ⊗ Ix)G,
(b) (1

k2n
−∆h)wn = gn, 1 ≤ n ≤ N,

(c) u = (S ⊗ Ix)w,
(2) u̇ = (B−11 C ⊗ Ix)∆hu + (B−11 ⊗ Ix)G,

where S1 = S−1C−1B1 and S2 = S−1C−1. Compared to the three basic steps (a),
(b) and (c) of the initial algorithm (1.7), the additional step (1) serves to set up the
proper initial values of the current time window, and the additional step (2) has to
be computed in order to initialize F and G for the next time window.

All the time matrices are lower triangular matrices and all Kronecker products
Y = (A⊗ Ix)X where X = (X1, X2, ..., XN) and Y = (Y1, Y2, ..., YN) can be written
as
(3.2)

Y = (A⊗ Ix)X ⇐⇒

Y1 = A(1, 1)X1

Y2 = A(2, 1)X1 + A(2, 2)X2

...
Yi = A(i, 1)X1 + A(i, 2)X2 + . . . + A(i, i)Xi

...
YN = A(N, 1)X1 + A(N, 2)X2 + . . . + A(N,N)XN .

In our implementation, we overlap computation and communication when working in
a given time window: once the data from step (1) in (3.1) is available, to perform
the products of the form (3.2) in step (a), processor 1 sends its data X1 to processors
2 to N before computing Y1. Processor 1 can then start with its task for step (b).
Similarly, processor 2 sends its data X2 to processors 3 to N , then computes A(2, 2)X2

and as soon as it receives X1 also A(2, 1)X1 to form the sum Y2 and then starts its
step (b). Processors 3 to N proceed similarly. Steps (c) and (2) which contain also
products of the form (3.2) are performed in the same way overlapping computation
and communication. Once the last processor N has completed its step (2), it then
becomes processor 1 for the next time window to save communication. Note also
that the processors never need to store the entire space time solution, they only need
to compute locally the sums in (3.2) using storage of the size of the vectors Xi to
compute Yi.

In order to measure the performance, we used in this implementation a P1 finite
element discretization for step (b), and solved the linear system in space using the
conjugate gradient method (CG) with and without preconditioner, and also the direct
solver PARDISO [41]. Computations were run on a set of 16 X5670 [Westmere-EP]
@ 2.93 GHz processors with a refined mesh, h = 1

100 , and we simulate the process up

19

N NWin ε∗ Error
1 128 4.95× 10−3

2 64 0.0098 4.98× 10−3

4 32 0.0474 4.98× 10−3

8 16 0.135 5.88× 10−3

16 8 0.224 1.79× 10−2

Table 3.1
Optimal ε∗ and common error to all solvers

N NWin NIt Time RHS Time CG Time U, Up Solv. Eff Tot. Eff
1 128 15-33 0.001 s 0.780 s 0.057 s
2 64 15-38 0.025 s 0.460 s 0.041 s 84.78 % 79.69 %
4 32 14-47 0.037 s 0.269 s 0.059 s 72.49 % 57.40 %
8 16 10-63 0.045 s 0.160 s 0.139 s 60.94 % 30.45 %
16 8 5-149 0.064 s 0.101 s 0.180 s 48.27 % 15.18 %

Table 3.2
2D wave equation using CG without preconditioning, initialization time 0.0007 s

to T̃ = 2 using NWin time windows of length T = T̃ /NWin. The error is measured
in the norm defined in the theoretical analysis, see Theorem 2.1. We show in Table
3.1 the optimized parameter ε∗ from our analysis given by formula (2.42), and the
error due to the time parallelization by diagonalization of the algorithm, which was
the same in all experiments, because we used the very small tolerance 10−16 for the
iterative solvers. We can see in the last column that for 16 and more processors, the
error due to parallelization will deteriorate, as predicted by our analysis.

In Table 3.2, we show the results we obtain using unpreconditioned CG. The first

row corresponds to the sequential scheme with a fixed time step k̃ = T̃
128 . We then

use NWin time windows depending on N to get a result over the entire time interval
(0, T̃). The column NIt gives the range of the number of iterations CG needed to
converge. The column Time RHS corresponds to steps (1) and (a) in algorithm (3.2),
the column Time CG to step (b), and the column Time U, Up to steps (c) and (2).
The efficiency Eff := Time1

N×TimeN , where Time1 is the sequential computing time on one
processor, and TimeN is the parallel computing time using diagonalization with N
processors. Two efficiencies are given in the last two columns: Solv. Eff concerns step
(b) and Tot. Eff concerns the whole time sequence. We see from column NIt that
as local problems become less well conditioned, the number of iterations increases: we
need between 15-33 iterations using one processor, and between 5-149 when using 16
processors, which also affects load balancing. In Table 3.3, we use CG preconditioned
with an incomplete LU factorization (ILU0). This improves convergence, but now
the cost of an iteration is about twice the cost compared to the non preconditioned
case; nevertheless the overall computation time is faster. In Table 3.4, we used a
direct solver based on the efficient PARDISO (mkl) library [41] that renumbers mesh
nodes so that the factorized symmetric matrix is as sparse as possible. We see that
PARDISO provides very good local efficiency, and is faster than the iterative methods
we used in this 2D setting. This good local efficiency however leads to a little less
total efficiency than the variant using CG.

These results show that time parallelization by diagonalization is very efficient
as long as the local problem is sufficiently computation intensive so as not to be

20

N NWin NIt Time RHS Time-CG-ILU Time U, Up Solv. Eff Tot. Eff
1 128 11-11 0.001 s 0.665 s 0.062 s
2 64 11-11 0.026 s 0.383 s 0.041 s 86.81 % 80.89 %
4 32 10-11 0.038 s 0.166 s 0.071 s 100.15 % 58.39 %
8 16 7-15 0.051 s 0.088 s 0.119 s 94.46 % 33.09 %
16 8 2-33 0.059 s 0.074 s 0.129 s 56.17 % 17.37 %

Table 3.3
2D wave equation using CG and ILU0 preconditioner, initialization time 0.0039 s, including

ILU0 factorization

N NWin NIt Time RHS Time Direct Sol. Time U, Up Solv. Eff Tot. Eff
1 128 1 0.001 s 0.256 s 0.033 s
2 64 1 0.024 s 0.134 s 0.034 s 95.52 % 64.36 %
4 32 1 0.038 s 0.066 s 0.067 s 96.97 % 37.76 %
8 16 1 0.047 s 0.035 s 0.130 s 91.43 % 17.10 %
16 8 1 0.061 s 0.016 s 0.146 s 99.99 % 8.13 %

Table 3.4
2D wave equation using PARDISO, initialization time 0.102 s including the factorization with

PARDISO

overtaken by communications cost necessary to compute the right hand side (RHS)
and the final solution (U) and its first time derivative (Up).

3.3. Application to a large 3D industrial problem. We now apply this tech-
nique to an industrial problem: we want to compute the response of a carbon/epoxy
laminated composite panel subjected to an impact-like loading. This class of material
is modeled in its linear elastic domain with a transverse isotropic Hooke law. When
the fiber direction is aligned with the e1 direction, and using the Voigt notation3, the
Hooke law is given by

(3.3)

ε11
ε22
ε33
2ε23
2ε13
2ε12

 =

1
EL

−νLT

EL
−νLT

EL
0 0 0

−νLT

EL

1
ET

−νTT

ET
0 0 0

−νLT

EL
−νTT

ET

1
ET

0 0 0

0 0 0 2 1+νTT

ET
0 0

0 0 0 0 1
GLT

0

0 0 0 0 0 1
GLT

σ11
σ22
σ33
σ23
σ13
σ12

 .

Here, EL is the longitudinal elastic modulus (in the carbon fiber direction), ET is the
transverse elastic modulus, GLT is the elastic shear modulus, and νLT and νTT are
the so-called Poisson ratios, and we simulate the elasticity equations,

ρü = div(σ) + f , εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The selected material is a T700GC/M21 carbon/expoxy system used in the aeronauti-
cal industry. The corresponding elastic moduli are given in Table 3.5. The geometry
of the problem is taken from the experimental work described in [46]. The tested

3Voigt notation uses a matrix representation for 4th order tensors. It also exploits the symmetries
of the 2nd order strain and stress tensors (hence the 6 components).

21

EL ET νLT νTT GLT
130.0 GPa 7.7 GPa 0.33 0.4 4750 MPa

Table 3.5
Elastic moduli of the T700GC/M21 carbon/epoxy system.

Fig. 3.4. Mesh configuration and loading for the elasticity problem.

plate is made of 12 plies with a symmetric stacking sequence. The mesh, illustrated
in Figure 3.4, consists of 152607 degrees of freedom. Each ply is modeled with one
element in the thickness direction. The stacking sequence (i.e. the angle between the
fiber orientations and the global ex direction for each ply) is taken as [0 / 45 / 90 /
-45 / 0 / 0 / 0 / 0 / -45 / 90 / 45 / 0] which implies that the material is heterogeneous
at the structure scale. Dirichlet boundary conditions (represented in blue) are applied
on areas representative of the experiment. A homogeneous pressure field is applied at
the center of the plate (red circle) and is representative of a small impact. The time
is discretized with 2000 time steps over the T̃ :=10ms simulation range.

The finite element code Zset [48] is used to handle the specific finite element
features: mesh generation, material orientation, computation of mass and stiffness
matrices, boundary conditions, etc. Zset comes with a Python interface which per-
mits to handle the global operators (stiffness and mass matrices) and vectors in a
very convenient way through numpy arrays. All the algebraic operations described in
equations (1.2) to (1.7) are thus performed with the numpy and scipy Python pack-
ages. Parallelism is achieved with the mpi4py package, the Python interface to MPI.
The script is launched on a 2.4GHz, Xeon E5-2680 processor with 24 cores, but we use
only up to N = 16 for our experiments. To reach the 2000 time steps, we thus have
to use 2000/N time windows. There is an evident gain here in using a direct solver,
since once the N sparse operators (see equation (1.7.b)) have been factorized during
the first block, their decomposition can be reused for the solutions in the 2000/N − 1
remaining time windows. In this implementation, we use the MUMPS solver [39] and
its LU decomposition capability. Because of the multiple time windows, we also have
to properly account for the non-zero initial conditions at the beginning of each block.
These operations require additional algebraic operations that we refer to as windows
initializations (steps (a), (c) and (2) in (3.1)).

We show in Figure 3.5 the measured CPU times when parallelizing with different
values of N . The times for the LU factorizations, the LU linear solves by forward
and backward substitution, the tensorial operations, the windows initializations, the

22

Fig. 3.5. Computing times for the industrial elasticity problem.

0 2 4 6 8 10

time (ms)

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

d
is

p
la

ce
m

e
n
t

(m
m

)

sequential solution (ε= 0)

N=16 parallel solution (ε= 0. 25)

Fig. 3.6. Deflection of the central node on the back face of the plate for the sequential and the
parallel solution with N = 16.

preprocessing and the MPI communications are shown separately, and we see that
the LU linear solves are fully parallelized in time with this diagonalization technique.
Figure 3.5 indeed shows that the corresponding times scale nicely up to N = 8 pro-
cessors, and one obtains substantial speedup using this method. The overhead due
to the different algebraic operations (mainly factorization and tensorial operations)
remains about the same from N = 2 to N = 16 but it becomes more significant in the
last case (steps (a), (c) and (2) in (3.1)). From a practical point of view, the 650s gain
from a sequential to an N = 8 parallel solution seems to be narrow. However, this
kind of simulation is typically used to optimize the mechanical behavior according
to the stacking sequence. Depending on the optimizer, this process may not be fully
parallelizable. When tens or hundreds of runs are required, the gain of using time par-
allelization then becomes significant. Figure 3.6 shows the displacement of the central
node on the back face of the plate for the sequential solution and the parallel solution
for N = 16. No deviation is noticeable between the two responses, showing that no

23

significant error has been introduced by the parallelization with these parameters.

This type of time parallel algorithm would be well suited to a hybrid MPI/OpenMP
approach: MPI for space domain partitioning which can by far exceed shared memory
systems and OpenMP for the time parallelisation (less than 20 threads). In terms of
memory, there could be a gain (space variables would not need to be replicated) but
probably not so in terms of CPU time which is already quite good as shown in the
histogram in Figure 3.5 (see MPI gathering and MPI scattering).

4. Conclusions. We presented and analyzed the time parallelization method by
diagonalization for the wave equation. We derived an optimal choice for the geometric
stretching of the time grid, balancing carefully truncation and roundoff error. We
tested the method numerically for the model wave equation problems in different
spatial dimensions, and also on an industrial test case using the elasticity equations.
These results show that our theoretical parameters predict well the best choice for the
geometric time grid stretching, and substantial speedup is possible when solving wave
propagation problems using this technique, and this also in an industrial setting.

REFERENCES

[1] Daniel Bennequin, Martin J. Gander, and Laurence Halpern, A homographic best approx-
imation problem with application to optimized Schwarz waveform relaxation, Mathematics
of Computation, 78 (2009), pp. 185–223.

[2] Theodore A. Bickart, An efficient solution process for implicit Runge-Kutta methods, SIAM
Journal on Numerical Analysis, 14 (1977), pp. 1022–1027.

[3] John C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT Numerical
Mathematics, 16 (1976), pp. 237–240.

[4] Andrew J. Christlieb, Colin B. Macdonald, and Benjamin W. Ong, Parallel high-order
integrators, SIAM Journal on Scientific Computing, 32 (2010), pp. 818–835.

[5] Matthew Emmett and Michael L. Minion, Toward an efficient parallel in time method for
partial differential equations, Comm. App. Math. and Comp. Sci, 7 (2012), pp. 105–132.

[6] Robert D. Falgout, Stephanie Friedhoff, T.V. Kolev, Scott P. MacLachlan, and
Jacob B. Schroder, Parallel time integration with multigrid, SIAM Journal on Scientific
Computing, 36 (2014), pp. C635–C661.

[7] Charbel Farhat, Julien Cortial, Climene Dastillung, and Henri Bavestrello, Time-
parallel implicit integrators for the near-real-time prediction of linear structural dynamic
responses, International Journal for Numerical Methods in Engineering, 67 (2006), pp. 697–
724.

[8] Stephanie Friedhoff, Robert D. Falgout, T.V. Kolev, Scott P. MacLachlan, and Ja-
cob B. Schroder, A multigrid-in-time algorithm for solving evolution equations in par-
allel, in Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain,
CO, United States, 2013.

[9] M.J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in
Domain Decomposition Methods in Science and Engineering XVII, O. B. Widlund and
D. E. Keyes, eds., vol. 60, Springer, 2008, pp. 45–56.

[10] M.J. Gander, L. Halpern, J. Ryan, and T.T.B. Tran, A direct solver for time paralleliza-
tion, in Lecture Notes in Computational Science and Engineering, Th. Dickopf, M.J. Gan-
der, L. Halpern, R. Krause, and L.F. Pavarino, eds., vol. XXII, Springer, 2016, pp. 491–499.

[11] M.J. Gander and Ch. Rohde, Overlapping Schwarz waveform relaxation for convection-
dominated nonlinear conservation laws, SIAM Journal on Scientific Computing, 27 (2005),
pp. 415–439.

[12] Martin J. Gander, Analysis of the parareal algorithm applied to hyperbolic problems us-
ing characteristics, Boletin de la Sociedad Espanola de Matemática Aplicada, 42 (2008),
pp. 21–35.

[13] , 50 years of time parallel time integration, in Multiple Shooting and Time Domain De-
composition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds., Springer,
2015, pp. 69–113.

[14] Martin J. Gander and Stefan Güttel, Paraexp: A parallel integrator for linear initial-value
problems, SIAM Journal on Scientific Computing, 35 (2013), pp. C123–C142.

24

[15] Martin J. Gander and Laurence Halpern, Absorbing boundary conditions for the wave
equation and parallel computing, Math. of Comp., 74 (2004), pp. 153–176.

[16] , Optimized Schwarz waveform relaxation methods for advection reaction diffusion prob-
lems, SIAM J. Numer. Anal., 45 (2007), pp. 666–697.

[17] Martin J. Gander, Laurence Halpern, and Frédéric Nataf, Optimal convergence for
overlapping and non-overlapping Schwarz waveform relaxation, in Eleventh international
Conference of Domain Decomposition Methods, C-H. Lai, P. Bjørstad, M. Cross, and
O. Widlund, eds., ddm.org, 1999, pp. 27–36.

[18] Martin J. Gander, Laurence Halpern, and Frédéric Nataf, Optimal Schwarz waveform
relaxation for the one dimensional wave equation, SIAM Journal of Numerical Analysis,
41 (2003), pp. 1643–1681.

[19] Martin J. Gander, Felix Kwok, and Bankim Mandal, Dirichlet-Neumann and Neumann-
Neumann waveform relaxation algorithms for parabolic problems, ETNA, 45 (2016),
pp. 424–456.

[20] , Dirichlet-Neumann and Neumann-Neumann waveform relaxation for the wave equa-
tion, in Lecture Notes in Computational Science and Engineering, Th. Dickopf, M.J. Gan-
der, L. Halpern, R. Krause, and L.F. Pavarino, eds., vol. XXII, Springer, 2016, pp. 501–509.

[21] Martin J. Gander, Felix Kwok, and Hui Zhang, Multigrid interpretations of the parareal
algorithm leading to an overlapping variant and MGRIT, submitted, (2017).

[22] Martin J. Gander and Martin Neumüller, Analysis of a new space-time parallel multigrid
algorithm for parabolic problems, SIAM J. Sci. Comp., 38 (2016), pp. A2173–A2208.

[23] Martin J. Gander and Madalina Petcu, Analysis of a modified parareal algorithm for
second-order ordinary differential equations, in AIP Conference Proceedings, vol. 936, AIP,
2007, pp. 233–236.

[24] , Analysis of a Krylov subspace enhanced parareal algorithm for linear problems, in
ESAIM: Proceedings, vol. 25, EDP Sciences, 2008, pp. 114–129.

[25] Martin J. Gander and Andrew M. Stuart, Space time continuous analysis of waveform
relaxation for the heat equation, SIAM J. Sci. Comput., 19 (1998), pp. 2014–2031.

[26] Martin J. Gander and Stefan Vandewalle, Analysis of the parareal time-parallel time-
integration method, SIAM Journal on Scientific Computing, 29 (2007), pp. 556–578.

[27] George Gasper and Mizan Rahman, Basic hypergeometric series, vol. 96, Cambridge Uni-
versity Press, 2004.

[28] Eldar Giladi and Herbert B. Keller, Space time domain decomposition for parabolic prob-
lems, Numerische Mathematik, 93 (2002), pp. 279–313.

[29] Gene H. Golub and Charles F. Van Loan, Matrix computations, Johns Hopkins Studies in
the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, fourth ed.,
2013.

[30] Jay Gopalakrishnan, Joachim Schöberl, and Christoph Wintersteiger, Mapped tent
pitching schemes for hyperbolic systems, arXiv preprint arXiv:1604.01081, (2016).

[31] Graham Horton and Stefan Vandewalle, A space-time multigrid method for parabolic par-
tial differential equations, SIAM Journal on Scientific Computing, 16 (1995), pp. 848–864.

[32] Felix Kwok, Neumann–Neumann waveform relaxation for the time-dependent heat equa-
tion, in Domain Decomposition Methods in Science and Engineering XXI, Springer, 2014,
pp. 189–198.

[33] J. L. Lions, Y. Maday, and G. Turinici, A parareal in time discretization of PDE’s, C.R.
Acad. Sci. Paris, Serie I, 332 (2001), pp. 661–668.

[34] C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT, 27
(1987), pp. 216–234.

[35] Yvon Maday and Einar M. Rønquist, Fast tensor product solvers. Part II: Spectral dis-
cretization in space and time, Tech. Report 7-9, Laboratoire Jacques-Louis Lions, 2007.

[36] , Parallelization in time through tensor-product space-time solvers, C. R. Math. Acad.
Sci. Paris, 346 (2008), pp. 113–118.

[37] Bankim Mandal, A time-dependent Dirichlet-Neumann method for the heat equation, in Lec-
ture Notes in Computational Science and Engineering, J. Erhel, M.J. Gander, L. Halpern,
G. Pichot, T. Sassi, and O.B. Widlund, eds., vol. XXI, Springer, 2014, pp. 467–475.

[38] Michael L. Minion, A hybrid parareal spectral deferred corrections method, Communications
in Applied Mathematics and Computational Science, 5 (2010), pp. 265–301.

[39] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://mumps-solver.org.
[40] Nathan M. Newmark, A method of computation for structural dynamics, Journal of the

engineering mechanics division, 85 (1959), pp. 67–94.
[41] Intel MKL PARDISO. https://software.intel.com/en-us/articles/intel-mkl-pardiso.
[42] A. Qaddouri, L. Laayouni, S. Loisel, J. Côté, and M.J. Gander, Optimized Schwarz

25

methods with an overset grid for the shallow-water equations: preliminary results, Applied
Numerical Mathematics, 58 (2008), pp. 459–471.

[43] Johann Rannou and Juliet Ryan, PRF transition statique-dynamique dans les structures
composites. rapport technique, année 2. section 1.2, Tech. Report RT 4/18450 DMSM -
février 2012, Onera, 2012.

[44] , PRF transition statique-dynamique dans les structures composites, rapport technique,
année 3, section a.1.1.6, Tech. Report RT 9/18450 DMSM - 2013, Onera, 2013.

[45] Daniel Ruprecht and Rolf Krause, Explicit parallel-in-time integration of a linear acoustic-
advection system, Computers & Fluids, 59 (2012), pp. 72–83.

[46] E. Trousset, J. Rannou, J.-F. Maire, and L. Guillaumat, Prediction of low-velocity impact
damage on composite plates, in 19th DYMAT Technical Meeting-STRASBOURG, 2011.

[47] Stefan Vandewalle and Eric Van de Velde, Space-time concurrent multigrid waveform
relaxation, Annals of Numer. Math, 1 (1994), pp. 347–363.

[48] Z-set, material and structure analysis suite. http://www.zset-software.com.

26

