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Abstract: We consider the segmentation problem of univariate distribu-
tions from the exponential family with multiple parameters. In segmenta-
tion, the choice of the number of segments remains a difficult issue due
to the discrete nature of the change-points. In this general exponential
family distribution framework, we propose a penalized log-likelihood esti-
mator where the penalty is inspired by papers of L. Birgé and P. Massart.
The resulting estimator is proved to satisfy some oracle inequalities. We
then further study the particular case of categorical variables by compar-
ing the values of the key constants when derived from the specification of
our general approach and when obtained by working directly with the char-
acteristics of this distribution. Finally, simulation studies are conducted to
assess the performance of our criterion and to compare our approach to
other existing methods, and an application on real data modeled using the
categorical distribution is provided.
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1. Introduction

Segmentation, the partition of a profile into segments of homogeneous distribu-
tion, is a very useful tool for the modelization and interpretation of complex
data. For instance in biology, the output of an RNA-Seq experiment can be
modeled through the segmentation of negative binomial random variables which
are homogeneous along coding or non-coding regions [15]; the composition of
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nucleotides along the genome can be modeled through a categorical segmen-
tation framework to identify transcription sites ([11] and references therein);
the output of array-CGH experiments can be modeled trough the segmentation
of Gaussian random variables along regions of identical copy-number ([28] and
references therein), etc. In almost all segmentation frameworks for independent
variables, if the number of segments is fixed a priori, identifying the optimal
segmentation with respect to either the log-likelihood or the least-squares cri-
teria can be very easily and efficiently performed through the use of algorithms
such as dynamic programming [5] and its pruned versions [27, 35, 31].

A crucial step, which is the main difficulty in segmentation approaches, is
therefore the choice of the number of segments K. To this end, a huge effort has
been made in the last two decades to derive estimators ofK and their properties.
If, in this context, almost all methods for choosing the number of segments can
be seen as penalized-likelihood approaches (Akaike Information Criterion, [1],
Bayes Information Criterion [38], Integrated Completed Likelihood [36], etc), we
and other authors (see for instance [29, 8, 39]) have previously emphasized how
crucial the choice of the penalty function is in contexts such as segmentation
where the size of the collection of models grows with the size of the data.

The difficulty in this choice is exacerbated by the fact that to obtain satisfying
results (consistency of the estimator, oracle inequality, etc), the penalty usually
depends strongly on the choice of the distribution, preventing general approaches
to be applied in a straightforward manner. Therefore most of earlier works
have focused on variables distributed from specified distributions, for instance
Gaussian [29], or either Poisson or negative binomial distributions [17].

The aim of this paper is to provide a penalty function for the more general
framework of exponential family distributions for univariate data, but with pos-
sibly many parameters. The model that will be considered throughout the paper
is the following:

Yt ∼ G(θt) = s(t), 1 ≤ t ≤ n, Yt independent,

where G is a distribution from the exponential family with parameter θt ∈
R

d, d ≥ 1. In the context of segmentation models, the parameter θt is supposed
to be piece-wise constant along the time-line 1, . . . , n with K − 1 changes. The
goal is therefore to identify a partition of {1, . . . , n} into K segments within
which the observations can be modeled as following the same distribution while
their distributions differ between segments.

The model selection approach developed in the following sections is based
on the pioneer work of [6, 4] introducing non-asymptotic model selection proce-
dures. This penalized contrast procedure consists in selecting a model amongst
a collection such that its performance is as close as possible to that of the best
but unreachable model in terms of risk. In this sense, this work is quite similar
to our previous results obtained for Poisson and negative binomial distributions
[17]. It is in fact partly motivated by the numerous similarities we had observed
between those two distributions that turn out to be closely related to properties
of the log-partition function of the exponential family.
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In the next section, we will recall some general properties of the exponential
family, introduce our collection of models and our penalized-likelihood frame-
work. After relating our work to previous papers, we will state our main result
in Section 3. In Section 4 the main statement is proved, while relinquishing all
intermediary results to the Appendix. In Section 5, we show under some addi-
tional constraint on the sufficient statistics that our penalized estimator verifies
both a statistical oracle inequality in terms of Kullback-Leibler risk and a tra-
jectorial oracle inequality in terms of Kullback-Leibler divergence. In Section 6
we study the particular case of categorical variables to assess the precision lost
in dealing with general exponential family instead of directly bounding the par-
ticular distribution. Finally, in Section 7, we first illustrate the performance of
our approach on a simulation study based on the exponential distribution. Then
compare our approach to some of the segmentation approaches available in the
literature first on a smaller Poisson simulation study and then on a Student sim-
ulation study to assess the robustness of our approach to the exponential family
distribution assumption. Finally, we propose an application to DNA sequence
distribution on a real data-set which we model using a piece-wise constant cat-
egorical distribution.

2. Framework and related work

In our framework we will consider the minimal canonical form of the exponential
family distribution which we will write as

s(t) = g(Yt) exp [θt.Tt −A(θt)] ,

where the . symbol denotes the canonical scalar product of Rd, A is the log-
partition function of G and Tt = T (Yt) (∈ R

d) is the minimal sufficient statistic
associated with variable Yt. s will denote the joint distribution of the {Yt}1≤t≤n,
which, since the Yts are independent, is simply the product of the s(t).

For instance, in the case of random variables distributed from the Poisson
distribution, Yt ∼ P(λt), one has s(t) = g(Yt) exp [θt.Tt −A(θt)] with g(x) =
1
x! , θt = log λt, Tt = Yt and A(θt) = expθt.

2.1. Some properties of the exponential family

Exponential family distributions, and in particular the log-partition function,
have been well studied in the past years. In a pioneer work [13], Brown has de-
scribed the fundamental properties of exponential family distributions, such as
parametrization using sufficient statistics, differentiability of the log-partition
function and its relation to moments, etc. More recently, [37] has demonstrated
the strong links between graphical models and exponential family, [26] has stud-
ied the sub-exponential growth of the cumulants of an exponential family distri-
bution and studied convergence rates of regularization algorithm under sparsity
assumptions while [30] has studied consistency properties of the lasso procedure
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to estimate parameters of an exponential family distribution under some con-
vexity and sparsity assumptions. These latter results lie on some concentration
inequalities of a quantity that can be interpreted in our context as the centered
sufficient statistics, and on some (restricted) strong convexity assumption on
the Fisher information matrix.

In our framework, we will assume that our distributions are non-degenerate,
i.e. that there exists a subset of Rd such that the log-partition function A is C∞.
Moreover, we will restrict this set to a convex compact subset ν on which we can
ensure that the first moments of the sufficient statistics are bounded. Among
the key features of minimal exponential family is the relationship between the
derivatives of A and the moments of the sufficient statistics.

• The first moment is given by E[Tt] = ∇A(θt) and will be further denoted
Et. Moreover, using minimal representation of the exponential family en-
sures that the gradient mapping ∇A : ν → ∇A(ν) is a bijection (see for
instance [37]).

• The second moment is given by Cov[Tt] = ∇2A(θt). In the case of non-
degenerate distributions, this matrix is symmetric and definite positive.
This implies that for any compact set K; there exists a non-negative con-
stant mK such that ∇2A is lower bounded by mK, i.e. A is mK-strongly
convex on K. In particular, there exists mν > 0 such that A is mν-
strongly convex on ν. Finally, for notation simplifications, we will write,

for 1 ≤ i ≤ d, V
(i)
t = V ar[T

(i)
t ].

The following definition introduces sub-gamma joint distributions:

Definition 2.1. A joint distribution s is said to be sub-gamma with variance
parameter v ≥ 1 and scale parameter c, written SG(v, c), if ∀1 ≤ t ≤ n, ∀1 ≤
i ≤ d

logE
[
ez(T

(i)
t −E

(i)
t )

]
∨ logE

[
e−z(T

(i)
t −E

(i)
t )

]
≤ z2

2

vV
(i)
t

1− cz
, ∀ 0 < |z| < 1

c
.

Note that this definition is slightly different from the traditional sub-gamma
definition since the variance term has been decomposed into the true variance

of the sufficient statistic, V
(i)
t , and an adjustment parameter v. This necessarily

implies that v ≥ 1.
Thus for an SG(v, c) distribution, since by assumption for all 1 ≤ i ≤ d the

T
(i)
t are independent, a direct consequence follows from Chernoff’s inequality:

for any J interval of {1, . . . , n},

P

[∣∣∣∣∣
∑
t∈J

(
T

(i)
t − E

(i)
t

)∣∣∣∣∣ ≥
√
2vxV

(i)
J + cx

]
≤ 2e−x

where V
(i)
J =

∑
t∈J V

(i)
t , and thus, with κ = max{v, c},

P

[∣∣∣∣∣
∑
t∈J

(
T

(i)
t − E

(i)
t

)∣∣∣∣∣ ≥ x

]
≤ 2e

− x2

2κ(V
(i)
J

+x) . (1)
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Recall that the cumulants of T
(i)
t , denoted ck, are such that

logE
[
ez(T

(i)
t −E

(i)
t )

]
=
∑
k≥2

ck
zk

k!
.

Distributions from the exponential family which cumulants’ growth is expo-
nentially bounded (i.e. for which there exists a positive constant α such that
∀k, ck ≤ αk) can be shown to be SG(v, c) for appropriate parameters v and c
depending on the cumulants.

2.2. Penalized maximum-likelihood estimator

In this change-point setting, we will want to consider partitions m of the set
{1, . . . , n} on which our models will be piece-wise constant. More precisely, for
a given partition m and with J denoting a generic segment of m, we define the
collection of models associated to m as:

Sm = {sm | ∀J ∈ m, ∀t ∈ J, sm(t) = G(θJ)}.

We will consider the log-likelihood empirical contrast γn and the associated
Kullback-Leibler divergence K(s, u) = E[γn(u)− γn(s)] between distributions s
and u so that if s(t) = G(θt) and u(t) = G(pt), we have

γn(s) =

n∑
t=1

[A(θt)− θt.Tt] , and

K(s, u) =

n∑
t=1

[
∇A(θt).(θt − pt)− (A(θt)−A(pt))

]
.

The minimal contrast estimator ŝm of s on the collection Sm is therefore
ŝm = argminu∈Sm γn(u) and is given by

ŝm(t) = g(Yt) exp
[
[∇A]−1(T̄J).Tt −A

(
[∇A]−1(T̄J)

) ]
,

where TJ =
∑

t∈J Tt is the sum of the sufficient statistics on interval J , and
T̄J = TJ/|J | its mean where |J | denotes the length of the interval J , i.e. the
number of points that belong to J ; the bijective mapping of the gradient of A
ensuring the existence and uniqueness of [∇A]−1(T̄J).

Similarly, the projection s̄m of s in terms of Kullback-Leibler divergence on
Sm is s̄m = argminu∈Sm K(s, u) and is given by

s̄m(t) = g(Yt) exp
[
[∇A]−1(ĒJ).Tt −A

[
[∇A]−1(ĒJ )

]]
,

where EJ =
∑

t∈J Et and ĒJ = EJ/|J |. Details on the computation of s̄m and
ŝm are given in Appendix A.

Note that the true distribution s will never be assumed to belong to any
collection of models Sm.
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In penalized-likelihood settings, it is classical to propose estimators that
achieve some oracle inequality. Since minimizing the Kullback-Leibler risk or
even the Kullback-Leibler divergence would require knowing the true distribu-
tion s (indeed neither the risk oracle mR(s) = argminm E[K(s, ŝm)] nor the
divergence oracle mD(s) = argminm[K(s, ŝm)] can be reached), the idea is to
choose a penalty function pen(m) such that the penalized estimator ŝm̂ - where
m̂ = argmin γn(ŝm) + pen(m) - satisfies either

(i) a statistical oracle inequality:

E[K(s, ŝm̂)] ≤ C1E[K(s, ŝmR(s))] + C2 (2)

(ii) or a trajectorial oracle inequality: with high probability

K(s, ŝm̂) ≤ C1K(s, ŝmD(s)) + C2; (3)

where in both cases, C2 is negligible compared to either C1 E[K(s, ŝmR(s))] or
to C1K(s, ŝmD(s)). Typically, for trajectorial inequalities, one wishes to show
that for any x > 0, with probability greater than 1− e−x

K(s, ŝm̂) ≤ C1K(s, ŝmD(s)) + C2x.

One can note that the trajectorial oracle inequality is slightly stronger than the
statistical oracle inequality since a simple integration of the former leads to

E[K(s, ŝm̂)] ≤ C1E
[
inf
m

K(s, ŝm)
]
+ C2,

which is very close to

E[K(s, ŝm̂)] ≤ C1 inf
m

E [K(s, ŝm)] + C2.

To achieve such results, here as in previous works (see for example [32]), we
will introduce an event of large probability, Ωmf

(ε), where the fluctuation of
each centered marginal is bounded. On this event, we will derive tight controls
of the Kullback-Leibler divergence and risk of some models which will lead to the
shape of our penalty function. In section 3, specific further controls are obtained
to achieve an oracle inequality in terms of Hellinger risk on the whole space: the
small probability of Ωmf

(ε)C compensates the coarse bounds obtained on this
event. In section 5, we restrict the space to Ωmf

(ε) and we present two oracle
inequalities of types (2) and (3). Of note, since most of our controls result from
the previous section, our constants C1 and C2 are unlikely to be optimal.

The choice of ε is therefore crucial in insuring that both C1 and C2 are as
small as possible, while having the negligibility property of C2 compared to
C1K(s, ŝm(s)) or C1E[K(s, ŝmR(s))]. In practice, this choice is data-driven and
is efficiently performed through the use of the slope heuristic [3]. In this paper,
we therefore consider a generic but fixed ε, and aim at obtaining the shape of
the penalty function.
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2.3. Related work

As stated above, a vast literature has focused on deriving appropriate penalty
shapes for specific distributions, such as Gaussian, Poisson or Negative Binomial
distributions. Still, procedures that can adapt to a more general framework are
not numerous. The most classic approach consists in forgetting entirely the
underlying distribution and working in a non-parametric setting. The majority
of those approaches rely on the use of Hidden Markov Models, which typically
assume a predefined number of states (which can then be revisited to yield
an unknown number of segments) and therefore do not always adapt to our
context [24, 22]. Moreover, the use of non-parametric HMMs implies a large
computational complexity which prevents their application in many settings.

In [33], the authors propose a non-parametric approach which partitions the
profile sequentially through the maximization of a criterion based on a weighted
L2 norm of the characteristic functions. The change-points thus identified are
then challenged through permutation tests. This method yields interesting re-
sults in practice but suffers from the computational complexity of permutation
tests and from the non-optimality of the sequential partitioning.

Still in a non-parametric framework, Arlot et. al. propose to transform the
segmentation problem of univariate, multivariate or complex data into a penal-
ized least-squares segmentation problem on some transformed data through the
choice of a kernel [2]. This transformation is then used to optimize a penalized
criterion where the empirical contrast γn is a kernel least-squares criterion that
operates in a reproducible kernel Hilbert space. The penalization, addressing the
problem of the choice of the number of segments, is derived such as to obtain an
oracle inequality on the resulting estimator, and the authors obtain the same
penalty shape as ours. This approach is extremely powerful as it can deal with
a wide range of data types without requiring any assumption on the underlying
distribution, however, an appropriate kernel must be chosen.

In a parametric framework, two approaches aim at selecting the number of
segments based on the ICL criterion. In a Bayesian setting, [36] computes ex-
actly, among other criteria, the ICL for any distribution of the exponential family
provided the prior on the segmentation verifies some factorability assumption.
In a frequentist setting, [18] computes its conditional counterpart through the
use of some forward-backward algorithm that can be performed efficiently in the
exponential family distributions. While none aim at guaranteeing some specific
property of the resulting estimator, these approaches tend to select the number
of segments with the lowest uncertainty. However, their use is restricted by the
complexity of the algorithms: O(Kn2) for the former, O(K2n) for the latter.

In a recent work, [21] proposed an approach dedicated to one-parameter
exponential family which can be interpreted as a mixture between a likelihood-
ratio testing approach and a penalized likelihood model selection approach. In
an asymptotic framework (except for the Gaussian case) the authors obtain
an exponential bound for the probability of underestimating K (note that this
requires that the true distribution truly is piece-wise constant) and therefore
propose a procedure which maximizes the probability of correctly estimating K.
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3. Main result

We first introduce a minimal partition mf and we consider a collection of par-
titions said to be constructed on this mf as given in the following definition.

Definition 3.1. Let mf be a partition of {1, . . . , n}. Then Mn is a collection
of partitions of {1, . . . , n} constructed on mf if mf is a refinement of every m
in Mn; i.e. if any segment of any element of Mn is the union of (consecutive)
segments of mf .

In the sequel, we will consider a collection of partitions Mn built on a mini-
mal partitionmf that verifies ∀J ∈ mf , |J | ≥ Γ log(n)2 for Γ a positive constant.
Intuitively, this assumption ensures that each segment will contain a sufficient
number of points to correctly estimate its distribution. Indeed, in segmentation
frameworks, we are given a unique observation (of length n) of our model with
which we need to estimate all parameters. What allows such a success is that
observations belonging to the same segment share the same distribution and can
thus be seen as i.i.d random variables from a marginal distribution of s, and
the estimation can be performed independently of all other segments. A suffi-
cient number of observations per segment is thus needed to correctly estimate
the corresponding parameters. From a technical point of view, this assumption
is required for ensuring that the event Ωmf

(ε) introduced in Section 2.2 and
defined as

Ωmf
(ε) =

⋂
1≤i≤d

⋂
J∈mf

{∣∣∣T (i)
J − E

(i)
J

∣∣∣ ≤ ε V
(i)
J

}
(4)

for ε > 0 is indeed of large probability.
Indeed, by using equation (1), we have

P
(
Ωmf

(ε)C
)
≤

d∑
i=1

∑
J∈mf

P
[ ∣∣∣T (i)

J − E
(i)
J

∣∣∣ ≥ ε V
(i)
J

]
≤

d∑
i=1

∑
J∈mf

2e−
ε2V

(i)
J

2κ(1+ε) .

The condition |J | ≥ Γ(log(n))2 implies that the probability of the event Ωmf
(ε)C

decreases with n faster than any power of n, and therefore for n large enough
there exists a constant such that

P
(
Ωmf

(ε)C
)

≤ C(a, d, ε,Γ, κ, V min)

na
,

with a > 1.
The negligible probability of Ωmf

(ε)C will ensure that the constant C2 (see
inequality (2)) is small compared to C1E[K(s, ŝmR(s))]. It will also enforce the
validity of our trajectorial and statistical Kullback-Leibler oracle inequalities
(see Section 5) since they are restricted to the event Ωmf

(ε).
The following theorem states the main result for distributions from the ex-

ponential family:

Theorem 3.2. Let s =
∏

t s(t) be a distribution from the exponential family
such that its parameters θt belong to a convex compact set ν of Rd with diameter
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ν. Assume that there exist two positive constants v and c such that s is SG(v, c)
and let κ denote max{v, c}. Let Mn be a collection of partitions constructed on
a partition mf such that there exists Γ > 0 satisfying ∀J ∈ mf , |J | ≥ Γ log(n)2,
and let (Lm)m∈Mn be some family of positive weights satisfying

Σ =
∑

m∈Mn

exp(−Lm|m|) < +∞. (5)

Let ε > 0 and let βε be a positive constant depending on ε, the compact ν and
the distribution G. If for every m ∈ Mn

pen(m) ≥ βεd|m|
(
1 + 4

√
Lm

)2

, (6)

then

E
[
h2(s, ŝm̂)

]
≤ Cβε inf

m∈Mn

{K(s, s̄m) + pen(m)}

+C(d, ν, κ,Γ, βε,Σ, V
max, V min), (7)

where h2 denotes the Hellinger distance, V min = min1≤i≤d min1≤t≤n{V (i)
t } and

V max = max1≤i≤d max1≤t≤n{V (i)
t } are bounds on the variance of the sufficient

statistics.

Section 4 is dedicated to the proof of this result.

Remark 3.3. The penalty constant βε will be shown in the proof of Theorem 3.2
to be

βε =
V maxκ

2mε
(1 + ε)3,

where mε is a lower bound on the eigenvalues of ∇2A on K(ε), the compact
corresponding to the pre-image of Ωmf

(ε) by ∇A. Intuitively, mε can be under-
stood as a bound on the smallest variance of the sufficient statistics, so that βε

is close to a ratio of largest variance over smallest variance, which is linked both
to the expression of the d sufficient statistics and to the compact set ν.

It is therefore not surprising that, when working directly with specific dis-
tributions such as the Gaussian [29] or Poisson [17] distributions, this ratio
disappears. Indeed, in those cases, the variance is either fixed or related to the
expectation of the statistic, and simplifications in the computations prior to con-
trolling the fluctuations of the chi-square statistic can lead to the derivation of
tighter bounds.

In order to obtain oracle inequalities in the sequel, the risk associated to
the estimator ŝm is needed. The following proposition gives a bound on the
Kullback-Leibler risk associated to ŝm.

Proposition 3.4. Under the assumptions of Theorem 3.2, for all m in Mn,
we have

K(s, s̄m) + C(ε)d|m| − C(a,Γ, ε, d,G)
n(a−1)/2

≤ E[K(s, ŝm)],

where a > 1 and C(ε) is a constant that depends on ε and the distribution G.
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The dependency of C(ε) and C(a,Γ, ε, d,G) on G is made explicit in the proof
of the proposition which is given in Appendix B.2.

Choice of the weights (Lm)m in our change-point setting. The penalty
function (6) depends on the collection Mn through the choice of the weights
(Lm)m∈Mn . These weights Lm are usually chosen to depend on m only through
the number of segments |m|, i.e. Lm = L|m| (see for example [32]). Moreover,
in our change-point setting, since in practice there is no reason that the parti-
tions are regulars, we explore the collection of partitions in an exhaustive way.
More precisely, we consider the collection Mn of all partitions constructed on
the regular partition mf with N segments such that N = �n/(Γ log n2)�, �x�
denoting the integer part of x. In this case, the number of partitions having K

segments is bounded by
(
N
K

)
, resulting in Lm = 1.1 + log

(
N
|m|

)
(see [29] for a

justification of this choice). This leads to a penalty function of the form:

pen(m) = βεd|m|
(
1 + 4

√
1.1 + log

(
N

|m|

))2

, (8)

and the inequality (7) of Theorem 3.2 therefore becomes:

E
[
h2(s, ŝm̂)

]
≤ Cβε inf

m∈Mn

⎧⎨
⎩K(s, s̄m) + dβε|m|

(
1 + 4

√
1.1 + log

(
N

|m|

))2
⎫⎬
⎭

+ C(d, ν, κ,Γ, βε,Σ, V
max, V min). (9)

Plugging the risk of ŝm (see Proposition 3.4) into inequality (9) leads to the
oracle inequality given in Corollary 3.5.

Corollary 3.5. Let s =
∏

t s(t) be the joint distribution of n independent ran-
dom variables distributed from G in the exponential family and such that their
parameters θt belong to a convex compact ν of Rd. Let Mn be the collection of
all possible partitions constructed on the regular partition mf with N segments
such that N = �n/(Γ logn2)�, and assume ∃ v and c such that s is SG(v, c) and
let κ stand for the maximum of {v, c}.

There exists some constant C such that

E
[
h2(s, ŝm̂)

]
≤ C log(N) inf

m∈Mn

{
E[K(s, ŝm)]

}
+C(d, ν, κ,Γ, βε,Σ, V

max, V min).

Remark 3.6. The oracle inequality obtained in this framework compares the
Hellinger risk of the penalized estimator to the optimal Kullback-Leibler risk.
This is classic in density estimation and segmentation frameworks (see for in-
stance [32, 14, 17]) as unless one is inclined to specify additional constraints on
the distribution, the Kullback-Leibler divergence is possibly infinite - and hence
difficult to control. In Section 5, adding a constraint on the sufficient statistics
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(which is equivalent to restraining the whole space to some event which we show
to have large probability), we propose an oracle inequality in terms of Kullback-
Leibler risk of the penalized estimator.

Remark 3.7. The oracle inequality states that the performance of the penal-
ized estimator is close to that of the best estimator up to a logN factor. This
logarithm term is unavoidable and even necessary, as explained for example in
[32] (page 238).

Remark 3.8. In practice when exploring the collection Mn, we do not restrain
to partitions with a minimal segment length. The search is performed in an
exhaustive manner in the sense that all the possible partitions of {1, . . . , n}
are considered. The procedure is therefore applied (and implemented) using the
penalty (8) with N = n.

4. Proof of Theorem 3.2

As is classically done in model selection frameworks [7], starting from equation

γn(ŝm̂) + pen(m̂) ≤ γn(ŝm) + pen(m) ≤ γn(s̄m) + pen(m),

and introducing the centered loss γn(u) = γn(u)−E[γn(u)], we write

K(s, ŝm̂) ≤ K(s, s̄m) + γn(s̄m)− γn(ŝm̂)− pen(m̂) + pen(m). (10)

As in [14, 17], we subsequently decompose γn(s̄m)−γn(ŝm′) for any m′ ∈ Mn

in

γn(s̄m)− γn(ŝm′) (11)

= (γn(s̄m′)− γn(ŝm′)) + (γn(s)− γn(s̄m′)) + (γn(s̄m)− γn(s)) ,

and control each term separately, with the main term now defined on the same
partition. To this effect, we define the compact subset K(ε) of Rd as the pre-
image by ∇A of the domains induced by Ωmf

, that is

K(ε) =

{
z ∈ R

d

∣∣∣∣∣∇A(z) ∈
⋃

m∈M

⋃
J∈m

B(ĒJ , εmin
i

V̄
(i)
J )

}
,

where B(x, r) denotes the closed ball centered in x with radius r of Rd. Since
we consider the union of a finite number of compacts, homeomorphic properties
of ∇A ensure that K(ε) is a compact set of Rd. Since ∇2A is definite positive,
there exists mε > 0 such that A is mε-strongly convex on the compact set K(ε).
In the following mε is chosen as a lower bound on the smallest eigenvalue of
∇2A on K(ε). Moreover, we denote Mε an upper bound of the eigenvalues of
∇2A on K(ε).

Subsections 4.1, 4.2 and 4.3 give the control of the three terms of the decom-
position (11), for which proof we refer the reader to Appendix B. The first two
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terms have to be controlled uniformly with respect to m′ ∈ Mn. The first one is
the most delicate to handle since it requires the control of an empirical process
which is not bounded. From this control will appear the shape of the penalty
function. For the second term, as explained in [32], we have no guarantee that
the ratios s/s̄m′ remain bounded for all m′ and we will consequently introduce
the Hellinger distance.

4.1. Control of term γn(s̄m′) − γn(ŝm′)

Controlling this term is typically done through the study of a chi-square statistic:

χ2
m =

d∑
i=1

χ2(m, i) =

d∑
i=1

∑
J∈m

(
T

(i)
J − E

(i)
J

)2

V
(i)
J

. (12)

The following proposition gives an exponential concentration bound for χ2
m on

the restricted event Ωmf
(ε). The proof is given in the appendix B.1.1.

Proposition 4.1. Let Y1, . . . , Yn be independent random variables with joint
distribution s (from the exponential family) and verifying SG(v, c), with κ =
max{v, c}. Let m be a partition of Mn with |m| segments and χ2

m be the statistic
given by (12). For any positive x, we have

P
[
χ2
m1Ωmf

(ε) ≥ d κ
(
|m|+ 8(1 + ε)

√
x|m|+ 4(1 + ε)x

)]
≤ d e−x.

Let us now consider a positive constant ξ and introduce

Ω1(ξ) =
⋂

m′∈Mn

{χ2
m′1Ωmf

(ε) ≤ dκ[|m′|+ 8(1 + ε)
√

(Lm′ |m′|+ ξ)|m′|

+ 4(1 + ε)(Lm′ |m′|+ ξ)]}.

Then we can control γn(s̄m′)− γn(ŝm′) with the following proposition,

Proposition 4.2.

(γn(s̄m′)− γn(ŝm′))1Ωmf
(ε)∩Ω1(ξ) ≤

1

1 + ε
K(s̄m′ , ŝm′)

+
dV maxκ(1 + ε)

2mε

×
[
|m′|+ 8(1 + ε)

√
(Lm′ |m′|+ ξ)|m′|+ 4(1 + ε)(Lm′ |m′|+ ξ)

]
.

The proof is given in the appendix B.3.

4.2. Control of term γn(s̄m) − γn(s)

The expectation of the second term can be bounded using the following propo-
sition proved in appendix B.4:
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Proposition 4.3. Let s be a distribution from the exponential family verifying
SG(v, c) for some positive constants v and c, let κ = max{v, c}, m a partition
of Mn and s̄m the projection of s on Sm and Ωmf

(ε) defined by equation (4).
Then ∣∣∣E [

(γn(s̄m)− γn(s))1Ωmf
(ε)

]∣∣∣ ≤ C(a, d, ε,Γ, κ, ν, V min, V max)

n(a−1)/2
,

where ν is the diameter of the compact ν.

4.3. Control of term γn(s) − γn(s̄m′)

We control the last term using proposition 4.4 for which a proof can be found
in [17].

Proposition 4.4. Let s and u be two joint distributions on the same space (not
necessarily from the exponential family). Then for any positive x,

P
[
γn(s)− γn(u) ≥ K(s, u)− 2h2(s, u) + 2dx

]
≤ e−dx ≤ de−x.

4.4. Proof of the theorem

We define

Ω2(ξ)=
⋂

m′∈Mn

{
γn(s)− γn(s̄m′)≤K(s, s̄m′)− 2h2(s, s̄m′) + 2d(Lm′ |m′|+ ξ)

}
,

(13)
and introduce the following event: Ω(ε, ξ) = Ωmf

(ε)∩Ω1(ξ)∩Ω2(ξ). Recall that
we have, from equation (11),

(γn(s̄m)− γn(ŝm̂))1Ω(ε,ξ)

= (γn(s)− γn(s̄m̂))1Ω(ε,ξ) + (γn(s̄m)− γn(s))1Ω(ε,ξ)

+ (γn(s̄m̂)− γn(ŝm̂))1Ω(ε,ξ).

Then since Ω(ε, ξ) encompasses all events required from the previous proposi-
tions, we can bound the first and last of those terms using propositions 4.2 and
4.4. Further denoting R = γn(s̄m)− γn(s), we obtain

(γn(s̄m)− γn(ŝm̂))1Ω(ε,ξ)

≤
[
K(s, s̄m̂)− 2h2(s, s̄m̂)

]
1Ω(ε,ξ) +R1Ω(ε,ξ) +

1

1 + ε
K(s̄m̂, ŝm̂)1Ω(ε,ξ)

+ C(ε)d
[
|m̂|+ 8(1 + ε)

√
(Lm̂|m̂|+ ξ)|m̂|+ 4(1 + ε)(Lm̂|m̂|+ ξ)

]
+ 2dLm̂|m̂|+ 2dξ.

where C(ε) =
V maxκ(1 + ε)

2mε
. We plug the previous equation into equation (10)

and obtain:
ε

1 + ε
h2(s, ŝm̂)1Ω(ε,ξ) ≤ K(s, s̄m)1Ω(ε,ξ) +R1Ω(ε,ξ) − pen(m̂) + pen(m)
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+d|m̂|C2(ε)
(
1 + 4

√
Lm̂

)2

+2ξd

[
1 + (1 + ε)C(ε)

(
8

ε
+ 2

)]
,

where C2(ε) =
V maxκ

2mε
(1 + ε)3.

Then since by assumption, pen(m̂) ≥ βεd|m̂|
(
1 + 4

√
Lm̂

)2
, choosing βε =

C2(ε) yields:

h2(s, ŝm̂)1Ω(ε,ξ) ≤ Cβε

[
K(s, s̄m)1Ω(ε,ξ) +R1Ω(ε,ξ) + pen(m)

]
+ dξC(βε),

with Cβε =
1 + C−1

2 (βε)

C−1
2 (βε)

.

From propositions 4.1 and 4.4 (with x = Lm′ |m′|+ξ and u = s̄m′) come both

P
(
Ω1(ξ)

C
)
≤ d

∑
m′∈Mn

e−(Lm′ |m′|+ξ) and P
(
Ω2(ξ)

C
)
≤ d

∑
m′∈Mn

e−(Lm′ |m′|+ξ),

so that using hypothesis (5),

P
(
Ω1(ξ)

C ∪ Ω2(ξ)
C
)

≤ 2d
∑

m′∈Mn

e−(Lm′ |m′|+ξ) ≤ 2dΣe−ξ,

and thus P (Ω1(ξ) ∩ Ω2(ξ)) ≥ 1− 2dΣe−ξ. Integrating over ξ and using propo-
sition 4.3 leads to

E
[
h2(s, ŝm̂)1Ωmf

(ε)

]
≤ Cβε

[
K(s, s̄m) +

C(a, d, ε,Γ, κ, ν, V min, V max)

n(a−1)/2
+ pen(m)

]
+ 2dΣC(βε).

And since E
[
h2(s, ŝm̂)1Ωmf

(ε)C

]
≤ C(a, d, βε,Γ, κ, V

min)

na
, we have

E
[
h2(s, ŝm̂)

]
≤ Cβε [K(s, s̄m) + pen(m)] + C ′(d, ν, κ,Γ, βε,Σ, V

max, V min).

The proof is concluded by minimizing over m ∈ Mn.

5. Kullback-Leibler results on Ωmf (ε)

The oracle inequality in terms of risk obtained in Section 3 (see Corollary 3.5)
is expressed in terms of two different losses (Hellinger and Kullback-Leibler).
As can be seen in the proof of the corresponding theorem, once the considered
risk has been controlled on Ωmf

(ε), it has to be bounded by some constant on
Ωmf

(ε)C in order to conclude to the oracle inequality. In the above, this is easily
done as the Hellinger distance is always bounded by 1. In this section, we show
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that if we restrict the space to Ωmf
(ε), it is possible to exhibit risk bounds in

terms of Kullback-Leibler.
Then we show that the controls derived for the statistical oracle inequality

are sufficient to achieve a trajectorial inequality. It is however likely that at the
price of additional technical results one could achieve a finer inequality with
optimal bounds.

5.1. Risk bounds

The following theorem gives a risk bound of the penalized estimator in terms of
Kullback-Leibler on Ωmf

(ε).

Theorem 5.1. Let s =
∏

t s(t) be a distribution from the exponential family
such that its parameters θt belong to a convex compact set ν of Rd with diameter
ν. Assume that there exist two positive constants v and c such that s is SG(v, c)
and let κ denote max{v, c}. Let Mn be a collection of partitions constructed on
a partition mf such that there exists Γ > 0 satisfying ∀J ∈ mf , |J | ≥ Γ log(n)2,
and let (Lm)m∈Mn be some family of positive weights satisfying

Σ =
∑

m∈Mn

exp(−Lm|m|) < +∞.

Let ε > 0 and let β′
ε be a positive constant depending on ε, the compact ν and

the distribution G. If for every m ∈ Mn

pen(m) ≥ β′
εd|m|

(
1 + 4

√
Lm

)2

,

then

E
[
K(s, ŝm̂)1Ωmf

(ε)

]
≤ C ′

βε
inf

m∈Mn

[K(s, s̄m) + pen(m)]

+C ′(d, ν,mν ,mε, ε,Γ, κ, V
min, V max,Σ).

Corollary 5.2. Under the assumptions of Corollary 3.5, there exist some con-
stants C1 and C2 such that

E
[
K(s, ŝm̂)1Ωmf

(ε)

]
≤ C1 log(N) inf

m∈Mn

{E[K(s, ŝm)]}+ C2

This theorem is proved in the exact same manner as Theorem 3.2, with the
exception of the control of the term γn(s) − γn(s̄m′) (corresponding to propo-
sition 4.3) which can be performed more finely on Ωmf

(ε) via the following
proposition.

Proposition 5.3. Let x > 0, then with probability greater than 1− de−x

(γn(s)−γn(s̄m′))1Ωmf
(ε) ≤

1

1 + ε
K(s, s̄m′)+dV max(1+ε)x

(
1

mν
+

ν

3

)
. (14)
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The proof is given in the appendix B.5. Now, defining a new set

Ω2(ε, ξ) =
⋂

m′∈Mn

{(γn(s)− γn(s̄m′))1Ωmf
(ε) ≤

1

1 + ε
K(s, s̄m′)

+ dV max(1 + ε)(Lm′ |m′|+ ξ)

(
1

mν
+

ν

3

)
},

we get P
(
Ω2(ε, ξ)

C
)
≥ dΣe−ξ using proposition 5.3. Replacing this new set in

Ω(ε, ξ) = Ωmf
(ε) ∩ Ω1(ξ) ∩ Ω2(ε, ξ), we obtain

(γn(s̄m)− γn(ŝm̂))1Ω(ε,ξ)

≤ 1

1 + ε
(K(s, s̄m̂) +K(s̄m̂, ŝm̂))1Ω(ε,ξ) +R1Ω(ε,ξ)

+ dV max(1 + ε)(Lm̂|m̂|+ ξ)

[
1

mν
+

ν

3

]

+ dC(ε)
[
|m̂|+ 8(1 + ε)

√
(Lm̂|m̂|+ ξ)|m̂|+ 4(1 + ε)(Lm̂|m̂|+ ξ)

]
≤ 1

1 + ε
(K(s, s̄m̂) +K(s̄m̂, ŝm̂))1Ω(ε,ξ) +R1Ω(ε,ξ)

+ dC(ε)|m̂|
[
1 + (1 + ε)

(
8
√
Lm̂ + ε+ 4Lm̂

)
+ Lm̂2mε

(
1

mν
+

ν

3

)]

+ d(1 + ε)

(
4C(ε)

(
4

ε
+ 1

)
+ V max

(
1

mν
+

ν

3

))
ξ,

with C(ε) =
V maxκ(1 + ε)

2mε
and since κ ≥ 1. Then we get

ε

1 + ε
K(s, ŝm̂)1Ω(ε,ξ)

≤ K(s, s̄m) +R1Ω(ε,ξ) − pen(m̂) + pen(m) + d|m̂|Cmax(ε)
(
1 + 4

√
Lm̂

)2

+ ξd(1 + ε)

[
V max

(
1

mν
+

ν

3

)
+ 4C(ε)

(
4

ε
+ 1

)]
,

where Cmax(ε) = V max(1+ε)3κ
(

1
2mε

∨
(

1
mν

+ ν
3

))
. Then since by assumption,

pen(m̂) ≥ β′
εd|m̂|

(
1 + 4

√
Lm̂

)2
, choosing β′

ε = Cmax(ε) yields:

K(s, ŝm̂)1Ω(ε,ξ) ≤ C ′
βε

[
K(s, s̄m) +R1Ω(ε,ξ) + pen(m)

]
+ dξC ′(βε),

with C ′
βε

=
1 + C−1

max(β
′
ε)

C−1
max(β′

ε)
, and finally

E
[
K(s, ŝm̂)1Ωmf

(ε)

]
≤ C ′

βε

[
K(s, s̄m) +

C(a, d, ν,mν ,mε, ε,Γ, κ, V
min, V max)

n(a−1)/2
+ pen(m)

]
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+ 2dΣC ′(βε),

≤ C ′
βε

[K(s, s̄m) + pen(m)] + C ′(d, ν,mν ,mε, ε,Γ, κ, V
min, V max,Σ)

which we minimize over m ∈ Mn.

5.2. A trajectorial oracle inequality

When considering the loss approach, the definition of the oracle corresponds to
the best estimator within the collection we consider in terms of Kullback-Leibler
loss, i.e. the estimator associated to mD = argminm[K(s, ŝm)]. The following
theorem gives an oracle inequality in this sense.

Theorem 5.4. Under the assumptions of theorem 5.1, let ε > 0 and let β′′
ε be

a positive constant depending on ε, the compact ν and the distribution G. If for
every m ∈ Mn

pen(m) ≥ β′′
ε d|m|

(
1 + 4

√
Lm

)2

,

then for all ξ > 0, there exists an event of probability at least 1 − 2dΣe−ξ on
which

K(s, ŝm̂)1Ωmf
(ε) ≤ C ′′

βε
inf

m∈Mn

{
K(s, ŝm)1Ωmf

(ε) + pen(m)
}

+C ′′(d, ν, κ,Γ, βε,Σ, V
max, V min)ξ. (15)

To prove this result, we start with a slightly different decomposition of
K(s, ŝm̂) than equation (10):

K(s, ŝm̂) ≤ K(s, ŝm) + (γn(ŝm)− γn(s̄m)) + (γn(s̄m)− γn(ŝm̂))

−pen(m̂) + pen(m),

where, for any m′ ∈ Mn, we still use the decomposition (11):

γn(s̄m)− γn(ŝm′)

= (γn(s̄m′)− γn(ŝm′)) + (γn(s)− γn(s̄m′)) + (γn(s̄m)− γn(s)) .

The two first terms of this latter decomposition are controlled in the same man-
ner as for Theorem 5.1 (using propositions 4.1 and 5.3 respectively). Though the
two other terms do not require a uniform control, the former results encompass
their control for a fixed partition m. This results in

(γn(ŝm)− γn(ŝm̂))1Ω(ε,ξ)

≤ 1

1 + ε
(K(s, s̄m̂) +K(s̄m̂, ŝm̂))1Ω(ε,ξ)

+
1

1 + ε
(K(s, s̄m) +K(s̄m, ŝm))1Ω(ε,ξ)
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+ dV max(1 + ε)(Lm̂|m̂|+ ξ)

[
1

mν
+

ν

3

]

+ dV max(1 + ε)(Lm|m|+ ξ)

[
1

mν
+

ν

3

]

+ dC(ε)
[
|m|+ 8(1 + ε)

√
(Lm|m|+ ξ)|m|+ 4(1 + ε)(Lm|m|+ ξ)

]
+ dC(ε)

[
|m̂|+ 8(1 + ε)

√
(Lm̂|m̂|+ ξ)|m̂|+ 4(1 + ε)(Lm̂|m̂|+ ξ)

]
.

Then choosing β′′
ε = Cmax(ε) = β′

ε, we get, with probability greater than 1 −
2Σde−ξ,

K(s, ŝm̂)1Ωmf
(ε)

≤ 2 + ε

ε
K(s, ŝm)1Ωmf

(ε) + 2
1 + ε

ε
pen(m)

+ 2ξd
(1 + ε)2

ε

[
V max

(
1

mν
+

ν

3

)
+ 4C(ε)

(
4

ε
+ 1

)]
.

With C ′′
βε

= 2C ′
βε

= 2
1 + C−1

max(β
′
ε)

C−1
max(β′

ε)
, we obtain

K(s, ŝm̂)1Ωmf
(ε) ≤ 2C ′

βε

[
K(s, ŝm)1Ωmf

(ε) + pen(m)
]
+ 2dξC ′(βε).

6. A developed example: Categorical distributions

In this section we study the particular case of categorical variables by first
illustrating how our general approach can be used when working with a specific
distribution, and then showing how the main results could be derived if working
directly with the characteristics of the categorical distribution instead of dealing
with the log-partition function from the exponential family. We focus only on
our Hellinger oracle inequality which is defined on the whole space. We conclude
this section by comparing the constants obtained in each case.

6.1. Categorical distribution: The general approach

Here we suppose that Y can take values between 1 and d+1, with d ≥ 2 and we
write {p(i); 1 ≤ i ≤ d} the probability that Y belongs to categories 1 through d

(so that p(d+1) = 1−
∑d

i=1 p
(i)).

In the canonical form, the parameters θ are given by θ(i) = log p(i)

1−
∑d

i=1 p(i)

(for 1 ≤ i ≤ d) and we have

• T (i) = 1{Y=i}

• A(θ) = log(1 +
∑d

i=1 e
θ(i)

)
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• E(i) =
eθ

(i)

1 +
∑d

j=1 e
θ(j)

and

∇2A(θ) =

⎛
⎜⎜⎜⎜⎜⎝

E(1)(1− E(1)) −E(1)E(2) . . . −E(1)E(d)

−E(1)E(2) E(2)(1− E(2)) . . . −E(2)E(d)

...

−E(1)E(d) . . . E(d)(1− E(d))

⎞
⎟⎟⎟⎟⎟⎠

The inverse mapping of the gradient of the log-partition function is given by

[[∇A]−1(β)](i) = log
β(i)

1−
∑d

j=1 β
(j)

.

The empirical contrast can therefore be expressed as

γn(s) =

n∑
t=1

[
log

(
1 +

d∑
i=1

eθ
(i)
t

)
−

d∑
i=1

1{Yt=i}θ
(i)
t

]
,

which translates into usual notations into

γn(s) = −
n∑

t=1

d+1∑
i=1

1{Yt=i}p
(i)
t .

6.1.1. Sub-gamma property of the categorical distribution

Let us assume that the probabilities of each category (including category d+1)
are bounded away from 0 and 1, so that there exists a > 0 and b < 1 such that
a ≤ p(i) ≤ b for all i. For sake of simplicity, we take a = ρ and b = 1 − ρ for
ρ > 0 small. This translates into inequality

− log
1− ρ

ρ
< θ(i) < log

1− ρ

ρ

for the natural parameters. Our compact set ν is therefore defined by
[
−

log 1−ρ
ρ ; log 1−ρ

ρ

]d
, and ν = 2 log 1−ρ

ρ .

Moreover, V (i) = p(i)(1 − p(i)) ≤ (1 − ρ)2, and in the sequel we choose
V max = (1− ρ)2.

The Laplace transform of sufficient statistic T (i) is

logE
[
ez(T

(i)−E(i))
]

= log

[
1 +

∑
j e

θ(j)

+ eθ
(i)

(ez − 1)

1 +
∑

j e
θ(j)

]

= log
[
1 + E(i) (ez − 1)

]
=
∑
k≥2

c
(i)
k

zk

k!
,
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which is analytic in z provided z ≤ log
(
1 + 1

E(i)

)
. Setting R = log 2 and z ∈

[−R;R], one can show (see for instance [25]) that the cumulants associated with

T (i) (the {c(i)k }k) can be obtained through the recurrence property c
(i)
1 = p(i)

and for k ≥ 2,

c
(i)
k+1 = p(i)(1− p(i))

∂c
(i)
k

∂p(i)
,

where we have switched back to usual proportion notations for sake of readabil-
ity.

By induction, we can show that∣∣∣∣ ck(T
(i))

c2(T (i))k/2

∣∣∣∣ ≤ 1

2
k!

(
2√
V (i)

)k−2

,

and finally that the categorical distribution is SG(1, 2), so that we can take
κ = 2.

6.1.2. Computation of mν and mε

In what follows, we will consider a fixed ε such that 0 < ε < ρ.
Consider a given vector of proportions π = (π(1), . . . , π(d)), and the variance-

covariance matrix A(π) associated to a categorical distribution of parameter π.
Gershgorin theorem states that all eigenvalues of A(π) lie within at least one of
the Gershgorin discs, i.e. they are all greater than

Π(π) = min
i

⎧⎨
⎩π(i)(1− π(i))−

∑
j �=i

∣∣∣−π(i)π(j)
∣∣∣
⎫⎬
⎭

= min
i

{
π(i)

(
1− π(i)

)
− π(i)

(
1− π(i) − π(d+1)

)}
= min

i

{
π(i)π(d+1)

}
From this, we directly obtain that mν = ρ2.

To compute mε, we consider z ∈ K(ε). There exists E and V such that

∇A(z) ∈ B(E, εV ), that is there exists E and V such that ∀i, ez
(i)

1+
∑

ez
(j) belongs

to [E(i) − εV ;E(i) + εV ]. We therefore have:

ez
(i)[

1 +
∑

ez(j)
] ≤ (Emax + εV max) ≤ (1− ρ)(1 + ε) and

(ρ(1 + ε)− ε) ≤ (Emin − εV max) ≤ ez
(i)[

1 +
∑

ez(j)
]

Additional technical computations show that mε is lower bounded by (ρ− ε)2.
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6.2. Direct results for the categorical variables

This section is dedicated to the derivation of direct controls when studying the
categorical distribution. As before, Y will take values in 1, . . . , d+1 with p(i) the
probability of category i, which we once more bound by ρ ≤ p(i) ≤ 1− ρ for all
i. Once again, it is possible to reduce the number of parameters to d, however
keeping all d + 1 parameters leads to more tractable quantities to control and
to smaller resulting constants. For sake of readability and to avoid confusions,
we will denote r = d+ 1.

The distribution s(t) of Yt can be decomposed in r terms by denoting s(t, i) =

P (Yt = i) = p
(i)
t = E

[
1{Yt=i}

]
. In this specific case, quantities such as the

contrast or the Kullback-Leibler risk can be identified:

• the model Sm associated to a given partition m is:

Sm =

{
u : {1, ..., n} × {1, ..., r} → [0, 1] such that

∀J ∈ m, ∀i ∈ {1, 2, ..., r} , u (t, i) = u (J, i) ∀ t ∈ J

}
.

• the empirical contrast is the negative log-likelihood defined by:

γn (s) = −
n∑

t=1

r∑
i=1

1{Yt=i} log [s (t, i)] .

• associated to this contrast, the Kullback-Leibler information between s

and u is: K (s, u) =
∑n

t=1

∑r
i=1 s (t, i) log

[
s(t,i)
u(t,i)

]
.

• the minimum contrast estimator of s is

ŝm (t, i) =
NJ (i)

| J | , for i ∈ {1, ..., r} , t ∈ J and J ∈ m,

with NJ (i) =
∑

t∈J 1{Yt=i}, and the projection

s̄m (t, i) = arg min
u∈Sm

K(s, u) =

∑
t∈J s (t, i)

| J | .

See for instance [20] for more details on notations and computations.
The following theorem gives the direct version of Theorem 3.2.

Theorem 6.1. Suppose that one observes independent variables Y1, ..., Yn tak-
ing their values in {1, 2, ..., r} with r ∈ N and r ≥ 2. We define, for t ∈ {1, ...n}
and i ∈ {1, 2, ..., r}, P (Yt = i) = s (t, i). Let (Lm)m∈Mn

be some family of
positive weights and define Σ as

Σ =
∑

m∈Mn

exp (−Lm|m|) < +∞.

Assume that

• there exists some positive absolute constant ρ such that ρ ≤ s(t, i) ≤ 1−ρ,
for all t and i,



Segmentation of multiparameter exponential 821

• Mn is a collection of partitions constructed on a partition mf such that

|J | ≥ Γ [log (n)]
2 ∀J ∈ mf where Γ is a positive absolute constant.

Let λε > 1/2. If for every m ∈ Mn

pen (m) ≥ λε r|m|
(
1 + 4

√
Lm

)2

,

then

E
[
h2 (s, ŝm̂)

]
≤ Cλε inf

m∈Mn

{K (s, sm) + pen (m)}+ C (Σ, r, λε, ρ,Γ) ,

with Cλε = 2(2λε)
1/3

(2λε)1/3−1
.

The proof of this result is postponed to the appendix C.

6.3. Comparison of the constants

The main constant of interest is Cβε as it compares the risk of our estimator to
that of the oracle.

In the general approach, this constant is expressed as Cβε =
1+C−1

2 (ε)

C−1
2 (ε)

where

C2(ε) = βε =
V maxκ

2mε
(1 + ε)3. Using the results of Section 6.1, we have

C2(ε) = (1 + ε)3
(1− ρ)2

(ρ− ε)2
≤
(
1 + ε

ρ− ε

)3

and finally

Cβε ≤ (1 + ρ)(βε)
1/3

ρ(βε)1/3 − 1
with βε >

1

ρ3
.

In the direct approach, the constant of interest is Cλε = 2(2λε)
1/3

(2λε)1/3−1
with

λε =
1
2
(1+ε)3

(1−ε)3 > 1
2 .

The constants βε and λε are the constants from the penalty function
(pen(m) > βε(r − 1)|m|(1 + 4

√
Lm)2 in the general approach and pen(m) >

λεr|m|(1 + 4
√
Lm)2 in the direct approach). One can note that βε is greater

than λε, and even, βε(r − 1) is greater than λε r, meaning that the constraint
on the penalty function in the direct approach is finer than in the general ap-
proach.

More importantly, as ρ goes to 0, βε explodes while the constraint on λε is
unaffected. This dependency on ρ in the general framework comes from the V max

mε

ratio, which intervenes when comparing the Kullback divergence and our V 2

term between the penalized estimator ŝm and the projection of the distribution
s̄m. Because the distribution is not specified, no direct simplification occurs
and the use of Taylor development leads to a constant mε

2V max When using the
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constraints on the proportions, the term V max

mε
will be of the order of V max

V min �
(1−ρ)2

ρ2 which explodes when ρ goes to 0. In the direct approach, simplifications
of the log-partition function allow to work directionally, and therefore avoid the
global ratio of variances: the smallest eigenvalue of the covariance matrix in the
general case is now directly the variance of the sufficient statistic, and the ratio
simplifies.

Concerning the constants of interest, we can notice that the general shape of
Cβε and Cλε are the same. In fact, if we introduce γε = 1

2ρ
3βε so that γε > 1

2 ,
we get

Cγε ≤ 1 + ρ

ρ

(2γε)
1/3

(2γε)1/3 − 1
.

so that Cγε � 1+ρ
ρ

1
2Cλε and this constant gets significantly bigger as the con-

straints on p loosens (i.e. ρ decreases).
Note that in practice, both penalty constants βε and λε are tuned from

the data. More precisely, as is classical in segmentation or density estimation
settings, the slope heuristic [3] can be used to this purpose. Since the empirical
contrast is the same regardless of the computations of the controls, providing
the shape |m|(1 + 4

√
Lm)2 to the slope heuristic will result in the choice of the

same penalized estimator - due to the same choice of number of segments K.
Consequently, we will obtained the same oracle constant C1, smaller than both
Cβε and Cλε since the later are only upper bounds on the true oracle constant.

7. Simulation study and application to DNA sequences

In this section, we apply our estimator in three scenarios. The first is a simulation
study where the observations are sampled from the exponential distribution with
piece-wise constant rate parameter. In this case the distribution is continuous
and the sufficient statistic is uni-dimensional (and is the variable itself). The
second is a small comparison study with some of the related work presented in
Section 2.3. Here we first simulate smaller profiles from the Poisson distribution
(in order to accommodate as many available softwares as possible) and then
study their behavior to model misspecification by simulating from a Student
distribution while using a Gaussian segmentation model. Finally, we consider
an application to a real data-set on the analysis of DNA sequences in terms
of base-composition. Segmentation models are used to identify homogeneous
regions which can be related to structural and functional biological regions. In
this case we model the observations with a categorical distribution with piece-
wise constant proportion parameters as described in the previous section.

7.1. Simulation study with exponential distribution

Simulation design. We simulated datasets of length n = 105 for which
the number of segments K was drawn from a Poisson distribution with mean
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Fig 1. Simulated datasets and segmentation. The four first figures show examples of simu-
lation design for each of the four groups of rate values; the last two figures show examples of
dataset to segment in the first and last group of values. Red lines (bottom) indicate the true
distribution (the inverse of the rate, 1/λ, is represented) while blue lines (middle) indicate
the estimated distribution and the orange lines (top) indicate the optimal segmentation (w.r.t.
likelihood loss) for the true number of segments.

K̄ = 50, and the K − 1 change-points were sampled uniformly on {2, . . . , n− 1}
subject to the constraint that segments had to be of length at least 100. We
considered 4 sets of values for the rate parameters of the exponential distribu-
tion. In all scenarios, odd segments had a rate of 0.01 while the rate on even
segments was chosen randomly with probability 0.4, 0.2, 0.3 and 0.1 among the
values (0.05, 0.1, 0.02, 0.005) for datasets 1 through 100, (0.02, 0.05, 0.015, 0.005)
for datasets 101 through 200, (0.015, 0.02, 0.0125, 0.007) for datasets 201 through
300, and (0.015, 0.02, 0.011, 0.008) for datasets 301 through 400. For each com-
bination of parameters, we simulated 100 datasets, which are similar to those
shown in Figure 1.

Quality criteria. The performance of our procedure was assessed via different
criteria: if ŝ denotes the considered estimator,

• The difference between the true number of segments and the estimated,
Δ = K − K̂;

• The two components of the Hausdorff distance (as in [23]) in order to
assess the quality of the change-point locations. More precisely, we con-
sider the two quantities E(mŝ||ms) and E(ms||mŝ), between the partitions
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associated with the true and estimated distributions s and ŝ, where

E(mA||mB) = sup
b∈mB

inf
a∈mA

|a− b|.

The first quantity E(mŝ||ms) assesses how our estimated segmentation
is able to recover the true change-points. Intuitively, segmentations with
large number of segments are likely to yield a small value of E(mŝ||ms).
On the contrary, the second quantity E(ms||mŝ) judges how relevant the
proposed change-points are compared to the true partition: a segmentation
with too many segments will most likely have change-points far from the
true ones (unless all change-points cluster around true breakpoints). The
Hausdorff distance can then be recovered as sup{E(mŝ||ms), E(ms||mŝ)}.

• The Kullback divergence between true and estimated distributions, com-

puted as
∑

t

(
λ̂t

λt
− log λ̂t

λt
− 1

)
for the Exponential distribution; and

• A pseudo-Hellinger distance between true and estimated distributions,

defined as
∑

t

(
1− 2

√
λtλ̂t

λt+λ̂t

)
.

Remark 7.1. Note that the Hellinger distance between two exponential distri-

butions is defined as 1 −
∏

t

(
2

√
λtλ̂t

λt+λ̂t

)
. However, with profiles of length 105,

computing this product yields values very close to the numerical precision of
computers and therefore the Hellinger distance is almost always equal to one.
We therefore chose to represent the pseudo-Hellinger distance, taking values
between 0 and n, for better assessment of the performance of our estimator.

In this framework, since the penalty depends on the partition through its
dimension, the segmentation was performed using the pruned dynamic pro-
gramming algorithm [35, 16] from which we obtained the optimal segmentation
m̂k for every k up to Kmax = 200, and where the optimal segmentation in
k segments is defined as argminm∈Mk

n
γn(ŝm) (Mk

n being the set of all parti-
tions of {1, . . . , n} that have k segments). The number of segments was then
obtained using the penalty function proposed in (8) with N = n and where the
constant is calibrated using the slope heuristic (see [3]). The resulting estimated
distribution can then be written as ŝm̂K̂

.

Since our datasets were simulated from a true segmentation model, to allow a
fair assessment of our estimator, the Hausdorff, Kullback and Hellinger criteria
are also computed for the optimal segmentation for the true number of segments,
which we will denote m̂K , and the resulting estimated distribution ŝm̂K

. These
estimators differ in Figures 1 and 2 by the following colors: blue for our estimator
ŝm̂K̂

and orange for ŝm̂K
.

Moreover, when comparing these estimators in terms of Kullback-Leibler di-
vergence (in Figure 2 c), we also consider the trajectorial oracle model, that is the
empirical estimator associated to m̂K̃ where K̃ = argmink∈{1,...,Kmax} K(s, ŝm̂k

).
This estimator is represented by the light blue color in Figure 2 c.
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Fig 2. Evaluation of the performance of our proposed method. a) difference between
the true number of segments and the estimated number. b) boxplot of E(mŝ||ms) (left) and
E(ms||mŝ) (right) over the hundred simulations in each framework. In each case, left boxplots
(blue) assess our estimator, right boxplots (orange) assess the estimator corresponding to the
true number of segments. c) boxplot of the Kullback-Leibler divergence to the true distribution
for the estimated distribution (blue-left), the optimal segmentation in K segments (orange-
middle) in each simulation framework, and the optimal segmentation (light blue-right). d)
same as c) but for the pseudo-Hellinger distance.

Results. As is shown in Figure 2 a, when the detection problem is easy (sets 1
and 2), our method tends to recover the true number of segments, and therefore
its performances are the same as that of ŝm̂K

(see Figures 2 b, c and d). However,
when the scenario becomes more difficult to segment (sets 3 and 4), our method
has a tendency to underestimate the number of segments. This behavior is
classical and desired in studies of model selection for segmentation in order to
avoid false detection. This phenomenon is further illustrated in Figure 2 b as our
estimator yields high values of E(mŝ||ms) due to the missed segments (left-hand-
side of the figure) but low values of E(ms||mŝ) as the segments we propose tend
to correspond to true segments (right-hand-side of the figure). On the contrary,
the segmentation m̂K has lower values of E(mŝ||ms) as it has more change-points
thus lower distances to the missed ones, but higher values of E(ms||mŝ) as some
of its segments are spurious. On a particular example, presented in Figure 1 by
comparing the red line (true segmentation) to the blue one (corresponding to
our estimator), and more so on the bottom sub-figure illustrating a simulation
from the fourth group, we observe that our method tends to fail to recover
small segments with rate very close to surrounding ones, whereas the optimal
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segmentation for the true number of change-points (as represented by the orange
line) still fails to recover those small segments, thus proposing additional ones,
typically very short (average length=9) with very different rate values. Finally,
Figures 2 c and d show that in terms of Kullback-Leibler divergence and pseudo-
Hellinger distance, our estimator performs at least as well as the one with the
true number of segments, and significantly better when the profiles become
more difficult to segment. Moreover, as is shown in Figure 2 c, even in the most
difficult scenarios, our estimator has a performance very close to that of the
trajectorial oracle.

7.2. Comparison study and robustness to the model

Among the related works presented in Section 2.3, only 3 have an available R
package, namely ecp for the permutation test approach of [33] implemented
within the edivisive function, EBS [19] for the Bayesian ICL approach of [36]
and stepR for the likelihood ratio approach of [21] implemented within the
smuceR function.

Because of the high complexity of the non-parametric approaches and the
little choice in exponential family distribution implemented in the various pack-
ages, we chose to compare the different approaches on small simulation studies
(profile length of 1000 datapoints) in two cases: the first with data simulated
from the exponential family, the Poisson distribution, and the second with data
simulated from a Student distribution.

Poisson simulation. Here again the parameters of the simulations were
drawn randomly as follows: the number of segmentsK was drawn from a Poisson
distribution with mean K̄ = 10, and the K − 1 change-points were sampled
uniformly on {2, . . . , n−1} subject to the constraint that segments had to be of
length at least 20. We considered 4 sets of values for the Poisson rate parameters.
In all scenarios, odd segments had a rate of 5 while the rate on even segments
was chosen randomly with probability 0.4, 0.2, 0.3 and 0.1 among the values
(3, 1, 10, 7, 5) for datasets 1 through 100, (2, 1, 8, 6.5, 5) for datasets 101 through
200, (2, 1.5, 6.5, 5.5, 5) for datasets 201 through 300 and (4.5, 3.5, 6.5, 5.5, 5) for
datasets 301 through 400.

The performance of the competitive segmentation methods were assessed via:

• The difference between the true number of segments and the estimated,
Δ = K − K̂;

• The adjusted rand-index criterion
• E(mŝ||ms) and E(ms||mŝ), between the estimators and the true segmen-

tation; and
• The runtime of the algorithms.

All the results are given in Figure 3. All methods tend to underestimate the
number of segments, especially when the profiles become harder to segment (see
Figure 3 a). Our method performs slightly better in the easiest scenarios, while
EBS performs significantly worse, almost unaffected by the different scenarios.
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Fig 3. Comparison of our method with three others. a) difference between the true number
of segments and the estimated. b) boxplot of the adjusted rand-index criterion (1 is perfect
agreement). c) and d) boxplot of E(mŝ||ms) and E(ms||mŝ) respectively over the hundred
simulations in each framework.

Interestingly, the second best algorithm is the non-parametric approach of [33].
This behavior is translated in the Rand Index performance (see Figure 3 b), with
our penalized estimator and the non-parametric approach exhibiting similar
performances, tightly followed by the likelihood ratio approach of [21], while the
Bayesian approach of [36] is the worst. Note however that the EBS algorithm
does not provide an optimal segmentation but the posterior distribution of the
change-points, and the Hausdorff and Rand Index criteria for this approach were
computed using the MAP of each change-point location.

In terms of Hausdorff distance, all methods perform very well in terms of
E(mŝ||ms) criterion, as the change-points that are identified by the methods
correspond to or are very close to true change-points. On the contrary, once
again their performance in terms of E(ms||mŝ) is poorer as they tend to miss
some of the change-points - as they underestimate the number of segments (see
Figure 3 c and d). It is interesting to note that EBS has the best E(mŝ||ms)
performance. This is related to the fact that the ICL tends to select the number
of segments for which the confidence in the segmentation is the highest, therefore
those change-points that are recovered by the algorithm are recovered with very
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Fig 4. Comparison of our method with three others. a) difference between the true number
of segments and the estimated. b) boxplot of the adjusted rand-index criterion (1 is perfect
agreement). c) and d) boxplot of E(mŝ||ms) and E(ms||mŝ) respectively over the hundred
simulations in each framework.

high confidence, and they tend to correspond to true change-points. Once more,
on those criteria, our penalized estimator exhibits the best performance tightly
followed by the non-parametric approach ecp. Finally, in terms of runtime, our
method out-beats all others with an average running time of 0.4 seconds per
profile, followed by stepR with an average of 1.31 seconds, ecp with an average
of 22.08 seconds and EBS with an average of 24 seconds.

Student simulation: This simulation study aims at assessing the robust-
ness of our approach to the exponential family model assumption. To this ef-
fect, we simulated 1000 points datasets with both fixed change-points, m =
(300, 550, 700, 900, 1000) and fixed means on each segments: 0 on odd segments
and 1 on even segments. We considered four noise scenarios, all from the Student
distribution with different degrees of freedom ν = {50, 10, 6, 3} (ν = 50 being
the closest Gaussian case) and simulated 100 datasets for each scenario.

The three parametric approaches, our penalized estimator, stepR and EBS,
were used with a Gaussian model assumption. The performance of the methods
were assessed with the same criteria as for the Poisson distribution.

Results are given in Figure 4. We observe that the non-parametric approach
ecp consistently out-beats all other methods, with excellent performances for
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all criteria. When the simulation scheme is close to a Gaussian simulation, our
penalized estimator performs as well as ecp, however when the degree of freedom
of the Student distribution decreases, the number of segments is overestimated,
resulting in performances decrease in terms of Rand Index. It is interesting to
note that in this case the results in terms of E(ms||mŝ) are quite stable and
reasonable, as we do recover the true change-points, but the results in terms of
E(mŝ||ms) deteriorate as we identify spurious segments. This analysis remains
true for the stepR approach, with performances deteriorating faster than for
our penalized estimator. On the contrary, EBS still underestimates the number
of segments, consistently identifying the first two change-points but missing the
smaller segments, therefore its tendency in terms of segmentation quality criteria
remain identical to that of the Poisson simulation.

Finally, in this scenario ecp is clearly worse than the other methods in terms
of runtime performances: our method still out-beats all others with an average
running time of 0.3 seconds per profile, followed by stepR with an average of 0.35
seconds, EBS with an average of 2.88 seconds and ecp with an average of 32.7
seconds. These differences in performance compared to the Poisson simulation
(in particular, EBS drastically improves with a runtime about 10 times faster)
are explained by the usage of the Gaussian loss that results in an optimization
cost function which can be computed as a least-squares cost and for which the
computational runtime is significantly reduced.

7.3. Application to a DNA sequence

The objective of this application is to find regions of a DNA sequence which
are homogeneous in terms of base composition, that is which present a stability
in the frequencies of the four nucleotide letters. These regions are thought to
correspond to areas of the genome which are biologically significant. To this
end, we apply our procedure modeling the data with categorical variables with
d = 3 (see Section 6 for the model).

Here we consider the bacteriophage Lambda genome with length n = 48502
base pairs which is a parasite of the intestinal bacterium Escherichia coli. This
genome has been used for the comparison of segmentation methods (see [11] and
references therein) such as HMM ([9], [34]) or penalized quasi-likelihood [10].
The data and its annotation are publicly available from the National Center for
Biotechnology Information (NCBI) pages at the url address http://www.ncbi.
nlm.nih.gov/.

From a computational point of view, the large size of the Lambda genome
hampers the direct use of the classical dynamic programming (DP) algorithm.
Here we propose a hybrid algorithm that consists in first selecting a small num-
ber of relevant change-points using the CART algorithm [12], and then using DP
on this set of candidate change-points. As in the simulation study, the penalty
constant is calibrated using the slope heuristic. Four change-points (i.e. five
segments) are selected by our criterion at positions 22546, 27829, 38004 and
46528. The associated regions are characterized by different base composition

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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Fig 5. Estimated probabilities on each segment of the selected segmentation: blue and ‘-’ for
the base adenine A, red and ‘:’ for the base cytosine C, black and ‘-.’ for the base guanine G
and cyan and ‘–’ for the base thymine T.

as shown in Figure 5 which represents the estimated probabilities of each base
for the obtained segmentation.

These change-points are very close (and even on some occasion the precise
same) as the one obtained in [10], which concluded to 3 more change-points. This
reference also supposes bases to be independent and uses a penalized contrast
procedure to perform the segmentation, and is in this sense the closest approach
to ours. The segments we identify reflect changes in transcription direction.
Indeed, this direction is forward up to base 20855, it then switches to reverse
from base 22686 to 37940, switches back to forward between 38041 to 46427 and
finally reverse again from 46459 to the end. Note that a refinement has been
obtained when assuming a dependence relationship between bases (see [9] and
[34]).

8. Conclusion

We have proposed a general approach to the selection of the number of seg-
ments in the segmentation framework where the data can be modeled using a
distribution from the exponential family. As expected, the log-partition func-
tion and its many properties are instrumental in the computation of the bounds
and the derivation of the oracle inequality. While the main result compares the
Hellinger risk of our penalized estimator to the Kullback-Leibler risk of the or-
acle, we show that on an event of large probability we can obtain both a similar
statistical oracle inequality in terms of Kullback-Leibler risk and a trajectorial
oracle inequality in terms of Kullback-Leibler divergence.

Our work therefore opens the door to a vast range of applications which can
directly be tackled with our penalty function. Indeed, while the constants do



Segmentation of multiparameter exponential 831

depend on the choice of the distribution and on the compact set to which the
parameters belong, they are in practice directly calibrated from the data using
the slope heuristic. Here, using the particular case of categorical variables as an
example, we have shown that the loss in tightness of the main constant is not
a drastic issue by comparing the results obtained from the general approach to
that from the direct one. Moreover, we believe that this work should easily be
extended to multivariate distributions from the exponential family.

Moreover, we have shown in many examples through simulation and appli-
cation studies (long profiles from the exponential distribution and shorter pro-
files from the Poisson distribution and Student distribution modeled through a
Gaussian loss in the simulation studies, and categorical distribution in the ap-
plication to DNA sequences) that our approach is a powerful method to detect
significant changes in the distribution of the data, which can often be related
to phenomenon of interest. When the model is well-specified, it out-beats all
other similar approaches both in terms of segmentation quality and runtime,
despite a tendency to underestimate the number of segments in order to avoid
false detection. As the model becomes more ill-specified, for instance in the Stu-
dent simulation study with small parameter, its performance deteriorates, with
a tendency to over-segment the data. While still consistently recovering the true
change-points, it proposes additional smaller segments to decrease the variance
of the estimator on the segments. In such cases, at the cost of a higher compu-
tational complexity, one might prefer a non-parametric approach that does not
suffer from those drawbacks.

Appendix A: Computations of ŝm and s̄m

Let m ∈ Mn and u ∈ Sm such that for J ∈ m and for t ∈ J we have u(t) =
g(Yt) exp

[
pJ .Tt −A(pJ)

]
. Then

γn(u) =
∑
J∈m

∑
t∈J

[
A(pJ)− pJ .Tt

]
=

∑
J∈m

γn(u, J).

Since ∀J ∈ m, dγn(u,J)
dpJ

=
∑

t∈J

[
∇A(pJ )−Tt

]
= |J |∇A(pJ)−TJ , γn(u, J) is

minimal for pJ = [∇A]−1(T̄J ), and finally

ŝm(t) = g(Yt) exp
[
[∇A]−1(T̄J).Tt −A

(
[∇A]−1(T̄J)

) ]
.

Similarly,

K(s, u) =
∑
J∈m

∑
t∈J

[
∇A(θt).(θt − pJ)− (A(θt)−A(pJ))

]

=
∑
J∈m

∑
t∈J

[
Et.(θt − pJ)− (A(θt)−A(pJ))

]
=

∑
J∈m

KJ (s, u).

Since ∀J ∈ m, dKJ (s,u)
dpJ

= −EJ + |J |∇A(pJ), KJ (s, u) is minimal for pJ =

[∇A]−1(ĒJ ), and finally

s̄m(t) = g(Yt) exp
[
[∇A]−1(ĒJ).Tt −A

(
[∇A]−1(ĒJ)

) ]
.
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Appendix B: Results to prove the main Theorem 3.2 and
Theorem 5.1

B.1. Intermediate results

Recall the definition of χ2
m

χ2
m =

d∑
i=1

χ2(m, i) =

d∑
i=1

∑
J∈m

(T
(i)
J − E

(i)
J )2

V
(i)
J

,

and define, for u(t) = G(pt) and u′(t) = G(p′
t),

V 2(u, u′) =
d∑

i=1

∑
t

V
(i)
t

[
p
(i)
t − p′t

(i)
]2

=
d∑

i=1

V 2
i (u, u

′). (16)

The two following subsections give the proof of the control of χ2
m and links

between χ2
m, V 2(s̄m, ŝm) and K(s̄m, ŝm) respectively.

B.1.1. Proof of Proposition 4.1

We have

E[χ2(m, i)] =
∑
J∈m

1

V
(i)
J

E[(T
(i)
J − E

(i)
J )2] = |m|.

We introduce the variables ZJ(i) such that

χ2(m, i) =
∑
J∈m

ZJ(i) =
∑
J∈m

(T
(i)
J − E

(i)
J )2

V
(i)
J

,

and control their moments using

E
[
ZJ(i)

p1Ωmf
(ε)

]
≤
(

1

V
(i)
J

)p ∫ +∞

0

xp dP
[{

(T
(i)
J −E

(i)
J )2 ≥ x

}
∩Ωmf

(ε)
]
dx

≤
(

1

V
(i)
J

)p ∫ εV
(i)
J

0

2p x2p−1P
[
|T (i)

J − E
(i)
J | ≥ x

]
dx

≤
(

1

V
(i)
J

)p ∫ εV
(i)
J

0

4p x2p−1e
− x2

2κV
(i)
J

(1+ε) dx

≤ 4pκp (1 + ε)
p
∫ +∞

0

u2p−1e−
u2

2 du

≤ 4pκp (1 + ε)
p
∫ +∞

0

(2t)
p−1

e−tdt

≤ 2p+1pκp (1 + ε)
p
p!
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We can then conclude by applying Bernstein’s inequality (see for instance

[32] with v = 25 (κ(1 + ε))
2 |m| and c = 4 (κ(1 + ε))):

P
[
χ2(m, i)1Ωmf

(ε) ≥ κ
(
|m|+ 8(1 + ε)

√
x|m|+ 4(1 + ε)x

)]
≤ e−x.

While for a given i the {ZJ(i)}J∈m are independent variables, in general for a
given J the variables {ZJ(i)}1≤i≤d are not. We conclude the proof using lemma
B.1:

Lemma B.1. Let X1, . . . , Xn be real random variables and let a1, . . . , an ∈ R
n

and b1, . . . , bn ∈ [0, 1]n such that ∀ 1 ≤ i ≤ n, P(Xi ≥ ai) ≤ bi. Then

P

(
n∑

i=1

Xi ≥
n∑

i=1

ai

)
≤

n∑
i=1

bi.

B.1.2. Link between χ2
m, V 2(s̄m, ŝm) and K(s̄m, ŝm)

By definition, we have

K(s̄m, ŝm) =
∑
J∈m

|J |[A
(
[∇A]−1(T̄J)

)
−A

(
[∇A]−1(ĒJ)

)
− ĒJ .

(
[∇A]−1(T̄J )− [∇A]−1(ĒJ )

)
],

and note that

V 2(s̄m, ŝm) =

d∑
i=1

∑
J∈m

V
(i)
J

[
[∇A]−1(ĒJ )

(i) − [∇A]−1(T̄J)
(i)
]2

. (17)

Using Taylor development, and since A is mε-strongly convex on K(ε), we have

K(s̄m, ŝm)1Ωmf
(ε)

≥
∑
J∈m

|J |mε

2
||[∇A]−1(T̄J)− [∇A]−1(ĒJ)||21Ωmf

(ε)

≥
d∑

i=1

∑
J∈m

|J | mε

2V
(i)
J

V
(i)
J

[
[∇A]−1(T̄J)

(i) − [∇A]−1(ĒJ)
(i)
]2

1Ωmf
(ε).

Hence,

K(s̄m, ŝm)1Ωmf
(ε) ≥

mε

2V max
V 2(s̄m, ŝm) 1Ωmf

(ε). (18)

Moreover, using the mean value inequality, we get

||[∇A]−1(T̄J)− [∇A]−1(ĒJ)||2 ≥ 1

M2
ε

||T̄J − ĒJ ||2,
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and therefore

K(s̄m, ŝm)1Ωmf
(ε) ≥

∑
J∈m

|J | mε

2M2
ε

||T̄J − ĒJ ||21Ωmf
(ε)

≥ V minmε

2M2
ε

χ2
m1Ωmf

(ε). (19)

B.2. Proof of proposition 3.4

From (19), we have

V minmε

2M2
ε

(
E[χ2

m]−E[χ2
m1Ωmf

(ε)C ]
)
≤ E[K(s̄m, ŝm)1Ωmf

(ε)].

Here we use again Cauchy-Schwarz inequality to control E[χ2
m1Ωmf

(ε)C ]:

E[χ2
m1Ωmf

(ε)C ]

= E

[
d∑

i=1

∑
J∈m

(T
(i)
J − E

(i)
J )2

V
(i)
J

1Ωmf
(ε)C

]

≤
d∑

i=1

⎡
⎣E

(∑
J∈m

(T
(i)
J − E

(i)
J )2

V
(i)
J

)2
⎤
⎦

1
2

P
(
Ωmf

(ε)C
)1/2

≤
d∑

i=1

⎡
⎣E

⎛
⎝∑

J∈m

(T
(i)
J − E

(i)
J )4

V
(i)
J

2 +
∑
J∈m

∑
J ′∈m

(T
(i)
J − E

(i)
J )2

V
(i)
J

(T
(i)
J ′ − E

(i)
J ′ )2

V
(i)
J ′

⎞
⎠
⎤
⎦

1
2

×P
(
Ωmf

(ε)C
)1/2

≤ d

[
|m|

(
σ4

Γ2V min2
(logn)4

+ |m|
)] 1

2

P
(
Ωmf

(ε)C
)1/2

.

And since by assumption |J | > Γ(log n)2, we have |m| < √
n/Γ as soon as

n > 4, and finally,

E[χ2
m1Ωmf

(ε)C ] ≤ d|m|C(a,Γ, V min, ε, κ, σ4)

na/2
≤ C(a,Γ, V min, ε, κ, d, σ4)

n(a−1)/2
.

Now using E[χ2
m] = d|m|,

V minmε

2M2
ε

d|m| − C(a,Γ, V min, ε, κ, d, σ4,mε,Mε)

n(a−1)/2
≤ E[K(s̄m, ŝm)1Ωmf

(ε)].

Finally, introducing C(ε) =
V minmε

2M2
ε

, and since E
[
K(s̄m, ŝm)1Ωmf

(ε)C

]
≥ 0,

we have

K(s, s̄m) + C(ε) d|m| − C(a,Γ, V min, ε, κ, d, σ4,mε,Mε)

n(a−1)/2
≤ E[K(s, ŝm)].
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B.3. Proof of proposition 4.2

We recall that

γn(s̄m′) =
∑
J∈m′

[
−[∇A]−1(ĒJ).(TJ −EJ)

]
,

γn(ŝm′) =
∑
J∈m′

[
−∇A−1(T̄J ).(TJ −EJ)

]
.

We therefore have

γn(s̄m′)− γn(ŝm′) =
∑
J∈m′

(TJ −EJ).
(
[∇A]−1(T̄J)− [∇A]−1(ĒJ )

)

=

d∑
i=1

∑
J∈m′

(T
(i)
J − E

(i)
J )

(
∇A−1(T̄J)

(i) − [∇A]−1(ĒJ)
(i)
)
.

Using Cauchy-Schwarz inequality,

γn(s̄m′)− γn(ŝm′)

=

d∑
i=1

∑
J∈m′

⎡
⎣ (T

(i)
J − E

(i)
J )√

V
(i)
J

√
V

(i)
J

(
[∇A]−1(T̄J)

(i) − [∇A]−1(ĒJ)
(i)
)⎤⎦

≤

√√√√ d∑
i=1

∑
J∈m′

(T
(i)
J − E

(i)
J )2

V
(i)
J

×

√√√√ d∑
i=1

∑
J∈m′

V
(i)
J

[
[∇A]−1(T̄J)(i) − [∇A]−1(ĒJ )(i)

]2
≤
√

χ2
m′

√
V 2(s̄m′ , ŝm′),

where χ2
m and V 2(s̄m, ŝm) have been defined in equation (12) and (17) respec-

tively. Then from equation (18) and 2ab ≤ xa2 + x−1b2, we get on Ωmf
(ε)

γn(s̄m′)− γn(ŝm′) ≤ 1 + ε

2mε
V maxχ2

m′ +
1

1 + ε
K(s̄m′ , ŝm′).

Finally, using proposition 4.1,

(γn(s̄m′)− γn(ŝm′))1Ωmf
(ε)∩Ω1(ξ)

≤ dκ(1 + ε)

2mε
V max

[
|m′|+ 8(1 + ε)

√
(Lm′ |m′|+ ξ)|m′|

+ 4(1 + ε)(Lm′ |m′|+ ξ)] +
1

1 + ε
K(s̄m′ , ŝm′).
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B.4. Proof of proposition 4.3

We recall that

γn(s̄m)− γn(s) =
∑
J∈m

∑
t∈J

(θt − [∇A]−1(ĒJ)).(Tt −Et).

Then

|E[(γn(s̄m)− γn(s))1Ωmf
(ε)|

≤ E

[
|γn(s̄m)− γn(s)|1Ωmf

(ε)C

]

≤ E

[∣∣∣∣∣
∑
J∈m

∑
t∈J

d∑
i=1

(θ
(i)
t − [∇A]−1(ĒJ)

(i))(T
(i)
t − E

(i)
t )

∣∣∣∣∣1Ωmf
(ε)C

]

≤ ν

d∑
i=1

⎡
⎣E

(
n∑

t=1

(T
(i)
t − E

(i)
t )

)2
⎤
⎦
1/2

P
(
Ωmf

(ε)C
)1/2

≤ ν

d∑
i=1

[
n∑

t=1

V
(i)
t

]1/2

P
(
Ωmf

(ε)C
)1/2

≤ dν

√
V maxC(a, ε,Γ, κ, V min)

n(a−1)/2
.

B.5. Proof of proposition 5.3

We recall that

γn(s)− γn(s̄m′) =
∑
J∈m′

∑
t∈J

(θt − [∇A]−1(ĒJ )).(Et −Tt) =
∑
J∈m′

∑
t∈J

d∑
i=1

X
(i)
t ,

with X
(i)
t = (θ

(i)
t − [∇A]−1(ĒJ )

(i))(E
(i)
t − T

(i)
t ). Then on Ωmf

(ε),

(γn(s)− γn(s̄m′))1Ωmf
(ε) =

∑
J∈m′

∑
t∈J

d∑
i=1

W
(i)
t ,

with W
(i)
t = X

(i)
t 1Ωmf

(ε). Noticing that we have,

• on Ωmf
(ε), |E(i)

t − T
(i)
t | ≤ εV

(i)
t ≤ εV max

• and on ν, |θ(i)
t − [∇A]−1(ĒJ )

(i)| ≤ ν

we have |W (i)
t | ≤ νεV max. Moreover

∑
J,t

E

[
(W

(i)
t )2

]
=

∑
J,t

E

[
(θ

(i)
t − [∇A]−1(ĒJ )

(i))2(E
(i)
t − T

(i)
t )21Ωmf

(ε)

]
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≤
∑
J,t

(θ
(i)
t − [∇A]−1(ĒJ )

(i))2E
[
(E

(i)
t − T

(i)
t )2

]

≤
∑
J,t

(θ
(i)
t − [∇A]−1(ĒJ )

(i))2V
(i)
t = Vi

2(s, s̄m′),

where Vi
2(s, u) is defined in equation (16). Applying Bernstein, we have ∀i

P

[∑
J∈m′

∑
t∈J

W
(i)
t 1Ωmf

(ε) ≥ Vi(s, s̄m′)
√
2x+

νεV maxx

3

]
≤ e−x

Then using lemma B.1,

P

[
(γn(s)− γn(s̄m′))1Ωmf

(ε) ≥
∑
i

Vi(s, s̄m′)
√
2x+

dxνεV max

3

]
≤ de−x.

(20)
Then we conclude the proof using respectively:

• using Cauchy-Schwarz inequality, we get∑
i

Vi(s, s̄m′)
√
2xm′ ≤

√
V 2(s, s̄m′)

√
2dxm′ ;

• since A is mν-strongly convex on ν, we have K(s, s̄m) ≥ mν

2V maxV
2(s, s̄m);

• and finally setting xm′ = Lm′ |m′| + ξ and using 2ab ≤ xa2 + x−1b2 with
x = 1

1+ε .

Appendix C: Proof of Theorem 6.1

We obtain the result of Theorem 6.1 by following the same lines of the proof
of Theorem 3.2. The main constant of interest is Cλε which comes from the
control of the term γn (s̄m′)− γn (ŝm′) on a particular set Ωmf

(ε) (the controls
of the two other terms γn (s̄m) − γn (s) and γn(s) − γn(s̄m′) appeared in the
negligible constant of the risk). Here again this control is obtained using two
results: the control of a chi-square statistic χ2

m and the control K (s̄m′ , ŝm′)
through a quantity V 2 (s̄m′ , ŝm′), denoted here V 2

m′ , on Ωmf
(ε). This latter set

is taken here as

Ωmf
(ε) =

⋂
J∈m

r⋂
i=1

{∣∣∣∣∣NJ (i)−
∑
t∈J

s (t, i)

∣∣∣∣∣ ≤ ε
∑
t∈J

s (t, i) (1− s(t, i))

}
.

This quantity is defined in the same manner than in our general approach (see

(4)), as we can recover E
(i)
J =

∑
t∈J s (t, i), V

(i)
J =

∑
t∈J s (t, i) (1− s(t, i)) and

T
(i)
J = NJ(i). The main difference is that the dimension differs since r = d+ 1

terms are considered. Using the control of NJ(i), that can be obtained through a
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direct application of the bounded version of Bernstein since 1{Yt=i} = 1{Yt=i}−
s(t, i) is bounded by 1,

P

[∣∣∣∣∣NJ(i)−
∑
t∈J

s(t, i)

∣∣∣∣∣ ≥ x

]
≤ 2 exp

(
− x2

2
[
x
3 +

∑
t∈J s (t, i) (1− s(t, i))

]
)
,

(21)

we have, with a > 1,

P
(
Ωmf

(ε)C
)
≤ C (a,Γ, ρ, r, ε)

na
.

C.1. Control of the term γn (s̄m′) − γn (ŝm′)

We introduce

χ2
m =

r∑
i=1

χ2(m, i) =

r∑
i=1

∑
J∈m

ZJ(i),

with ZJ(i) =
NJ (i)

2∑
t∈J s(t,i) and NJ (i) =

∑
t∈J

(
1{Yt=i} − s(t, i)

)
. We control the

moment of ZJ(i) (as in Section 4) using (21). Then since E
[
χ2
m

]
= r|m|, by

using Bernstein’s inequality again, we conclude to

P

(
r∑

i=1

χ2(m, i)1Ωmf
(ε) ≥ r|m|+ 8r

(
1 +

ε

3

)√
x|m|+ 4r

(
1 +

ε

3

)
x

)

≤ r exp (−x) .

We let denote the set

Ω1(ξ) =
⋂

m′∈Mn

{χ2
m′1Ωmf

(ε) ≤ r[|m′|+ 8
(
1 +

ε

3

)√
(Lm′ |m′|+ ξ)|m′|

+ 4
(
1 +

ε

3

)
(Lm′ |m′|+ ξ)]},

then we can control γn(s̄m′)− γn(ŝm′) with the following proposition:

Proposition C.1.

(γn(s̄m′)− γn(ŝm′))1Ωmf
(ε)∩Ω1(ξ)

≤ 1

2

(
1 + ε

1− ε

)
r
[
|m′|+ 8

(
1 +

ε

3

)√
(Lm′ |m′|+ ξ)|m′|

+ 4
(
1 +

ε

3

)
(Lm′ |m′|+ ξ)

]
+

1

1 + ε
K(s̄m′ , ŝm′).

Proof: Using Cauchy-Schwarz inequality, we have

γn (s̄m′)− γn (ŝm′) =
n∑

t=1

r∑
i=1

1{Yt=i} log

[
ŝm′ (t, i)

s̄m′ (t, i)

]
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≤

√√√√ r∑
i=1

χ2
m′ (i)×

√
V 2
m′ ,

with

V 2
m′ =

∑
J∈m

r∑
i=1

|J | sm′ (J, i) log2
[
s̄m′ (J, i)

ŝm′ (J, i)

]
.

Applying Lemma 2.3 of [14], we get on Ωmf
(ε),

1− ε

2
V 2
m′ ≤ K (s̄m′ , ŝm′) ≤ 1 + ε

2
V 2
m′ , and

γn (s̄m′)− γn (ŝm′) ≤ 1

2

(
1 + ε

1− ε

)
χ2
m +

1

1 + ε
K(s̄m′ , ŝm′).

C.2. Control of the terms γn (s̄m) − γn (s) and γn(s) − γn(s̄m′)

The term γn(s) − γn(s̄m′) is controlled using the same proposition as in our
general case (see proposition 4.4) with dimension r instead of d and the term
γn (s̄m)− γn (s) is controlled by bounding its expectation as follows:∣∣∣E [(γn (s̄m)− γn (s))1Ωmf

(ε)

]∣∣∣ ≤
∣∣∣E [(γn (s̄m)− γn (s))1Ωmf

(ε)C

]∣∣∣
≤ nr log

(
1

ρ

)
P
(
Ωmf

(ε)C
)

≤ C (Γ, ρ, a, r, ε)

na−1

C.3. Proof of Theorem 6.1

We consider sets of large probability, Ω1(ξ) (defined just above) and Ω2(ξ) (that
is the same as in our general case (see (13)) but with r instead of d) and gather
the previous results on the control of each terms of the main decomposition as
for the proof of Theorem 3.2 given in Section 4.4.
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[8] Birgé, L. andMassart, P. (2007). Minimal penalties for Gaussian model
selection. Probability Theory Related Fields 138, 1–2, 33–73. MR2288064

[9] Boys, R. J. and Henderson, D. A. (2004). A bayseian approach to
DNA sequence segmentation. Biometrics 60, 2, 573–588.

[10] Braun, J. V., Braun, R., and Müller, H.-G. (2000). Multiple change-
point fitting via quasilikelihood, with application to dna sequence segmen-
tation. Biometrika 87, 2, 301–314. MR1782480

[11] Braun, J. V. and Müller, H.-G. (1998). Statistical methods for DNA
sequence segmentation. Biometrika 13, 2, 301–314.

[12] Breiman, Friedman, Olshen, and Stone. (1984). Classification and
regression trees. Wadsworth and Brooks. MR0726392

[13] Brown, L. D. (1986). Fundamentals of statistical exponential families
with applications in statistical decision theory. Lecture Notes-monograph
series, i–279.

[14] Castellan, G. (2000). Modified Akaike’s criterion for histogram density
estimation. C. R. Acad. Sci., Paris, Sér. I, Math. 330 8, 729–732.

[15] Cleynen, A., Dudoit, S., and Robin, S. (2014). Comparing seg-
mentation methods for genome annotation based on rna-seq data. Jour-
nal of Agricultural, Biological, and Environmental Statistics 19, 1, 101–
118. MR3257904

[16] Cleynen, A., Koskas, M., Lebarbier, E., Rigaill, G., and Robin, S.

(2014). Segmentor3isback: an R package for the fast and exact segmentation
of seq-data. Algorithms for Molecular Biology 9, 6.

[17] Cleynen, A. and Lebarbier, E. (2014). Segmentation of the Poisson and
negative binomial rate models: a penalized estimator. ESAIM: Probability
and Statistics. MR3334013

[18] Cleynen, A., Luong, T. M., Rigaill, G., and Nuel, G. (2014). Fast
estimation of the integrated completed likelihood criterion for change-point
detection problems with applications to next-generation sequencing data.
Signal Processing 98, 233–242.

http://www.ams.org/mathscinet-getitem?mr=1679028
http://portal.acm.org/citation.cfm?id=366611
http://portal.acm.org/citation.cfm?id=366611
http://www.ams.org/mathscinet-getitem?mr=1848946
http://www.ams.org/mathscinet-getitem?mr=2288064
http://www.ams.org/mathscinet-getitem?mr=1782480
http://www.ams.org/mathscinet-getitem?mr=0726392
http://www.ams.org/mathscinet-getitem?mr=3257904
http://www.ams.org/mathscinet-getitem?mr=3334013


Segmentation of multiparameter exponential 841

[19] Cleynen, A. and Robin, S. (2016). Comparing change-point loca-
tion in independent series. Statistics and Computing 26, 1–2, 263–276.
MR3439372

[20] Durot, C., Lebarbier, E., and Tocquet, A. (2009). Estimating the
joint distribution of independent categorical variables via model selection.
Bernoulli 15, 2, 475–507.

[21] Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change point
inference. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 76, 3, 495–580. MR3210728

[22] Gassiat, E., Cleynen, A., and Robin, S. (2016). Inference in finite state
space non parametric hidden Markov models and applications. Statistics
and Computing 26, 1–2, 61–71. MR3439359
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