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A DIRECT TIME PARALLEL SOLVER BY DIAGONALIZATION
FOR THE WAVE EQUATION

MARTIN J. GANDER∗, LAURENCE HALPERN† , JOHANN RANNOU‡ , AND JULIET

RYAN §

Abstract. With the advent of very large scale parallel computers, it has become more and more
important to also use the time direction for parallelization when solving evolution problems. While
there are many successful algorithms for diffusive problems, it has turned out to be substantially
more difficult to solve hyperbolic problems in a time parallel fashion. We present here a mathematical
analysis of a new method based on the diagonalization of the time stepping matrix proposed by Maday
and Rønquist in 2007. Like for many time parallelization methods, this seems at first not to be a very
promising approach, since this matrix is essentially triangular, and for a fixed time step even a Jordan
block, and thus not diagonalizable. If one chooses however different time steps, diagonalization is
possible, and one has to trade off between the accuracy due to necessarily having different time steps,
and numerical errors in the diagonalization process of these almost non-diagonalizable matrices. We
study this trade-off mathematically for the wave equation with a Crank-Nicolson discretization, and
propose an optimization strategy for the choice of the parameters. We illustrate our results with
numerical experiments for model wave equations in various dimensions, and also an industrial test
case for the elasticity equations.

1. Introduction. Using the time direction in evolution problems for paralleliza-
tion is an active field of research, for an overview, see [?]. Most of the methods devel-
oped for this purpose are iterative, see for example the parareal algorithm [?], whose
convergence was analyzed in [?] for linear problems, where also convergence difficulties
in the hyperbolic case were identified; for an analysis in the non-linear case, see [?]. A
variation of the parareal algorithm using spectral deferred correction [?] led then to
the PFASST algorithm [?], which is a multilevel method. Space-time multigrid meth-
ods were also developed, see [?] and references therein, and a new such method using
only standard components can be found in [?] with excellent strong and weak scaling
properties for parabolic problems. There is also the non-invasive MGRIT algorithm
[?, ?], and it was shown in [?] that MGRIT is equivalent to an overlapping parareal
algorithm, which led to a detailed non-linear convergence analysis for MGRIT [?].
Early versions of these space-time multigrid methods were based on waveform relax-
ation [?, ?], and there are also very successful Schwarz waveform relaxation methods
for the time parallel solution of evolution partial differential equations [?, ?, ?, ?, ?],
and the more recent Dirichlet-Neumann and Neumann-Neumann waveform relaxation
methods [?, ?, ?]. These are among the very few space-time iterative methods that
are effective for hyperbolic problems, see [?, ?, ?], since they use the finite speed of
propagation for good space-time decompositions, and also the related tent-pitching
approach [?] which removes the need for iteration completely by following in the de-
composition the characteristics. A different approach for hyperbolic problems are the
Krylov parareal methods [?, ?, ?, ?], which however have an important overhead due
to orthogonalization.

As an alternative, one can use direct space-time parallel solvers, like RIDC [?],
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which is ideal for multicore architectures and generates high order solutions in time in
parallel at the runtime cost of an Euler time stepper. For linear hyperbolic problems,
there is also the ParaExp algorithm [?] which is based on a fully overlapping decompo-
sition and Krylov techniques. A further direct approach based on the diagonalization
of the time stepping matrix was introduced in [?]; for a mathematical analysis of this
approach for the heat equation, see [?].

We present and analyze a new such direct time parallel method based on diag-
onalization for hyperbolic problems. We consider as our model partial differential
equation (PDE) the wave equation,

(1.1)
∂ttu−∆u = 0 in Ω× (0, T ),

u = 0 on ∂Ω,
(u, ∂tu)(·, 0) = (f, g) in Ω.

A popular implicit time integrator for the wave equation (??) is the Newmark scheme
[?]: let ∆h be a space discretization of the Laplacian ∆, and we thus want to discretize
üh −∆huh = 0 in time, where üh := ∂ttuh. In the Newmark scheme, the additional
unkown u̇h := ∂tuh is introduced, and one then approximates both uh and u̇h on the
time partition 0 = t0 < t1 < t2 < · · · < tN = T , kn := tn − tn−1, by a time stepping
rule involving the two parameters β and γ,

(1.2)
un+1
h = unh + kn+1u̇

n
h + k2n+1(( 1

2 − β)ünh + βün+1
h ),

u̇n+1
h = u̇nh + kn+1((1− γ)ünh + γün+1

h ),
ünh −∆hu

n
h = 0,

with given initial data u0h and u̇0h.

Let It be the N×N identity matrix associated with the time domain and Ix be the
J × J identity matrix associated with the spatial domain. Setting u := (u1h, . . . , u

N
h ),

and similarly for u̇ and ü, and defining the matrices

B1 =


1
k1
− 1
k2

1
k2

0

0
. . .

. . .

− 1
kN

1
kN

 , B2 =


0
1 0 0

0
. . .

. . .

1 0

 ,

C1 =


βk1

( 1
2 − β)k2 βk2 0

0
. . .

. . .

( 1
2 − β)kN βkN

 , C =


γ

(1− γ) γ 0

0
. . .

. . .

(1− γ) γ

 ,

the scheme (??) can be written in the compact form

(1.3)
(B1 ⊗ Ix)u = (B2 ⊗ Ix)u̇ + (C1 ⊗ Ix)ü + F,
(B1 ⊗ Ix)u̇ = (C ⊗ Ix)ü +G,
ü− (It ⊗∆h)u = 0,

with the right hand sides

F = (
1

k1
u0h + u̇0h + (

1

2
− β)k1∆hu

0
h, 0, · · · , 0), G = (

1

k1
u̇0h + (1− γ)∆hu

0
h, 0, · · · , 0).
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Solving the second equation in (??) for u̇ using that for the Kronecker product (B1⊗
Ix)(B2 ⊗ Ix) = (B1B2 ⊗ Ix), we get u̇ = (B−11 ⊗ Ix)((C ⊗ Ix)ü +G), which we insert
into the first equation to obtain

(B1 ⊗ Ix)u = ((B2B
−1
1 C + C1)⊗ Ix)ü + (B2B

−1
1 ⊗ Ix)G+ F.

The matrix B3 := B2B
−1
1 C + C1 is a lower triangular matrix whose diagonal is that

of C1. Hence B3 is invertible, and we can solve for ü to obtain

ü = (B−13 ⊗ Ix)
(

(B1 ⊗ Ix)u− (B2B
−1
1 ⊗ Ix)G− F

)
.

Inserting this into the last equation in (??), we find

(1.4) (B ⊗ Ix − It ⊗∆h)u = f ,

with

(1.5) B = B−13 B1, f = (B−13 ⊗ Ix)((B2B
−1
1 ⊗ Ix)G+ F ).

Equation (??), is the matrix tensor-product form of the Newmark scheme for the
wave equation in mixed form. It is equivalent to (??), and since the matrices are
well-conditioned, it gives numerically the same solution. The velocity vector can be
recovered using the equation

u̇ = (B−11 ⊗ Ix)((C ⊗∆h)u +G).

The key idea to solve a space-time problem written in tensor-product form (??) in
a time parallel fashion from [?] is to diagonalize B. Since all matrices are lower
triangular, B is lower triangular, and the diagonal of B equals ( 1

βk21
, · · · , 1

βk2N
). If

all the time steps are different, then B is indeed diagonalizable, B = SDS−1, where
the diagonal matrix D contains the eigenvalues 1

βk2n
on the diagonal, and (??) can be

written as

(1.6) (S ⊗ Ix)(D ⊗ Ix − It ⊗∆h)(S−1 ⊗ Ix)u = f .

One can then solve (??) parallel in time performing the following 3 steps:

(1.7)

(a) g = (S−1 ⊗ Ix)f ,
(b) ( 1

βk2n
−∆h)wn = gn, 1 ≤ n ≤ N,

(c) u = (S ⊗ Ix)w.

The main work, namely the N linear systems in space in step (b), can all be solved
in parallel. We call this approach time parallelization by diagonalization. It was
first introduced and analyzed numerically for wave propagation in [?, ?], motivated
by the original invention in [?, ?] for diffusive problems the authors called tensor-
product space-time solvers. We will analyze here specifically the Crank-Nicolson
scheme, which corresponds to β = 1

4 and γ = 1
2 in the Newmark scheme (??). To see

in what sense this corresponds to Crank-Nicolson, we first replace the last equation
in (??) into the first two for these values of the parameters,

un+1
h = unh + kn+1u̇

n
h +

k2n+1

4 (∆hu
n
h + ∆hu

n+1
h ),

u̇n+1
h = u̇nh + kn+1

2 (∆hu
n
h + ∆hu

n+1
h ).
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Now from the second equation, we have 1
4 (∆hu

n
h + ∆hu

n+1
h ) = (u̇n+1

h − u̇nh)/(2kn+1),
which when inserted into the right hand side of the first equation gives

(1.8)
un+1
h = unh + kn+1

2 (u̇nh + u̇n+1
h ),

u̇n+1
h = u̇nh + kn+1

2 (∆hu
n
h + ∆hu

n+1
h ),

which is clearly Crank-Nicolson applied to the mixed formulation of the wave equation,
which with vh := u̇h is given by

u̇h = vh
v̇h = ∆huh.

Crank-Nicolson is second order accurate in time, and unconditionally stable. With a
similar computation as for the Newmark scheme, we also obtain the tensor-product
form (??) for the Crank-Nicolson scheme with

(1.9) B = (C−1B1)2, f = (C−1 ⊗ Ix)((B1C
−1 ⊗ Ix)F +G),

β = 1
4 , γ = 1

2 , and the same G, but with F = ( 1
k1
u0h + 1

2 u̇
0
h, 0, · · · , 0).

2. Analysis of time parallelization by diagonalization. Using the time par-
allel solver (??) based on diagonalization requires some care: first, the time stepping
matrix B is only diagonalizable if the time steps are all different, and this can lead
to a larger discretization error compared to using equidistant time steps. Second, the
condition number of the eigenvector matrix S increases exponentially with the num-
ber of time steps N to be done in parallel, which leads to inaccurate results in steps
(a) and (c) of (??) because of roundoff error. One therefore needs to carefully and
accurately estimate these two errors, to determine how many time steps can indeed
be performed in parallel using (??) without loosing accuracy.

In order to obtain such estimates in the wave equation case, we use a Fourier

transform in space with Fourier variable ξ, and obtain ∂2û
∂t2 +|ξ|2û = 0, which indicates

that we need to study for fixed T and a > 0 the algorithm (??) applied to the ordinary
differential equation (ODE)

(2.1) ü+ a2u = 0, t ∈ (0, T ),

with initial conditions u(0) = f and u̇(0) = g. The Cranck-Nicolson scheme for (??)
is

(2.2)
un = un−1 + 1

2kn(u̇n + u̇n−1),

u̇n = u̇n−1 − a2

2 kn(un + un−1),

with initial conditions u0 = f and u̇0 = g. Let U := (u, 1a u̇) be the solution of
(??) including the derivative term which will be important for our estimates, and
Un := (un, 1a u̇

n) be the discrete approximation defined by (??). We can then rewrite
the continuous and discretized problems as

(2.3) dtU + aJU = 0, (I+
akn
2
J)Un = (I−akn

2
J)Un−1, J :=

(
0 −1
1 0

)
,

with initial condition U(0) = U0 = (f, ga ). For a given N , we now consider time
steps given by a geometric partition Tq := (k1, · · · , kN ), kn(q) := qn−1k1 as it was
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suggested in [?]. The constraint
∑N
n=1 kn = T determines uniquely the value of the

geometric time steps,

(2.4) kn =
qn∑N
j=1 q

j
T.

We call Un(Tq) the corresponding sequence of solutions. The equidistant timestep

k̃ = T
N is obtained for q = 1.

2.1. Estimation of the error due to the geometric time stepping. We
now present an accurate estimate for the increase in the truncation error caused by
using a geometric time stepping with q = 1+ε, compared to using equal time stepping,
by studying the distance between UN (Tq) and UN (T1).

Theorem 2.1 (Asymptotic truncation error estimate). For fixed a, T and N ,
we obtain for ε small the error estimate

(2.5) ‖UN (T1+ε)− UN (T1)‖ = φ(
aT

2N
,N)ε2‖U0‖+O(ε3),

where φ(y,N) := N(N2−1)
6

y3

(1+y2)2 .

Proof. We first diagonalize the two systems (??) in the complex plane: let

P :=

(
1 1
i −i

)
, D :=

(
−1 0
0 1

)
,

which implies that P−1JP = iD and P−1(I − αJ)P = I − iαD. Defining

µ(t) := e−iat, λn :=
1− iakn2
1 + iakn2

, and µn :=

n∏
p=1

λp,

we obtain the diagonalized continuous and discrete solutions

U(t) = P

(
µ̄(t) 0

0 µ(t)

)
P−1U0, Un = P

(
µ̄n 0
0 µn

)
P−1U0.

For a given N , we now estimate the change induced by the non equidistant time steps.
For any partition T = (k1, · · · , kN ) of the interval (0, T ), we compare the solution

UN (T ) to the solution UN (T̃ ) obtained by the equidistant mesh T̃ = (k̃, · · · , k̃) with
k̃ = T/N . Defining

µ(T ) :=

N∏
n=1

1− iakn2
1 + iakn2

,

we find that

(2.6) UN (T )− UN (T̃ ) = P

(
µ(T )− µ(T̃ ) 0

0 µ(T )− µ(T̃ )

)
P−1U0.

Taking norms, and noting that ‖PV ‖2 = 2‖V ‖2 and ‖P−1V ‖2 = 1
2‖V ‖

2, we get

(2.7)
‖UN (T )− UN (T̃ )‖ = |µ(T )− µ(T̃ )|‖U0‖,
‖UN (T̃ )− U(T )‖ = |µ(T̃ )− e−iaT |‖U0‖.
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The second formula is the truncation error at the end of the time interval for equidis-
tant timesteps. We next need to estimate the error in µ, for which we use the following

Lemma 2.2. For fixed a, T and N , we have

(2.8) |µ(T )− µ(T̃ )| = a3k̃

4(1 + a2k̃
2

4 )2
‖T − T̃ ‖2 +O(||T − T̃ ||3).

Proof. We write µ(T ) as

µ(T ) =

N∏
n=1

λ(kn), λ(k) =
1− iak2
1 + iak2

.

By the second order Taylor-Young formula, we have

µ(T ) = µ(T̃ ) + µ′(T̃ ) · (T − T̃ ) +
1

2
µ′′(T̃ ) · (T − T̃ ) · (T − T̃ ) +O(||T − T̃ ||3).

We now compute the derivative,

(2.9)
∂µ

∂kn
(T̃ ) = µ(T̃ )

λ′(kn)

λ(kn)
= µ(T̃ )

−ia
1 + a2k̃

2

4

,

and therefore obtain for the linear term

µ′(T̃ ) · (T − T̃ ) = µ(T̃ )
−ia

1 + a2k̃
2

4

∑
n

(kn − k̃) = 0.

For the quadratic term, we differentiate (??) again with respect to kn,

(2.10)
∂2µ

∂k2n
(T̃ ) = µ(T̃ )a2

−1 + iak̃2

(1 + a2k̃
2

4 )2
,

∂2µ

∂kn∂kj
(T̃ ) = µ(T̃ )a2

−1

(1 + a2k̃
2

4 )2
,

and therefore obtain

µ′′(T̃ ) · (T − T̃ ) · (T − T̃ ) = −a2µ(T̃ )

∑
n,j(kn − k̃)(kj − k̃)− iak̃2

∑
n(kn − k̃)2

(1 + a2k̃
2

4 )2
,

which gives

µ(T ) = µ(T̃ )− a2µ(T̃ )

2

∑
n,j(kn − k̃)(kj − k̃)− iak̃2

∑
n(kn − k̃)2

(1 + a2k̃
2

4 )2
+O(||T − T̃ ||3).

The first sum in the numerator is zero, and hence

µ(T )− µ(T̃ ) =
iµ(T̃ )a3k̃

∑
n(kn − k̃)2

4(1 + a2k̃
2

4 )2
+O(||T − T̃ ||3),

which gives (??) when taking the modulus, since the quadratic term is purely imagi-

nary and |µ(T̃ )| = 1.

It remains to estimate ‖T − T̃ ‖2, which is done in

6



Lemma 2.3. The difference between the geometric and equal time partition sat-
isfies the estimate

(2.11) ‖T − T̃ ‖2 =

N∑
n=1

(kn − k̃)2 = k̃
2N(N2 − 1)

12
ε2 +O(ε3).

Proof. The time step kn in (??) has for ε small the expansion kn = k̃(1 + αnε+

βnε
2 + o(ε2)), with αn = n − N+1

2 and βn = n(n − N − 2) + (N+1)(N+5)
6 . These

coefficients satisfy the relations
∑
n αn =

∑
n βn = 0,

∑
n α

2
n = N(N2−1)

12 , which leads
to (??).

We can now finish the proof of Theorem ?? by inserting (??) into (??) to obtain

‖UN (T )− UN (T̃ )‖ =
a3k̃

4(1 + a2k̃
2

4 )2
k̃
2N(N2 − 1)

12
ε2‖U0‖+O(ε3).

2.2. Estimation of the roundoff error due to diagonalization. The space-
time system (??) becomes in the scalar case

(B + a2I)u = f ,

and to diagonalize this system, we need to diagonalize the matrix B, which will involve
unipotent lower triangular Toeplitz matrices.

Definition 2.4. A unipotent lower triangular Toeplitz matrix of size N is of the
form

(2.12) T (x1, . . . , xN−1) =


1

x1
. . .

...
. . .

. . .

xN−1 . . . x1 1

 .

The next Lemma gives a closed form eigendecomposition of the time stepping matrix
B, and is proved using the techniques of q− hypergeometric series (see the book of
Gasper and Rahman, Basic Hypergeometric series [?]).

Lemma 2.5 (Eigendecomposition of B). If kn = qn−1k1 with q 6= 1, then B has
the eigendecomposition B = V DV −1, with D = diag( 4

k2n
), and V and its inverse are

unipotent lower triangular Toeplitz matrices given by

V = T (p1, . . . , pN−1), with pn :=

n∏
j=1

1 + qj

1− qj
,(2.13)

V −1 = T (q1, . . . , qN−1), with qn := q−n
n∏
j=1

1 + q−j+2

1− q−j
.(2.14)

Proof. The matrix B = (C−1B1)2 is diagonalizable if and only if all time steps kn
are different. The eigenvalues are then 4

k2n
, and the eigenvectors are those of C−1B1.

An eigenvector of C−1B1 is such that (B1− 2
kn
C)X(n) = 0, and the matrix B1− 2

kn
C

7



is lower bidiagonal, which leads to a recursive formula for the coefficients X(n) of the
eigenvectors, {

X
(n)
1 = X

(n)
2 = · · ·X(n)

n−1 = 0,

X
(n)
n+1 = kn+kn+1

kn−kn+1
X

(n)
n , · · · , X(n)

N = kn+kN
kn−kN X

(n)
N−1.

Since the normalization is arbitrary, we can choose X
(n)
n = 1, which gives

X
(n)
j =


0 for j < n,
j∏

l=n+1

kn+kl
kn−kl for j > n.

The matrix of eigenvectors V := (X(1), · · · , X(N)) is lower triangular and unipotent,
i.e. the diagonal elements equal 1. In case of the geometric mesh, it has the particular
structure

Vij = X
(j)
i =

i∏
l=j+1

kj + kl
kj − kl

=

i∏
l=j+1

qj + ql

qj − ql
=

i∏
l=j+1

1 + qk−j

1− qk−j
=

i−j∏
l=1

1 + ql

1− ql
,

which shows that Vij is a function of i−j only, and therefore V is a unipotent Toeplitz
matrix. Consider now the inverse of V . First, it is easy to see that it is also unipotent
Toeplitz. To establish (??) is equivalent to prove that

(2.15) for 1 ≤ n ≤ N − 1,

n∑
j=0

pn−jqj = 0, with the convention that p0 = q0 = 1.

To show this result, we need to define Heine’s q−hypergeometric series (Heine 1847),

(2.16) 2ϕ1(a1, a2; b; q;x) :=

∞∑
n=0

(a1; q)n(a2; q)n
(q; q)n(b; q)n

xn,

where we assume that b is not an integer negative power of q, and the q−rising
factorial is

(a; q)k :=

k−1∏
i=0

(1− qia), (a; q)∞ :=

∞∏
i=0

(1− aqi).

The Heine’s summation formula states that for any two real numbers a1 and a2, and
for any b with |b/(a1a2)| < 1, we have

(2.17) 2ϕ1(a1, a2; b; q; b/a1a2) =
(b/a1; q)∞(b/a2; q)∞
(b; q)∞(b/a1a2; q)∞

.

We now use Heine’s summation formula to conclude the proof: let N be an integer
larger than 1; setting a1 = q−N and a2 = a yields the q-Chu-Vandermonde formula

(2.18) 2ϕ1(q−N , a; b; q;
b

a
qN ) =

(b/a; q)N
(b; q)N

.
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Since (q−N ; q)n = 0 as soon as n ≥ N + 1, the series on the left is a finite sum, and
we obtain

(2.19)

N∑
n=0

(q−N ; q)n(a; q)n
(q; q)n(b; q)n

(
b

a
qN
)n

=
(b/a; q)N
(b; q)N

.

This is an equality between rational fractions in q, which is valid for all q different from
0, 1, and all a 6= 0 and all b which are not an integer negative power of q. Choosing
a = −q and b = −q−N+2, we have

(2.20) (b/a; q)N = (q−N+1; q)N = (1− q−N+1) · · · (1− q−N+1qN−1) = 0,

and thus the right hand side in (??) vanishes, and we get

(2.21)

N∑
n=0

(−q; q)n(q−N ; q)n
(q; q)n(−q−N+2; q)n

qn = 0.

We express now pn in terms of q−analogues,

(2.22) pn =

n∏
i=1

1 + qi

1− qi
=

n−1∏
i=0

1 + qqi

1− qqi
=

(−q; q)n
(q; q)n

.

Defining q̃N−n :=
(q−N ; q)n

(−q−N+2; q)n
qn and qN−n :=

q̃N−n
q̃0

, (??) becomes

N∑
n=0

pnq̃N−n =

N∑
n=0

pnqN−n = 0.

Introducing the definition of qN−n and performing similar steps as in (??) backwards
shows that qn is equal to the value in (??), and the proof is complete.

In the steps (a) and (c) of the direct time parallel solver (??) based on diagonal-
ization, the condition number of the eigenvector matrix S has a strong influence on
the accuracy of the results, and normalizing the eigenvectors from Lemma ?? with
respect to the `2 norm leads to an asymptotically better condition number,

(2.23) S := V D̃, D̃ = diag(
1√

1 +
N−n∑
i=1

|pi|2
).

We now study the roundoff error when solving the system (B+a2I)u = f numerically
using the diagonalization

(2.24) S(D + a2I)S−1u = f .

Due to roundoff, we will obtain an approximate solution û, and the difference between
the exact solution u and û is classically related to the condition number of the matrix
S. We first also give such an estimate, but later provide a more accurate one using
the structure of the problem at hand.

9



Lemma 2.6. Let u be the exact solution of (B + a2I)u = f , and û be the numer-
ically computed solution using the factored form (??), and let u denote the machine
precision. Then for any norm,

(2.25)
‖u− û‖
‖u‖

≤ cond(B)
‖δB‖
‖B‖

≤ (2N + 1)u ‖B−1‖ ‖ |S| |S−1| ‖ ‖D + aI‖.

Proof. Using backward error analysis [?], the computed solution satisfies the
perturbed systems

(S + δS1)ĝ = f , (D + a2I + δD)ŵ = ĝ, (S−1 + δS2)û = ŵ,

and since S and S−1 are triangular and D is diagonal we get (see [?])

|δS1| ≤ Nu|S|+O(u2), |δS2| ≤ Nu|S−1|+O(u2), |δD| ≤ u|D + aI|+O(u2).

Solving numerically (B + a2I)u = f using the factored form (??) is equivalent to
solving exactly (S + δS1)(D + a2I + δD)(S−1 + δS2) û = f , which is of the form

(B + δB)û = f , |δB| ≤ (2N + 1)u|S| |S−1| |D + aI|+O(u2).

The relative error then satisfies (see [?])

(2.26)
‖u− û‖
‖u‖

≤ cond(B)
‖δB‖
‖B‖

≤ ‖B−1‖ ‖δB‖,

and inserting ‖δB‖ from before gives the result in (??).
We next provide an asymptotic estimate for the term ‖ |S| |S−1|‖ on the right in (??)
in the case of a geometric time partition using the infinity norm.

Lemma 2.7 (Asymptotic condition number estimate). For q = 1 + ε, we have

‖ |S| |S−1| ‖∞ ∼
22(N−1)

(N − 1)!
ε−(N−1),(2.27)

cond∞(S) ∼ 2(N−1)N

bN2 c!b
N−1
2 c!

ε−(N−1).(2.28)

Proof. Note first that |qn| ∼ |pn| ∼ 2n

n! εn . We next define γn :=
√

1 +
∑N−n
j=1 |pj |2

and d̃n := 1
γn

, which implies that D̃ = diag(d̃n). Then γn ∼ |pN−n|, and we obtain

(2.29)

‖S‖∞ = max
n

n∑
j=1

|pn−j |
γj

∼ max
n

n∑
j=1

|pn−j |
|pN−j |

∼ max
n

n∑
j=1

(N − j)!
(n− j)!

(ε
2

)N−n
∼ N.

By definition S−1 = D̃−1V −1 = D̃−1T (q1, · · · , qN−1), that is the line n of T (q1, · · · , qN−1)
is multiplied by γn. Therefore

(2.30)

‖S−1‖∞ = max
n

γn

n−1∑
j=0

|qj | ∼ max
n

γn|qn−1| ∼ max
n

γn|pn−1|

∼maxn |pN−n||pn−1| ∼
(

2

ε

)(N−1)

max
1≤n≤N−1

1

(n− 1)!(N − n)!
.

10



The last term on the right hand side can be explicitly computed by noting that

max
1≤n≤N−1

1

(n− 1)!(N − n)!
=

1

(N − 1)!
max

1≤n≤N−1

(
N − 1

n− 1

)
=

1

(N − 1)!

(
N − 1

bN−12 c

)
,

which follows from the Pascal triangle, and thus we get

max
1≤n≤N−1

1

(n− 1)!(N − n)!
=

1

bN2 c!b
N−1
2 c!

.

Combining (??) and (??) then yields (??). Similarly, we also obtain

‖ |S| |S−1| ‖∞ = max
i

∑
j

(|S| |S−1|)ij = max
i

i∑
j=1

i∑
k=j

|pi−k| |qk−j |

∼ 2N−1

εN−1

N∑
k=1

1

(N − k)!(k − 1)!

and explicitly summing the last term on the right,
∑N
k=1

1
(N−k)!(k−1)! = 2N−1

(N−1)! , leads

to the desired estimate (??).
We are now ready to give a precise asymptotic error estimate of the roundoff error
that is induced by the diagonalization in the direct time parallel solver (??):

Theorem 2.8 (Asymptotic roundoff error estimate). Let u be the exact solution
of (B+a2I)u = f , and û be the computed solution from the direct time parallel solver
(??) applied to (??), and let u denote the machine precision. Then

(2.31)
‖u− û‖∞
‖u‖∞

. ψ1(
aT

2N
,N)u ε−(N−1),

where ψ1(y,N) :=
22(N+1)

(N − 1)!
(1 + 2N(N − 1))(1 + y2).

Proof. The form of the matrices involved is very well adapted to estimates in the
`∞ norm. We evaluate the various quantities in (??) starting with the norm of B−1,
which we can obtain by computing B−1 = (B−11 C)2 explicitly and noting that the
infinity norm comes from the last line, which gives

‖B−1‖∞ = (2k1)2
(

1 +
2q(qN−1 − 1)(qN − 1)

(q − 1)2

)
.

Now for q = 1 + ε, we get by expanding

‖B−1‖∞ ∼ (2k1)2(1 + 2N(N − 1)).

We now use that D = diag( 4
k2i

), and obtain

(2.32)

‖B−1‖∞‖D+aI‖∞ ∼ (2k1)2(4/k21+a2)(1+2N(N−1)) ∼ 16(1+
a2k21

4
)(1+2N(N−1)).

Inserting (??) into (??) gives

‖u− û‖∞
‖u‖∞

. 16(1 +
a2k21

4
)(1 + 2N(N − 1))u ‖ |S| |S−1| ‖∞ .

11



Replacing the last term on the righthand side using (??) leads to

(2.33)
‖u− û‖∞
‖u‖∞

.
22(N+1)

(N − 1)!
(1 + 2N(N − 1))

(
1 +

a2k21
4

)
u ε−(N−1).

Approximating k1 by k̃ as ε goes to zero finally gives

‖u− û‖∞
‖u‖∞

.
22(N+1)

(N − 1)!
(1 + 2N(N − 1))

(
1 +

(
aT

2N

)2
)
u ε−(N−1),

which proves the result.
Remark 2.9. The more usual round off estimates use the condition number of

the matrix S in (??) instead of the norm of |S| |S−1|. Then using (??), the estimate
(??) would become

(2.34)
‖u− û‖∞
‖u‖∞

. ψ2(
aT

2N
,N)u ε−(N−1),

where ψ2(y,N) := N(1+2N(N−1)) 2N+3

bN2 c!b
N−1

2 c!
(1 + y2), which we will see is comparable to our

first estimate.
We next present a sharper estimate using the special structure of S and S−1.

Lemma 2.10. For any f , for any diagonal matrix ∆, let u = S∆S−1f , and û be
the computed value of u. Then

(2.35) ‖u− û‖∞ .
22(N−1)

(N − 1)!
ε−(N−1) u ‖∆‖∞ ‖f‖∞.

Proof. Standard truncation error estimates as in Theorem ?? show that the
approximate value of SDS−1f gives an error which can be bounded by

|S∆S−1f−S∆S−1f | ≤ ‖f‖∞ ‖∆‖∞ u



1
1 + |p1|+ |q1|

...
|pN−1|+ |pN−2|(|q1|+ 1)+

· · ·
+|qN−1|+ |qN−2||p1|+ · · ·+ |q1|+ 1


+O(u2).

Considering the leading term in ε, suppose that ε and N are such that the largest
coefficient pN−1 satisfies |pN−1|u� 1, to obtain

‖S∆S−1f − S∆S−1f‖∞ . ‖f‖∞ ‖∆‖∞ u

N−1∑
n=0

|pjqN−1−j |.

We can estimate the sum using an asymptotic expansion,

N−1∑
n=0

|pjqN−1−j | ∼
N−1∑
n=0

2n

n!
ε−n

2N−1−n

(N − 1− n)!
ε−(N−1−n) ∼ 22(N−1)

(N − 1)!
ε−(N−1),

and we obtain

(2.36)
‖S∆S−1f − S∆S−1f‖∞

‖f‖∞
. ‖∆‖∞

22(N−1)

(N − 1)!
ε−(N−1)u,

12



which concludes the proof.
We can now prove the following sharper estimate for the roundoff error:
Theorem 2.11 (Sharper asymptotic roundoff error estimate). For any f , let

u = S(D + aI)−1S−1f , and û be the computed value of u. Then

(2.37)
‖u− û‖∞
‖U0‖

. ψ3(
aT

2N
,N)u ε−(N−1),

where ψ3(y,N) := 22N− 1
2 N

(N−1)!
1

y2+1 .

Proof. We have ‖(D + a2I)−1‖∞ = 1
a2+ 4

k2
N

, and replacing ∆ by (D + a2I)−1 in

(??), we obtain

(2.38) ‖u− û‖∞ .
22(N−1)

(N − 1)!
ε−(N−1) u

1

a2 + 4
k2N

‖f‖∞.

We need now an estimate of ‖f‖∞, with

(2.39) f = C−1(B1C
−1F0 +G0)e1, F0 =

1

k1
f +

g

2
, G0 =

1

k1
g − a2

2
f.

We first explicitly compute the inverse of C and obtain the lower triangular matrix
C−1ij = 2(−1)i−j , i ≥ j. We can then evaluate the terms in (??) to get

(C−1e1)i = 2(−1)i−1 =⇒ (C−1B1C
−1e1)i = 4(−1)i−1

 1

k1
+ 2

i∑
j=2

1

kj

 ,

where the sum equals zero for i = 1. Using that the time steps are geometric, kj =
qj−1k1, we define

si := 1 + 2

i−1∑
j=1

1

qj
for i ≥ 2, s1 = 1,

and obtain (C−1B1C
−1e1)i = 4

k1
(−1)i−1si, which we introduce into (??) to get

fi = (−1)i−1(
4

k1
F0si + 2G0) = (−1)i−1

(
4

k1
si(

1

k1
f +

g

2
) + 2(

1

k1
g − a2

2
f)

)
.

Taking the modulus and rearranging terms leads to

|fi| =
∣∣∣∣ 4

k21
f

(
si −

a2k21
4

)
+

2

k1
g(si + 1)

∣∣∣∣ .
Defining y1 := k1a

2 , we obtain

|fi| =
∣∣∣∣ 4

k21
f(si − y21) +

2a

k1

g

a
(si + 1)

∣∣∣∣ =
4

k21

∣∣∣f(si − y21) + y1
g

a
(si + 1)

∣∣∣ .
For sufficiently small k1, y1 is smaller than 1, and since si > 1 and the sequence si is
increasing, we obtain

‖f‖∞ ≤
4

k21
(|f |sN +

|g|
a

(sN + 1)) ≤ 4

k21
(sN + 1)(|f |+ |g|

a
) ≤ 4

√
2

k21
(sN + 1)‖U0‖.
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Fig. 2.1. Comparison of the logarithm of the functions ψj , j = 1, 2, 3

We use now that q is close to 1 to estimate asymptotically

sN + 1 = 2(1 +

N−1∑
j=1

1

qj
) = 2

N−1∑
j=0

1

qj
= 2

1− 1
qN

1− 1
q

. 2N,

and therefore

‖f‖∞ .
8N
√

2

k21
‖U0‖.

This allows us to also estimate ‖f‖∞ in (??) asymptotically,

‖u− û‖∞ .
22(N−1)

(N − 1)!
ε−(N−1) u

1

a2 + 4
k2N

8N
√

2

k21
‖U0‖.

We now combine the last two terms asymptotically using that

4
k21

a2 + 4
k2N

∼ 1

1 + y2
, y :=

aT

2N
,

and obtain (??).
We show in Figure ?? graphically that ψ1( aT2N , N) and ψ2( aT2N , N) are comparable,

while ψ3( aT2N , N) is substantially smaller, and thus gives a much sharper estimate.

2.3. Optimization of the algorithm parameters. To start, we perform a
numerical experiment for the scalar model problem (??) with a = 1 and initial con-
ditions u(0) = 1, u′(0) = 0. We show in Figure ?? first as a reference the measured
discretization error on an equidistant time partition with N points (called ’error 1’,
and independent of ε). Next we plot the discretization error due to the geometric
time partition, which increases when ε is increasing (called ’error 2’), and our the-
oretical estimate φε2 from Theorem ??, which is rather sharp, since it coincides in
the figure with the numerically measured values, except for large ε. We finally also
plot the roundoff error we measure due to the diagonalization procedure, which de-
creases when ε is increasing (called ’error 3’), and our theoretical bound ψ3ε

−(N−1)u
from Theorem ??. From these plots, we can see that an optimized choice of ε would
balance these two errors, and for the case on the left with T = 5 and N = 10 (10

14
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Fig. 2.2. Discretization and parallelization errors, together with our theoretical bounds. Left:
T = 5, a = 1, N = 10, Right: T = 10, a = 1, N = 20

processors) it would be ε∗ ≈ 4.5e − 2. In this case, the additional errors due to the
time parallelization would remain much smaller than the actual discretization error
one would have on an equidistant time grid. For the case on the right in Figure ??
with T = 10 and N = 20 (20 processors), the best choice would be ε∗ ≈ 1e − 1, and
now the additional errors due to the parallelization would be of the same order as the
actual discretization error one would have on an equidistant time grid.

To determine a formula for the best ε∗, we can bound the actual error of the
parallel time integrator by adding and subtracting uN (T1) and also uN (Tq), with
q = 1 + ε, and using the triangle inequality, we obtain at time T an error estimate
between the exact solution at time T = tN and the last value ûN of the approximate
solution computed by diagonalization, namely

(2.40)
|u(tN )− ûN |
‖U0‖

≤ |u(tN )− uN (T1)|
‖U0‖︸ ︷︷ ︸

≤ error 1

+
|uN (T1)− uN (Tq)|

‖U0‖︸ ︷︷ ︸
≤ error 2

+
|uN (Tq)− ûN |
‖U0‖︸ ︷︷ ︸

≤ error 3

.

The first term error 1 is the truncation error of the sequential method using equal
time steps, see also Figure ??. The second term error 2 is due to the geometric
time partition and was estimated asymptotically in Theorem ?? to be φε2. The
last term error 3 can be estimated using Theorem ??. Because the second term is
decreasing in ε and the last term is growing in ε, see also Figure ??, we equilibrate
them asymptotically and obtain

Theorem 2.12 (Optimized geometric time partition). Suppose the time steps are
geometric, kn = qn−1k1, and q = 1 + ε with ε small. Let u be the machine precision.
Fix a, T and N . For ε = ε∗(aT,N) with

(2.41) ε∗(aT,N) =

(
3 22N

(N2 − 1)(N − 1)!

1 + y2

y3
u

) 1
N+1

, with y =
aT

2N
,

the error due to time parallelization is asymptotically comparable to the one produced
by the geometric time partition.

Proof. Equilibration of the error produced by the geometric mesh and the diago-

nalization means imposing φ(y,N)ε2 = ψ3(y,N)u ε−(N−1), and thus ε∗ =
(
ψ3

φ (y,N)u
) 1

N+1

,
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where ψ3 is defined in Theorem ??, and φ is defined in Theorem ??. Introducing these
quantities and simplifying leads to (??).

We see in Figure ?? that the theoretically predicted optimized ε∗ marked by
a rhombus is a good estimate of the numerical best parameter. We next show in
Figure ?? on the left the optimized value ε∗(aT,N) from Theorem ?? as a function
of the two arguments aT and N . Choosing ε = ε∗(aT,N), the ratio between the
additional errors due to parallelization to the truncation error of the fixed time step
method (error 2/error 1) is shown in Figure ?? on the right, together with the relative
truncation error for a fixed time step method in red (error 1). We see that one can
use approximately 20 processors (N = 20) for a reasonably large range of aT by
only increasing the error with the same order one would have had using a sequential
integrator on a fixed time mesh, and when using 10 processors, the additional errors
due to time parallelization are negligable (about 10% of the errors on an equidistant
time grid). When using 40 processors however (N = 40), a five fold error has to be
expected, due to the parallelization, compared to the sequential time stepping on a
fixed time mesh, and this when choosing the best possible value ε = ε∗(aT,N).

Remark 2.13. To obtain an estimate for the best ε to chose in the wave equa-
tion case, we recall the Fourier transform in space with Fourier variable ξ which
corresponds to our parameter a. We can thus apply our results from the ODE anal-
ysis with a2 = |ξ|2, where ξ is the dominant frequency in the solution we are trying
to calculate. If we have no information about the dominant frequency in the solution,
we can also use the upper bound ξ2max := π2/h2 in 1D (h the mesh size in space), and
|ξmax|2 := π2/h21 + π2/h22 (h1 and h2 the two mesh sizes in space), since φε∗(aT,N)2

is growing in aT , see Figure ?? on the right. Note that the growth seems to slow down
for large values of aT , so that one can even estimate the value of ε∗(aT,N) outside
the plotted range of aT .

3. Numerical Experiments. We now test our theoretical results on the wave
equation (??) in one and two spatial dimensions, and also on an industrial test case
using the equations of elasticity.
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3.1. The wave equation in one dimension. We solve the wave equation
in one dimension on [0, 1], with homogeneous Dirichlet boundary conditions and as
initial conditions u0(x) = sin(πx), u1(x) = 0. The spatial mesh is h = 1

10 , and we
use N = 10 time steps on the time interval (0, 1). We first show in Figure ?? three
numerical solutions obtained for three different geometric time partitions using the
diagonalization approach. We clearly see on the left that the ε chosen is too small, the
solution becomes inaccurate and presents strong oscillations due to the roundoff error
introduced by the diagonalization. On the right ε is too big, and the solution is less
accurate for the second part of the time interval. In the middle, we chose the optimal
ε∗ and obtain an accurate solution, comparable to the one computed sequentially
on a fixed step size partition. In Figure ?? we show the corresponding measured
discretization and diagonaliation errors compared to our theoretical bounds. We see
again on the left that for T = 1 using N = 10 (10 processors), using the optimized
choice of ε leads to a very small error increase compared to the already existing
truncation error, as in the ODE case in Figure ??. Using however 20 processors
(N = 20) on a twice as long time interval T = 2, the errors due to parallelization
are now comparable to the existing truncation error on an equally spaced time grid,
and as in the ODE case, one can not use more than about 20 processors for the time
parallelization of the wave equation without introducing substantial additional errors
due to the parallelization method based on diagonalization.

3.2. The wave equation in two dimensions. We now solve the wave equation
on the unit square, with homogeneous Dirichlet boundary conditions and as initial
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Fig. 3.3. Discretization and parallelization errors in 2d, together with our theoretical bounds
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conditions u0(x, y) = sin(πx) sin(πy), u1(x, y) = 0, using h = 1
10 in space. In Figure

?? we show again the corresponding measured discretization and diagonalization er-
rors compared to our theoretical bounds, and we see that the results are very similar
to the one dimensional case.

We also implemented this algorithm on a computer cluster adding to the initial
algorithm a time window process in order to compare costs and accuracy for a larger
number of time steps, and to truly evaluate parallel performance. We denote by
Numwin the number of time windows, where each time window consists of N time
steps. The algorithm now performs 5 steps for each time window, namely

(3.1)

(a) F = ( 1
k1
u0h + 1

2 u̇
0
h, · · · , 0)

G = ( 1
k1
u̇0h + 1

2∆hu
0
h, 0, · · · , 0)

(b) g = (S1 ⊗ Ix)F + (S2 ⊗ Ix)G,
(c) ( 1

βk2n
−∆h)wn = gn, 1 ≤ n ≤ N,

(d) u = (S ⊗ Ix)w,
(e) u̇ = (B−11 C ⊗ Ix)∆hu + (B−11 ⊗ Ix)G,

where S1 = S−1C−1B1 and S2 = S−1C−1. Note that step (e) has to be computed in
order to initialize F and G for the next time window.

All the time matrices are lower triangular matrices and all Kronecker products
Y = (A⊗ Ix)X where X = (X1, X2, ..., XN ) and Y = (Y1, Y2, ..., YN ) can be written
as

Y = (A⊗ Ix)X ⇐⇒



Y1 = A(1, 1)X1

Y2 = A(2, 1)X1 + A(2, 2)X2

...
Yi = A(i, 1)X1 + A(i, 2)X2 + . . . + A(i, i)Xi

...
YN = A(N, 1)X1 + A(N, 2)X2 + . . . + A(N,N)XN .

For a time window parallel computation with N processes, each time step n, 1 ≤
n ≤ N is computed by process n. Steps (a), (b), (c), (d) can be computed in a totally
asynchronous manner allowing computing time overlaps, i.e. each process sets up an
array where arrays sent from former processes can be stored, then sends the required
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N Numwin Time Error Eff
1 128 0.497E+01 5.77E-007
2 64 0.254E+01 6.13E-007 97.83 %
4 32 0.132E+01 7.71E-007 94.13 %
8 16 0.709E+00 1.71E-006 88.75 %
16 8 0.407E+00 5.15E-005 77.65 %

Table 3.1
CPU times for the wave equation in two spatial dimensions. The first row corresponds to the

sequential scheme with a fixed time step k̃ = T̃
128

. We then use time windows depending on N to

get a result over the entire time interval (0, T̃ ). The efficiency Eff :=
Time(1proc)

N×Time(Nproc)
.

N 2 4 8 16
CG 0.243E+01 0.125E+01 0.636E+00 0.319E+00

Total 0.254E+01 0.132E+01 0.709E+00 0.407E+00
Table 3.2

Detailed CPU times for the solution by CG, compared to the total solution time

data to his successors, computes local data (and other independent computations),
then checks data has arrived and then proceeds to step (c) which is independent.
Steps (d) and (e) are performed in a similar manner. Once the last processor N has
completed all the 5 steps, it then becomes processor 1 for the next time window, thus
saving in communications.

In order to measure the performance, we used in this implementation a P1 finite
element discretization for step (c), and solved the linear system in space using the
conjugate gradient method. Computations were run on a Xeon E5-2680 [Broadwell]
@ 2.40 GHz with 28 cores and 512 GB memory, and we used a refined mesh, h = 1

200 ,

with ε = 0.1, and simulate the process up to T̃ = 1 using Numwin time windows of
length T = T̃ /Numwin. We show in Table ?? the measured CPU times. For N ≤ 16,
the efficiency of the parallelization by diagonalization is fairly good in this example.
In Table ?? we show a comparison where we separate the linear solver time from the
rest. The main cost resides in the local linear solver. For N > 18, the accuracy of the
solution deteriorates.

3.3. Application to a large 3D industrial problem. We now apply this tech-
nique to an industrial problem: we want to compute the response of a carbon/epoxy
laminated composite panel to an impact-like loading. This class of material is rep-
resented in its linear elastic domain by a transverse isotropic Hooke law. When the
fiber direction is aligned with the e1 direction, and using the Voigt notation,1 this
Hooke law is given by

(3.2)


ε11
ε22
ε33
2ε23
2ε13
2ε12

 =



1
EL

−νLT

EL
−νLT

EL
0 0 0

−νLT

EL

1
ET

−νTT

ET
0 0 0

−νLT

EL
−νTT

ET

1
ET

0 0 0

0 0 0 2 1+νTT

ET
0 0

0 0 0 0 1
GLT

0

0 0 0 0 0 1
GLT




σ11
σ22
σ33
σ23
σ13
σ12

 .

1Voigt notation uses a matrix representation for 4th order tensors. It also exploits the symmetries
of the 2nd order strain and stress tensors (hence the 6 components).
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EL ET νLT νTT GLT
130.0 GPa 7.7 GPa 0.33 0.4 4750 MPa

Table 3.3
Elastic moduli of the T700GC/M21 carbon/epoxy system.

Fig. 3.4. Mesh configuration and loading for the elasticity problem.

Here, EL is the longitudinal elastic modulus (in the carbon fiber direction), ET is the
transverse elastic modulus, GLT is the elastic shear modulus, and νLT and νTT are
the so-called Poisson ratios, and we simulate the elasticity equations,

ρü = div(σ) + f , εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The selected material is a T700GC/M21 carbon/expoxy system used in the aeronau-
tical industry. The corresponding elastic moduli are given in Table ??. The geometry
of the problem is taken from the experimental work described in [?]. The tested plate
is made of 12 plies with a symetric stacking sequence. The mesh, illustrated in Figure
??, consists of 152607 degrees of freedom. Dirichlet boundary conditions (represented
in blue) are applied on areas representative of the experiment. A homogeneous pres-
sure field is applied at the center of the plate (red circle) and is representative of a
small impact. The time is discretized with 2000 time steps over the 10ms simulation
range.

The finite element code Zset [?] is used to handle the specific finite element
features: mesh generation, material orientation, computation of mass and stiffness
matrices, boundary conditions, etc. Zset comes with a Python interface which permits
to handle matrices and vectors in a very convenient way through numpy arrays. All
the algebraic operations described in equations (??) to (??) are thus performed with
the numpy and scipy Python packages. Parallelism is achieved with the mpi4py
package, the Python interface to MPI. The script is launched on a 2.4GHz, Xeon
E5-2680 processor with 24 cores, but we use only up to N = 16 for our experiments.
To reach the 2000 time steps, we thus have to perform 2000/N blocks of parallel
solves on so called time windows. There is an evident gain here in using a direct
solver, since once the N sparse operators (see equation (??.b)) have been factorized
during the first block, their decomposition can be reused for the solutions in the
2000/N − 1 remaining blocks. In this implementation, we use the MUMPS solver [?]
and its LU decomposition capability. Because of the multiple time windows, we also
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Fig. 3.5. Computing times for the industrial elasticity problem.
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Fig. 3.6. Deflection of the central node on the back face of the plate for the sequential and the
parallel solution with N = 16.

have to properly account for the non-zero initial conditions at the beginning of each
block. These operations require additional algebraic operations that we refer to as
reinitialization (step (e) in (??)).

We show in Figure ?? the measured CPU times when parallelizing with different
values of N . The times for the LU factorizations, the LU linear solves by forward and
backward substitution, the tensorial operations, the reinitialization, the preprocessing
and the MPI communications are shown separately, and we see that the LU linear
solves are fully parallelized in time with this diagonalization technique. Figure ??
indeed shows that the corresponding times scale nicely up to N = 8 processors, and
one obtains substantial speedup using this method. The overhead due to the different
algebraic operations (mainly factorization and tensorial operations) remains about
the same from N = 2 to N = 16 but it becomes more significant in the last case
(steps (b) and (d) in (??)). Figure ?? shows the displacement of the central node on
the back face of the plate for the sequential and the parallel solution for N = 16. No
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deviation is noticeable between the two responses, showing that no significant error
has been introduced by the parallelization with these parameters.

4. Conclusions. We presented and analyzed the time parallelization method by
diagonalization for the wave equation. We derived an optimal choice for the geometric
stretching of the time grid, balancing carefully truncation and roundoff error. We
tested the method numerically for the model wave equation problems in different
spatial dimensions, and also on an industrial test case using the elasticity equations.
These results show that our theoretical parameters predict well the best choice for the
geometric time grid stretching, and substantial speedup is possible when solving wave
propagation problems using this technique, and this also in an industrial setting.
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