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Abstract—Most modern cameras use a color filter array on
their sensor in order to capture color images. This array is
composed of red, green and blue filters and so, each pixel on
the sensor lacks two color channels which can be retrieved
by a process called demosaicing. In this paper, we propose a
new demosaicing method for plenoptic cameras. This type of
cameras has become a growing trend and their captured raw
images have a particular lenslet structure which must be taken
into account to retrieve the sub-aperture images which compose
the light field. First, we analyze and describe the flaws of the
state-of-the-art light field decoding pipeline. To better identify
the different sources of artifacts, our analysis is performed by
generating ideal lenslet images from synthetic light fields and
use them as input of the decoding pipeline. Then, we detail a
new method of demosaicing based on the provided white lenslet
images serving as guide. Furthermore, we show that this kind of
guided interpolation can be useful on other steps of the decoding
pipeline. Finally, the quality of the resulting sub-aperture images
is assessed for both synthetic and real light fields using visual
comparisons as well as objective metrics.

I. INTRODUCTION

The recent developement of plenoptic cameras enables the
instantaneous capture of light fields with both spatial and
angular information of the scene, as opposed to traditional
images with only 2D spatial coordinates. Among plenoptic
cameras, two optical designs can be distinguished, both based
on the addition of a lenslet array between the sensor and the
main lens. The first model, originally described by Lippmann
[1] and modernized by Ng et al. [2], was popularized by its
implemenation in the commercially available Lytro cameras. In
this design (also called “plenoptic 1.0”), the main lens focuses
the subject on the lenslet array which separates the converging
rays on the sensor (see (a) in Figure 1). The second designed,
called ”focused plenoptic cameras” or ”plenoptic 2.0”, was
described in [3]. In this configuration, the image plane of
the main lens is the object plane of the lenslet array. So, the
lenslet images on the sensor are in focus (see (b) in Figure 1).
This design is used in Raytrix cameras to control the tradeoff
between spatial and angular resolution.

Thanks to the lenslet array, we are able to know the
contribution of each ray in every direction. However, the image
captured by a plenoptic camera is not directly interpretable
and needs to be decoded. The main focus of the article is
the light field demosaicing for ”plenoptic 1.0 cameras”. Three
approaches have been studied in the litterature. First, we can
directly demosaic the raw sensor image (also called lenslet

image). The authors in [4] use a 4D kernel regression method
exploiting the lenslet structure. However, it performs indepen-
dent interpolation of the color channels, which results in a loss
of detail compared to a classical 2D demosaicing such as [5].
The second approach is demosaicing the views after having
demultiplexed them. The authors in [6] chose a dictionary
learning based method to retrieve the missing colors, while
[7] used a disparity map to find the missing colors in other
decoded views. This second type of demosaicing presents
a major drawback: every interpolation before extracting the
views must be done in a nearest neighbor way. The resulting
views have therefore some strong aliasing. Finally, the third
approach consists in demosaicing the focal stack as in [8].
Whereas it is easy to compute a focal stack from views, it
is much harder to retrieve views from a focal stack [9]. For
these reasons, we believe that the first approach, taking into
account the lenslet structure of the images, could lead to a
better decoding of the light field.

For plenoptic images, the demosaicing step is just a part
of a whole decoding pipeline which extracts views from a
lenslet image. So, when proposing a new demosaicing method,
it seems relevant to analyze the full decoding pipeline. There
are several pipelines [10] [11] [4]. For our paper, we choose
the pipeline described by Dansereau et al. in [11] as it is
widely used, it has been chosen by JPEG-Pleno and was
imposed for ICME 2016 Grand Challenge on Light-Field
Image Compression. Lastly, the code in [11] is available. We
choose to evaluate our demosaicing method within Dansereau
pipeline but the proposed method remains valid for other
pipelines as long as the demosaicing step is done on the lenslet
image. The contributions of the paper are as follows: first we
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Fig. 1. Optical configurations for plenoptic cameras: (a) plenoptic 1.0, (b)
plenoptic 2.0



analyze the flaws of the pipeline and identify the link between
the lenslet structure of the image and bad demosaicing, then
we propose a demosaicing method guided by a white lenslet
image, finally we propose an application of the same principle
for the other interpolations in the decoding pipeline.

II. DESCRIPTION OF THE DECODING PIPELINE

This section explains how the pipeline [11] retrieves the
light field sub-aperture images (or views) from the raw image
of a plenoptic camera and the associated metadata. This al-
gorithm is called “demultiplexing” or “decoding”. It proceeds
by the following steps (illustrated in Figure 2):

Devignetting: The optical design of a plenoptic camera
(see Figure 1) creates images with a particular structure.
These images have the same pattern as the lenslet array:
each lenslet creates a small image on the sensor. This image
suffers from heavy vignetting which means that the brightness
at the periphery is reduced compared to the lenslet center.
The devignetting step then consists in dividing the sensor
data by a calibration image (or white lenslet image) that is
chosen, depending on the zoom and focus settings, among a
set of RAW pictures of a uniformly illuminated lambertian
white surface. These calibration images exhibit the vignetting
pattern of the lenslet array. Note that they are also used in
the calibration phase to determine the positions of the lenslet
centers on the sensor.

Demosaicing: After correcting the vignetting of the
raw image, the pipeline proceeds by demosaicing the lenslet
images. It uses the gradient corrected interpolation method
proposed in [5]. This method computes the values of the
missing RGB channels by bilinearly interpolating the neighbor
values and correcting the output with the computed gradient
of the present channel. The image is convolved with various
kernels depending on the color filters of the pixels. The kernels
are given in Figure 3. The coefficients α, β and γ represent
the strength of the gradient correction. They are chosen to be
respectively equal to 1/2, 5/8 and 3/4 which are the integer
multiples of small powers of 1/2 which minimize the mean
square error of a data set.

Aligning the sensor with the lenslets: Knowing the po-
sitions of the lenslet centers on the sensor (determined in the
calibration phase), rotation, translation and scaling are applied
to the image to compensate for the misalignements between
the lenslet array and the pixel grid (illustrated in Figure 4).

Slicing the lenslet image: The next step is to slice the
lenslet image i.e. demultiplex the lenslet image to extract the
views. Now that the diameter D of each lenslet image is scaled
to be an integer, we just have to pick a pixel every D pixels
to form a view (see Figure 5).

Resampling the views: As the lenslet array is hexagonal,
the views suffer from an hexagonal aliasing (see the two
missing pixels in black in the extracted view in Figure 5).
The pipeline removes this aliasing by resampling the views
into a rectangular grid.
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Fig. 4. Misalignment between the sensor and the lenslets

Fig. 5. Extraction of a view from the lenslet images

III. FLAWS OF THE PIPELINE AND SOME IMPROVEMENTS

A. Synthetic lenslet image generation

In order to better analyze the pipeline, we developed a
method to make a synthetic lenslet image from a synthetic
light field [12] (see Figure 6). We first remove some peripheral
views (in the corners), in order to have circular angular patches
(as the captured plenoptic light field are). Then we put the
different angular patches near one another along a hexagonal
grid. This operation is the exact contrary of the slicing or
demultiplexing step in the decoding pipeline. We also add
vignetting to the lenslets and generate a white image that
holds the exact vignetting profile of the lenslet image (dividing
the lenslet image by the white image will give us perfect
devignetting). Note that the diameter of the generated lenslet
image is only 9 (as we originally have 9x9 synthetic views)
and that for a real plenoptic camera, the diameter is likely
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Fig. 2. Dansereau’s pipeline

to be higher (11 for the Lytro 1, 15 for the Lytro Illum for
example).

(c)

(a) (b)
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Fig. 6. From a synthetic light field to a lenslet image: (a) is a 7x7 synthetic
light field, the red squares are representing the views and the black squares
the pixels of a view; in (b) the views in the corners are removed; in (c) the
light field is resampled in order for each view to have an hexagonal grid of
pixels; (d) is the final lenslet image.

To test how well the gradient corrected interpolation de-
mosaicing method works on lenslet images, we use synthetic
lenslet images and we remove two channels from each pixels
according to a Bayer pattern to generate ground truth demo-
saiced lenslet images. Figure 7 shows the ground truth lenslet
image and (a) in Figure 8 shows the same image demosaiced
with Malvar’s method [5]. We can see that this method is not
ideal as it creates color fringes on the borders of the lenslets.
The fringes are due to the pixels that are out of the lenslet. As
they get no signal, their value remains the same (if we ignore
noise) between the raw image and a white image. So when we
divide the raw image by the white image, these pixel values

Fig. 7. Lenslet image of Butterfly [12]

are 1. When interpolating the missing channels for a pixel
at the border of a lenslet, the bilinear interpolation and the
gradient corrections are both disturbed by these white pixels.

B. Proposed demosaicing method

Following this observation, we propose to discard the pixels
that are out of the lenslets from the demosaicing step. To do
this, we adapted the gradient corrected interpolation method
by weighting the bilinear interpolation and gradient correction:
• First with a mask b : we do not want to interpolate data

from different lenslets as this creates crosstalk artifacts.
Knowing the lenslet grid parameters, we know the posi-
tion of the lenslets centers and we can identify the pixels
which belong to the same lenslets.

• Then with a white image c : we have full confidence in
the pixels that have the maximum values on the white
image whereas we have less confidence in the pixels that
are darker on the white image, as they are noisier.



(a) PSNR = 19.17

(b) PSNR = 42.94

Fig. 8. Detail of a demosaiced synthetic lenslet image: (a) uses the gradient
corrected interpolation method [5] and (b) uses our method. The pixels out
of the lenslets are ignored in the PSNR computation.

(a)
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Fig. 9. (a) is the raw image we want to demosaic, (b) is a mask which
holds every pixel belonging to the same lenslet, (c) . We use the combination
of (b) and (c) as additional weights in the bilinear interpolation and gradient
correction described in [5].

Let us take the example shown in Figure 9 where we want
to compute the green value of the blue pixel located in the

center of the cross (Image (a)). Let (i, j) be the coordinates
of the blue pixel, Gij the green value to compute, Bij the
measured blue value, (bij) the mask, (cij) the white image
and (dij) the coefficients of the kernels mentioned in [5] (see
Figure 3).

The green value is computed as follows:

Gij =
∑

(k,l)∈N

wbil
kl Gkl+

α(
∑

(k,l)∈M
dkl>0

wgrad+
kl Bkl −

∑
(k,l)∈M
dkl<0

wgrad−
kl Bkl) (1)

where:

N = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)} (2)
M = {(i, j), (i− 2, j), (i+ 2, j), (i, j − 2), (i, j + 2)}

and:

wbil
kl =

ekl∑
(m,n)∈N

ekl

wgrad+
kl =

fkl∑
(m,n)∈M
dmn>0

fmn
, wgrad−

kl =
fkl∑

(m,n)∈M
dmn<0

fmn

ekl = bkl × ckl
fkl = bkl × ckl × dkl

(3)

Every other missing values of each pixel is computed in
the same way, using (bij) and (cij) as weights (respectively
illustrated by (b) and (c) in Figure 9). Figure 8 (a) and (b) show
the results respectively with and without the contribution of
the weights (bij) and (cij). In this experiment, the PSNR can
be computed since the ground truth lenslet image is known.
Note that the pixels out of the lenslets are ignored in the PSNR
computation since they do not hold any signal and they are
not necessary for the view reconstruction. In these conditions,
a large PSNR gain of 23.77 dB is observed with our method.

C. Proposed alignment method

Like the demosaicing step, applying a rotation, translation
and scaling involves some interpolations which mix pixels with
signal with pixels without signal. Moreover, it can also mix
pixels from different lenslets, creating crosstalk artifacts. This
leads to a strong deterioration of the lenslet borders.

To assess the deterioration induced by this scaled rotation,
we first generate a synthetic lenslet image where the lenslets
are not perfectly aligned with the pixels. The grid defined by
the lenslets is slightly tilted with respect to the pixel grid (the
angle is approximately the same as the Lytro 1, 0.05◦). Then,
as it is done in the pipeline, we demosaic and apply an affine
transformation to the lenslet image in order for the lenslets to
be aligned with the pixels.

As the slicing step is just a reorganization of the data to have
light field views, it introduces no further error. So, we apply



(a) PSNR = 19.45 (b) PSNR = 38.51

(c) PSNR = 15.29 (d) PSNR = 36.13

Fig. 10. Extracted views from a synthetic lenslet image: (a) uses a simple
rotation to align the sensor and the lenslets, (b) uses our method. Images (c)
and (d) show the same view (2,2) respectively taken from (a) and (b).

the slicing step to better visualize the impact of the previous
rotation and to compare it with the ground truth light field.

We propose a new way to compute the affine transformation
which is quite similar to the demosaicing method: we compute
the new aligned lenslet image with a bilinear interpolation
weighted by the white image and a mask which eliminates
the pixels which do not belong to the same lenslets.

As we can see in (a) and (c) in Figure 10, the peripheral
views are greatly degraded by the affine transformation. On the
other hand, when we use our white image guided interpolation
method, we see that there are no line anymore on the views
and that the global PSNR has doubled, going from 19.45 to
38.51 dB (see (b) and (c) in Figure 10).

If we use a perfectly demosaiced lenslet image (using the
ground truth lenslet image), Dansereau’s alignment method
gives us a global PSNR of 23.12 dB whereas our method
gives a PSNR of 39.84 dB. So, our interpolation method is
shown to significantly improve the decoding pipeline for the
synthetic lenslet images.

D. Real lenslet images

We now test our method on real lenslet images. We use
Lytro 1 [13] and Illum [14] images. For a real lenslet image,
the pixels at the border of the lenslets are not enough penalized
when using the pixel values (cij) of the white image as
coefficients. So we use the pixel values of the white image
raised to the power of ten instead, which reduces the weights
of the pixels at the border of the lenslets relatively to those

at the centers. In Figures 11 and 12, we can see that the
peripheral views are sharper with the proposed demosaicing
and alignment methods. Our proposed methods are also ef-
ficient to remove some of the crosstalk artifacts. Indeed, we
can see on the bottle in the foreground in Figure 11(a) and
on the rose petals in Figure 12(a) that there are two views
mixed together. In Figures 11(b) and 12(b), this ghost effect
disappears. Finally, the colors of the peripheral views are
closer to the colors of the central view, as pixels at the center
of the lenslets have more weights than those at the border
which are grayer in real lenslet images.

More results and an available Matlab code can be
found on the web page https://www.irisa.
fr/temics/demos/lightField/Demosaicing/
LensletDemosaicing.html

IV. CONCLUSION

We developed a method to create lenslet images from
synthetic light fields. With this synthetic lenslet images, we
were able to analyze the light field decoding pipeline chosen
by JPEG-Pleno. We particularly evaluated the demosaicing
and alignment steps. We noticed that the used methods were
not adapted to the lenslet images and that it created crosstalk
artifacts and color patterns. In order to improve these steps,
we developed methods of demosaicing and alignment guided
by a white lenslet image. These proposed methods showed
improvements on the synthetic and on the real lenslet images.
The results are shown to reduce cross talks artifacts and
produce better colors on the decoded light fields views.
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