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Abstract

We develop an algorithm for the three dimensional simulation of the
dynamics of soft objects (drops, capsules, vesicles) under creeping flow con-
ditions. Loop elements are used to describe the shape of the soft objects.
This surface representation is used both for membrane solver based on fi-
nite element method (FEM) and for the fluid solver based on the boundary
element method (BEM). This isogeometric analysis of the low Reynolds
fluid-structure interaction problem is then coupled to high-order explicit
time stepping or second-order implicit time stepping algorithm. For vesi-
cles simulation, a preconditioner is designed for the resolution of the surface
velocity incompressibility constraint, which is treated by the use of a local
Lagrange multiplier. A mesh quality preserving algorithm is introduced
to improve the control mesh quality over long simulation times. We test
the proposed algorithm on capsule and vesicle dynamics in various flows,
and study its convergence properties, showing a second-order convergence
O(N−2) with mesh number of elements.
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1. Introduction

Dynamics of small soft objects in viscous flows have been the subject of
numerous studies in the past decades. One fundamental motivation is to
better understand the behavior of complex fluids, down to the microscopic
level of their elementary constituents: polymers, flexible fibers, drops and
bubbles are the most studied soft particles. Over the two last decades how-
ever, attention has started to shift towards more complex artificial particles
such as capsules and vesicles, which can be thought of as drops enclosed by
a complex interface. Vesicles are drops enclosed by an incompressible fluid
lipid membrane which resists bending, while capsules are drops enclosed by
a solid polymerized membrane resisting shear and area deformation (and
bending).

The studies of these particles were first motivated by the desire to model
blood flow down to individual cells that compose it: red blood cells (RBCs),
platelets, white blood cells. The common model for RBCs from a fluid
dynamics point of view is to consider it as a combination of a vesicle and
a capsule: an elastic network of polymers (cytoskeleton) is anchored into
a lipid membrane, giving the RBCs membrane the properties of surface
incompressibility, shear elasticity, as well as bending resistance [35, 24].
Thus both capsules and vesicles makes excellent candidates as biomimetic
models of RBCs, allowing to focus on the influence of specific mechanical
properties.

The numerical simulation of the dynamics of these particles requires a
fluid solver to describe internal and external flows, a membrane solver to
describe interfacial forces, as well as a proper description and tracking of
the interface position to couple those solvers. Several computational models
have been developed for capsules, vesicles and RBCs, and we refer to recent
reviews [54, 35, 24, 2] for a complete overview of the existing literature.

For low Reynolds number flows typical of these objects, the Boundary
Element Method (BEM) simplifies greatly the coupling of fluid and mem-
brane solvers since only the interface needs to be meshed, and thus the same
interface representation/mesh can be used for both solvers. However, BEM
usually uses C0 meshes while a direct computation of membrane bending
forces requires at least a C4 representation of the position, since fourth-
order derivatives of the position appears in the bending forces. To circum-
vent this difficulty, special methods can be designed to compute membrane
bending forces on C0 meshes, using either a local reconstruction of the in-
terface [57, 19, 39], or designing computations of Laplace-Beltrami operator
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on C0 based on discrete geometry [6, 7, 52]. On the other hand, methods
based on a spectral representation have been developed [58, 53, 59, 47], but
their global basis function implies that the whole interface must be refined
even if the deformation is highly localized. It would thus be desirable to
design a method allowing for a local representation of the interface that
could be used both in fluid and membrane solver. It is possible to lift the
C4 requirement for interface representation if the forces are computed in
the weak sense, using a finite element method, which only requires the ap-
proximation of the position to be in H2. [10] have shown that subdivision
surfaces meet this requirement and can be used to accurately model thin
shells. Recently, schemes based on subdivision surfaces have been devel-
oped for capsules [33, 34, 29] or vesicles [22, 38, 61, 50], but [33, 34, 29] use
immersed boundary method where the forces (and thus the interface repre-
sentation) are spread to fluid solver nodes via approximate delta-function,
while in [61, 50] bending forces are computed by first variation of the bend-
ing energy, computed from a surrogate surface based on Loop subdivision,
but every other physical quantity is computed on linear basis, especially the
boundary integral fluid solver. Finally, [22, 38] computes equilibrium shape
of vesicles but do not consider coupled dynamics under flow.

On the other hand, the rapid development of isogeometric analysis [30]
has shown that using a consistent geometry representation throughout the
whole computation can greatly improve the quality of the results obtained.
The idea stems from the fact that in engineering analysis CAD softwares
used for designing pieces use a different surface representation like Bézier
curves, splines, or Non-Uniform Rational Basis Spline (NURBS) than the
software used for finite element analysis of these pieces (generally linear
and quadratic Lagrange elements). Thus the standard finite element analy-
sis starts with a modeling error in the sense that shape from CAD software
cannot be represented exactly in the FEM model: before doing any compu-
tation, it is necessary to discretize the shape with a mesh which is typically
based on Lagrange elements. In two dimensions, the simplest mesh would
use linear triangle which will generally represent only imperfectly the real
geometry of the computational domain (e.g. a disk-shape domain). Only in
the limit in infinite refinement the mesh will converge to the true geometry.
On the other hand, representing simple geometrical shape such as circle or
ellipsoids is possible with NURBS, even with a finite number of elements.
The idea behind isogeometric analysis is to use the same approximation for
both the geometry discretization and the solution discretization. This leads
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to a significant improvement of solution quality [30]. While this approach
has been used in a boundary element context for elastostatics, aeroacous-
tics, electrostatics, to our knowledge, its use for viscous flow simulations has
been so far limited to [28] where no deformation of the interface is involved,
and [31] for drops and inextensible membranes.

In this paper, we propose an algorithm based on the idea of using Loop
subdivision surfaces to represent the shape of deformable objects under flow.
Starting from this assumption, a natural question is the following: how to
evolve dynamically the control values of Loop elements such that the re-
sulting evolution of the (limit) physical surface they control is a discretized
version of the fluid structure interaction problem. To do so, we derive a con-
sistent framework to discretize the problem: the boundary element method
extends naturally to Loop elements to compute viscous flows, while a finite
element framework can be used for membrane forces computations with a
variety of physical properties of the interface. Main originality of this work
is that Loop elements are used to discretize every physical quantity: posi-
tion, velocity, forces, tension field. This algorithm has been already used to
simulate capsule deformation in extensional flow [15] and drop dynamics in
shear flow [25] with surface viscosity effects considered. Here, we describe
in greater details the algorithm which was briefly outlined in [25], especially
discretization of Loop boundary element as well as update of control values
(including a mesh quality preserving algorithm). We also discuss extension
of this algorithm to vesicle simulations which requires treatment of surface
incompressibility, and introduce an implicit-time stepping algorithm. To
accelerate the resolution of surface incompressibility constraint, a precondi-
tioner based on a linear discretization is introduced. The paper is organized
as follows : the system that we aim to simulate is described in section 2,
the numerical description of this system is presented in section 3. The al-
gorithm is then validated with comparison to literature results in section 4,
together with a discussion of its properties.

2. Physical system description

2.1. Fluid flows

The internal flow (denoted with superscript int) and the external flow
(ext) are described by the Stokes equation:

ηint,ext∆vint,ext −∇pint,ext = 0

∇ · vint,ext = 0
(1)
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where η is the viscosity of the fluid, v the velocity and p the pressure.

2.2. Membrane mechanics

The membrane is a closed surface S, which is described by its position
x(t) at time t, as well as its reference position x0 (surface S0) if any. The
surface density of force exerted by the membrane f onto surrounding fluids
is given by the first variation of its surface energy

f = f(x) = − 1√
a

δE

δx
, E =

∫
S

wsdS (2)

where ws is the surface energy density which completely describes the me-
chanical properties of the interface, and a is the determinant of the local
metric.

For example, a drop with surface tension γ can be modeled with a surface
energy ws = γ, which upon application of equation (2) leads to surface
density of forces

f = fγ(x) = ∇sγ + 2γHn (3)

where ∇s is the surface gradient operator, H is the mean curvature of the
interface, and n is the outward pointing normal vector.

For a vesicle membrane, the most used model for surface energy is Hel-
frich energy, together with a local Lagrange multiplier γ for local surface
incompressibility constraint (∇s · v = 0):

ws = γ + wHs , wHs =
κ

2
(2H)2 (4)

Note that the Helfrich model may contain a spontaneous curvature H0 which
is set to zero here. It also contains a Gaussian curvature term which can
be ignored here since its integral is constant by Gauss-Bonnet theorem (no
topological changes considered).

For a capsule membrane, several modeling based on thin-shell equations
[27, 26, 41] have been developed [4, 5, 44]. We refer to recent reviews [45, 2]
for more details and simply note that the most commonly used model for
numerical simulations of capsules is a membrane model, neglecting bending
resistance, and modeling the interface as a two-dimensional elastic material.
Within this framework, specific interfacial properties are described by the
choice of an appropriate constitutive law [3] for the membrane, for which
there is two common alternatives: either a strain-softening (Neo-Hookean
law, noted NH) or strain-hardening (Skalak [49] law, noted Sk). For these
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two laws the surface density of energy is defined on the reference configura-
tion S0 as:

wNHs0 =
Gs

2

[
I1 − 1 +

1

I2 + 1

]
, wSks0 =

Gs

4

[
I2

1 + 2I1 − 2I2 + CI2
2

]
(5)

with Gs the surface shear modulus, C a parameter controlling the area
dilatation resistance in Skalak law, and I1, I2 strain invariants related to
the principal extension ratios λ1, λ2 by [49] :

I1 = λ2
1 + λ2

2 − 2

I2 = λ2
1λ

2
2 − 1

(6)

2.3. Coupling conditions

Membrane and fluids surrounding it are coupled by the following condi-
tions

• Quasi-static mechanical equilibrium: Membrane’s inertia is negligible,
thus, the surface density of forces due to membrane deformation is at
equilibrium with fluid stresses, leading to the condition

[[σ]] · n + f = 0 (7)

where [[σ]] = [σext−σint] is the jump of fluid stresses at the interface
and f is a density of force exerted by the membrane, see equation (2).

• Continuity of the velocities at the interface:

vint(x) = vext(x) = vS ∀x ∈ S (8)

where vS is the velocity of fluids at the interface.

• Advection of the membrane by the flow: The membrane is assumed
to be impermeable, thus the velocity of the membrane is exactly the
velocity of the fluid at the interface

dx

dt
= vS ∀x ∈ S (9)

• Surface incompressibility constraint (vesicles): The velocity field of
a vesicle membrane is required to satisfy a surface divergence-free
constraint:

∇s · vS = 0 (10)
6



Control mesh 1 iteration of subdivision Limit surface

(a) (b) (c)

Figure 1: Simulation of a Skalak capsule in shear flow v = γ̇yex, showing (a) the control
mesh, composed of 80 elements, (b) the mesh obtained after one iteration of Loop subdi-
vision and (c) the limit surface corresponding to an infinite number of iterations of Loop
subdivision. The original control mesh is also represented in black wireframe, and the
limit position of control vertices on the limit surface is represented by black dots. First
row is the view in the xy plane, and second row the view in the xz plane.

3. Numerical discretization

3.1. Surface representation : Subdivision surfaces

The surface is discretized using Loop subdivision elements [37], which
are assembly of linear triangles refined using a subdivision process. Starting
from an initial coarse mesh, called control mesh, new elements are created
and vertices positions are updated according to Loop subdivision rules [37].
In the limit of infinite subdivisions, the mesh converges toward a limit sur-
face, which is C2 continuous, except at some extraordinary vertices where it
is C1. Because of the regularity of the limit surface, numerical computation
of geometrical quantities such as normal vector or curvature tensors is more
straightforward and accurate that when using classical linear or quadratic
Lagrange elements which are only C0. The ordinary or regular vertices are
linked to six elements, while any vertex linked to a different number of ele-
ment is termed ”extraordinary” since the subdivision rule must be adapted
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(a) (b)

Figure 2: (a) Scheme of an element (gray triangle) with its local parametrization. The
position inside the element depends on the nodal values of position of every node con-
nected to the central element by at most one edge, denoted the one-ring. (b) Support
of the shape function associated with one node extends up to every triangle which is at
most one edge afar from the node: the control mesh is composed of a flat mesh, except
one node whose height is set to 1.

here. The number of extraordinary vertices depends on the initial mesh
(level 0 of subdivision). Starting from an icosahedron, there are 12 vertices
linked to only 5 elements. This number does not change with refinement of
mesh, since any vertex introduced by Loop subdivision is regular. Note also
that it is not possible to discretize a spherical surface without introducing
irregular vertices : the reason behind this is that the Euler characteristic of
a sphere is constant and can related to discretization parameters (number
of faces, vertices, edges) by Euler’s formula. An example of a simulation of
a capsule under shear flow using such elements is presented in figure 1.

An interesting property of Loop subdivision surface is that it is possible
to analytically compute the limit position of the original vertices composing
the control mesh. Moreover, since the seminal work of [51], it is also possible
to compute the limit position of any point inside the initial triangles by using
shape functions Ni:

xe(s1, s2) =
∑

p∈one−ring

Np(s
1, s2)Xp (11)

where (s1, s2) is a local parametrization of the element. The shape functions
are polynomials of the local parametrization (see [51]), and Xp are the
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nodal values of the position field. Note that these values have no real
physical meaning : they are neither the real position of the vertex, nor the
limit position of this vertex. They are just numerical values controlling
the approximation of the shape. Contrary to classical Lagrange triangular
elements, the support of the shape function for a given node p extends
outside the triangles containing p as a vertex, up to every triangle which is
linked to p by at most an edge (see figure 2 (b)). Thus, the position inside
a given triangle depends not only on nodal values of the vertices of this
triangle, but also of nodal values Xp of the nodes related to this triangle
by at most one edge. These elements are called the one-ring of element e.
We refer to Stam [51] and Cirak et al. [10] for a detailed discussion of the
evaluation of the shape functions inside an element. In this work, this local
basis (N1, N2, ...) is used to represent every function f which is defined on
the interface, e.g. membrane force density or membrane velocity. Thus, f
is written as:

f(x) = f(x(s1, s2)) = f(s1, s2) =
∑

p∈one−ring

F pNp(s
1, s2) (12)

where F p is the p-th nodal value of the field representing the function f .The
series on the right-hand side of equation (12) is an approximation of the
function f using Loop subdivision functions. While equation (12) gives a
way to compute f at any point of the membrane if the nodal values F p are
known, one also needs to convert a field defined onto the interface f(x) into
its nodal values F p , that is, given f find the approximation under the form
(12) such that the approximation error is minimized. Two main alternatives
could be considered : Galerkin formulation in which the approximation error
is measured in the L2-norm over the surface, or a collocation formulation
in which the approximation error is measured pointwise. In this work,
we choose to collocate the known field at vertices. This choice will be
discussed in section 3.2 when considering velocity evaluation. Note that
the two formulations were compared in the context of drop isogeometric
simulations by [31], which found that while the Galerkin formulation has
better convergence properties, collocation is both more stable and more
fast. Thus, assuming f is known at each point of the interface, we search
the nodal values F p of a field f̂ such that:

fp = f(x = xp) = f̂(xp) =
∑

q∈one−ring

F qNq(s
1(xp), s2(xp)) ∀p ∈ {1, ..., Nnodes}

(13)
9



where xp is the position of the p-th control vertex on the limit surface, and
Nq(x

p) are the shape functions evaluated at parameters corresponding to

xp. Assembling all the nodal values of the field f̂ into a global vector {F p},
equation (13) is rewritten in matrix form as:

{fp} =
{
f̂(xp)

}
= C {F p} (14)

where C is a collocation matrix in the sense that it enforces pointwise the
relationship between the known limit values fp and the unknown nodal
values F p of the field f̂ which interpolates f at positions xp. This matrix is
sparse and thus the linear system is solved with the sparse solver UMFPACK
[13, 14]. This linear system is solved each time a conversion from limit value
to nodal values is needed. However, for system sizes considered here, the
computational cost is always a small fraction (typically, less than 10%) of
the total cost of one time step. In the following, the notation {f} will
be used to designate the N-dimensional vector containing the values of f
evaluated at control vertices limit positions {x} while the notation {F} will
designate the N-dimensional vector containing the nodal values defined on
the control mesh.

3.2. Fluid solver : Boundary element method

For a soft liquid particle suspended in a viscous fluid, the velocity at a
point y of the particle interface S is given by the integral relation [43]:

v(y) =
2

1 + λ
v∞(y) +

1

4πηext(1 + λ)

∫
S

Gij(x,y)fi(x)dS(x)ej

+
(1− λ)

4π(1 + λ)

∫
S

vi(x)Tijk(x,y)nk(x)dS(x)ej

(15)

where v∞ is the imposed far-field velocity, G,T are the free space Stokeslet
and Stresslet, f is the surface density of force due to the membrane, ei
is the unit i-th Cartesian vector and λ = ηint/ηext is the viscosity ratio.
Roman indices (i, j, k, l) can vary between 1 and 3 and denote the Cartesian
components of vectors and tensors. To lighten the expressions, Einstein
summation convention is used e.g. Gijfi = G1jf1 +G2jf2 +G3jf3.

The integrals in (15) needs special numerical treatment to deal with
singularities of G,T occurring when x → y. A powerful method to treat
such integrals consists in subtracting the singularities by using analytical
integral identities [43]. This has been largely used for Stresslet as well as
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Stokeslet when the membrane force was purely normal (as is the case for a
clean drop). However, more general expression for the forces (with tangen-
tial components) required different treatment like singularity cancellation
by special quadratures. Only recently was derived a new integral iden-
tity allowing to treat general expression of membranes forces [19] without
resorting to special integration rule for singular elements. Using both singu-
larity subtraction for Stresslet [43] and Stokeslet [19], the boundary integral
relation is rewritten as:

v(y) = v∞(y) +
1

8πηext

∫
S

Gij(y,x)f̃j(y,x)dS(x)ei

+
1

4π

(∫
S

R(y,x)dS(x)

)
∧ [n(y) ∧ f(y)]

+
(1− λ)

8π

∫
S

[vi(x)− vi(y)]Tijk(x,y)nk(x)dS(x)ei

(16)

where the expression for the modified force density f̃ and R are [19]:

f̃(y,x) = f(x) + [−n(x)(f(y) · n(y)) + n(x) ∧ (n(y) ∧ f(y))]

R(y,x) =
[(y − x) · n(x)]

|y − x|3
(y − x)

(17)

In the expression (16) every integrands is now non singular and can thus be
integrated by standard quadratures. In this work, Gauss points are used.
Note that while there is an additional integral in equation (17) and thus
an additional computational cost when compared to classical formulation,
this doesn’t change the overall O(N2) computational complexity of the al-
gorithm, only the prefactor. On the other hand, since all the integrals can
be treated with standard quadratures without distinction between singular
and regular elements, it eases the parallelization of the computation, when
compared to using special quadratures on singular elements (e.g. Duffy
quadrature or introducing polar coordinates).

If the internal and external viscosities are equal (λ = 1), the integral
relation (16) is simplified and directly gives the velocity if the membrane
forces are known. If λ 6= 1, the integral relation (16) needs to be solved for
the velocity. This equation is enforced at each node of the mesh. Equation
(16) is a linear integral relation between physical velocities v and forces f ,
which depends linearly on the nodal values of velocities V and forces F via
interpolation (12). Equation (16) is thus rewritten as :[

I + (λ− 1)TC−1
]
{v} = {v∞}+ G{F} (18)
11



where I is the identity matrix, G,T are the matrix corresponding to the
discretization of (16) and {v}, {v∞} are vectors containing the limit val-
ues of velocities, and {F} contains the nodal values of forces. This linear
system is solved by GMRES [48] without explicitly computing the G,T ma-
trices, but only the matrix-vector products. These matrix-vectors products
corresponds to linear integral operators e.g.:∫

S

Gij(y,x)f̃j(y,x)dS(x) =

Nel∑
e=1

∫
Se
Gij(y,x)f̃j(y,x)dSe(x) (19)

where Se is the surface of element e. Integrals are then transformed in the
parameter space (ξ, η) and then performed by numerical quadrature, using
Gauss-Hammer quadrature points on triangular elements:∫

Se
Gij(y,x)f̃j(y,x)dSe(x) =

∫ 1

s1=0

∫ 1−s1

s2=0

Gij(y,x)f̃j(y,x)
√
ads1ds2

=
Nquad∑
k=1

wkGij(y,xk)f̃j(y,xk)
√
a(s1

k, s
2
k)

(20)

with xk = x(s1
k, s

2
k) the position of k-th quadrature point. In this work,

12 Gauss quadrature points per element are used for the computation of
boundary element integrals.

After obtaining of limit values of velocities, the resulting values of ve-
locities on the limit surface are converted into nodal values of the velocity
by resolution of the collocation equation (14). Note that a Galerkin for-
mulation of equation (16) would require an additional integration over the
surface, meaning that the boundary integral equation would need to be
evaluated at each quadrature point instead of mesh vertices. Since there
is always more elements than vertices in the mesh, even using a one-point
quadrature rule would require more integral evaluations than in the collo-
cation case, and the gap only widens if one uses higher-order quadrature
rules. Thus, in terms of computational complexity, it seems advantageous
to use a collocation formulation.

3.3. Membrane solver : Finite element method

Starting from a reference shape x0(s1, s2), the membrane is deformed
into its current shape x(s1, s2). To describe elastic deformations, it is use-
ful to introduce a local basis on the deformed configuration composed of
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the tangent vectors a1, a2 defined by the parametrization and the outward
pointing normal vector n :

a1 = x,1 =
∂x

∂s1
, a2 = x,2 =

∂x

∂s2
, n =

a1 ∧ a2

|a1 ∧ a2|
(21)

The local basis on reference configuration (a0
1, a

0
2,n

0) is defined similarly,
with x0 replacing x. In the following, Greek indices (α, β, γ, δ) will be used
to denote components of vectors and tensors in the local basis, and can take
the value 1 or 2. With this notation, the deformed configuration metric aαβ
and curvature bαβ tensors are defined by :

aαβ = aα · aβ , bαβ = aα,β · n =
∂aα
∂sβ
· n (22)

with a similar definition for reference configuration metric a0
αβ and curvature

b0
αβ. The determinant of the metric is noted a = det(aαβ) and is related to

the elementary area by dS =
√
ads1ds2. Finally, it is useful to introduce the

inverse metric aαβ defined by aαγaγβ = δαβ with δαβ the Kronecker symbol.
Following [10], we write the principle of virtual work for the membrane

as :

−
∫
S

[
σαβδ(Eαβ) + µαβδ(Bαβ)

]
dS +

∫
S

fext · δxdS = 0 (23)

The first integral is the internal virtual work for a virtual displacement
δx, where σαβ, µαβ are the effective membrane and bending stresses. The
second integral is the external virtual work. Eαβ is the Green-Lagrange
strain tensor measuring membrane deformations

Eαβ =
1

2

(
aα · aβ − a0

α · a0
β

)
=

1

2

(
aαβ − a0

αβ

)
(24)

and Bαβ is a measure of bending strains defined as

Bαβ =
(
aα,β · n− a0

α,β · n0
)

=
(
bαβ − b0

αβ

)
(25)

Noting that δ(Eαβ) = 1
2
δ(aαβ), δ(Bαβ) = δ(bαβ) and fext = −f , equation

(23) writes: ∫
S

[
1

2
σαβδ(aαβ) + µαβδ(bαβ)

]
dS +

∫
S

f · δxdS = 0 (26)
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The above equality holds whether it is a drop, vesicle or capsule (with
Kirchoff-Love hypothesis), and thus constitutes an interesting unified frame-
work to study both types of objects. Before describing the specific interfacial
properties that comes into play via membrane (σαβ) and bending stresses
(µαβ), we describe how this equality is discretized. From (21) and (22) we
have

δ(aαβ) = [δaα · aβ + aα · δaβ] = [δx,α · x,β + x,α · δx,β]

δ(bαβ) = n · δ(aα,β) + aα,β · δ(n)

= n · δ(aα,β) +
[
bαβn + Γγαβaγ·

]
δ(n)

= n · δ(aα,β)− Γγαβn · δ(aγ)

(27)

where Γγαβ = aγδaα,β · aδ are the Christoffel symbols. We used the identities
δ(||n||2) = 2n · δn = 0 and δ(aγ · n) = δ(aγ) · n + aγ · δ(n) = 0 to express
δ(bαβ) as a function of δx.

Using the same basis functions (Loop elements) for the Cartesian com-
ponents of membrane force, position and virtual displacement, we write:

fi(s
1, s2) =

∑
p∈one−ring

F p
i Np(s

1, s2)

xi(s
1, s2) =

∑
p∈one−ring

Xp
i Np(s

1, s2)

δxi(s
1, s2) =

∑
p∈one−ring

δXp
i Np(s

1, s2)

(28)

The principle of virtual work (26) is thus discretized as:

Nel∑
e=1

∫
Se

[Iσ + IM + If ]
√
ads1ds2 = 0 (29)

with

Iσ =
∑

p∈one−ring

1

2
σαβ (Np,αxi,β +Np,βxi,α) δXp

i

IM =
∑

p∈one−ring

µαβ
(
niNp,αβ − ΓγαβniNp,γ

)
δXp

i

If =
∑

p∈one−ring

∑
q∈one−ring

NpNqF
q
i δX

p
i

(30)
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where Np,α = ∂Np
∂sα

. Note that a double sum appears explicitly in If because
nodal values F are unknowns, while a double sum is ”hidden” in Iσ, IM
because nodal values of positions are known and thus can be used to evaluate
every terms inside the triangle (see discussion below).

Equation (29) can then be written in matrix vector form as

{RHS}+ M{F} = 0 (31)

The right hand side vector {RHS} and the mass matrix M are formed by
numerical integration of equation (29) using Gauss quadrature points, for
instance, for membrane terms :∫

Se
Iσ
√
ads1ds2 ≈

Nquad∑
k=1

wkIσ(s1
k, s

2
k)
√
a(s1

k, s
2
k) (32)

where wk and (s1
k, s

2
k) are weights and parameters values of the k-th quadra-

ture point, N quad is the total number of quadrature points, and the depen-
dency of Iσ and

√
a on parameters has been made explicit for clarity. To

evaluate Iσ and
√
a at parameters values (s1

k, s
2
k) one needs to evaluate shape

functions and their derivatives, membrane stresses and moments, and also
tangent and normal vectors. In this work, 12 Gauss quadrature points are
used.

The evaluation of shape functions and their derivatives inside regular
and irregular elements follows the strategy of [10]. The evaluation of the
membrane stresses and moments and of virtual variations of membrane and
bending strains is discussed in the following.

For drops and zero-thickness capsule model (for example, Neo-Hookean
or Skalak law), the surface energy does not depend on curvatures, thus

µαβ = 0 (33)

It then remains to compute σ, which for drops takes the form

σαβ = γaαβ (34)

while for capsules it takes the form [55]:

σαβ =
2

Js

∂ws
∂I1

a0,αβ + 2Js
∂ws
∂I2

aαβ (35)
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with Js =
√
a√
a0

the Jacobian of the transformation from reference to de-
formed position. Derivatives of the energy ws with respect to invariants is
done analytically, and the invariants of the deformation are computed as:

I1 = aαβa
0,αβ − 2

I2 = a/a0 − 1
(36)

For a membrane obeying the Helfrich energy (4), the membrane and bending
stresses write [8]:

σαβ =
2√
a

∂(
√
awHs )

∂aαβ
=
κ

2

[
4H2aαβ − 8Hbαβ

]
+ γaαβ

µαβ =
∂wHs
∂bαβ

=
κ

2

[
4Haαβ

] (37)

In all cases, one needs to compute inverse metrics and curvature tensors
and local coefficients (γ,H, Js,

∂ws
∂I1
, ∂ws
∂I2

) at quadrature points.

The metric tensors in the reference state a0
αβ and the deformed state aαβ

are readily computed from the interpolation of the position, e.g.:

aαβ(s1, s2) = x,α · x,β =
∑

p∈one−ring

∑
q∈one−ring

Xp
iX

q
iNp,αNq,β (38)

The inverses tensors (a0,αβ, aαβ) are computed explicitly at each quadrature
point.

Since the Loop subdivision scheme guarantees C2 continuity everywhere
except at extraordinary vertices, it is possible to evaluate the curvature ten-
sor at any quadrature point by direct differentiation of the shape functions,
to yield:

bαβ(s1, s2) = x,αβ · n =

(∑
p

Xp
i Np,αβei

)
· n (39)

where the normal vector is computed by

n(s1, s2) =
a1 ∧ a2

|a1 ∧ a2|
=

(∑
pX

p
i
∂Np
∂s1

ei

)
∧
(∑

qX
q
j
∂Nq
∂s2

ej

)
|a1 ∧ a2|

(40)

For drops and vesicles, the local value of the tension (or Lagrange mul-
tiplier) is computed from the interpolation of the tension field:

γ(s1, s2) =
∑

p∈one−ring

ΓpNp(s
1, s2) (41)
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For a drop, the surface tension is a physical property of the interface, which
may depends on other variables such as temperature or surfactant concen-
tration. For a vesicle, the tension is a Lagrange multiplier ensuring the
constraint of surface divergence free velocity field, and is thus an additional
unknown of the system. The determination of tension in this case is dis-
cussed in the following section.

3.4. Surface incompressibility constraint solver

For a vesicle, the surface incompressibility constraint is satisfied by the
use of a local Lagrange multiplier γ, which is the solution of :

∇s · vγ(x) + ∇s · v∞(x) + ∇s · vκ(x) = 0 (42)

where vγ is the velocity due solely to tension, and v∞,vκ are the imposed
external velocity and bending induced velocity. This equation is actually
linear in the unknown tension field γ, and is thus rewritten as:

Dγ{Γ} = −{∇s · v∞(x) + ∇s · vκ(x)} (43)

where Dγ is a linear operator transforming the nodal values of tension {Γ} to
the limit value of the surface divergence of the velocity field due to tension.
Equation (43) is thus a collocation at nodes of surface incompressibility
constraint (10). Equation (43) is solved by GMRES [48]. The operator
Dγ is thus never build explicitly, only its action on {Γ} is computed as
follows. Given a particular vector {Γ}, the nodal values of the forces due to
tension are solutions of the system (31), with the right-hand side computed
with equation (34). The limit values of velocity field {v} are then obtained
by application of the BEM equation (18) without v∞. After resolution of
the system (18), the nodal values {V } of the velocity field are obtained
by application of the collocation equation (14). Finally, the limit value of
surface divergence is obtained by using the following formula

∇s · v = aαβ
∂xi
∂sα

∂vi
∂sβ

(44)

This equation is computed at each node. For regular vertices, the appli-
cation is straightforward by injection of the interpolation of position and
velocities in (44). For irregular vertices, first derivatives are computed by
using the tangent masks of Loop subdivision scheme [10]. The inverse metric
is obtained by analytic inversion of metric.
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Note that equation (43) is however badly conditioned and leads to an
increasing number of GMRES iteration while decreasing the mesh size, as
can be seen in table 1. To overcome this problem, a preconditioner has been
designed. The idea is to use a coarse approximation of the operator Dγ by
approximating tension forces, velocity and surface divergence computation
onto a C0 mesh composed of linear triangles. The construction of these
operators is based on our previous work using linear triangles for vesicle
simulations [7] and is briefly recalled here for completeness. The basic idea
is to interpolate linearly fields such as tension and velocity on the triangles
describing the shape

γ(s1, s2) = γ0(1− s1 − s2) + γ1s1 + γ2s2 (45)

where (s1, s2) are local element coordinates and γi is the nodal value at
node i. Then, it is possible to compute gradients for tension or divergence
for velocity with respect to local element coordinates:

∇sγ =
∂γ

∂sα
aα = (γ1 − γ0)a1 + (γ2 − γ0)a2 (46)

where aα = aαβaβ. Equation (46) gives a constant value by element, which
is then converted into a nodal value by a weighted-area average, and then
projected on tangent plane:

(∇sγ)n = [I− n⊗ n] · 1

A

∑
e∈En

Ae
[
(γ1 − γ0)a1 + (γ2 − γ0)a2

]
(47)

Similar construction is applied for the computation of surface divergence of
the velocity field, and the normal component of the tension force is obtained
by computing mean curvature at nodes using a discrete surface divergence
theorem (see [7] for details). It is then straightforward to construct matrix
form of the relations between on the one hand limit values of tension ({γ})
and limit values of tension forces ({fγ}), and on the other hand, between
limit values of velocities ({v}) and limit values of surface divergence ({∇s ·
v}). To finish the approximation of Dγ, the linear relation between limit
values of forces ({f}) and limit values of velocities ({v}) expressed by (16)
without viscosity contrast (λ = 1) is discretized over the linear mesh as
in [7] by using Gauss-Hammer quadrature for non-singular elements and
Gauss-Legendre quadrature with polar coordinates for singular elements.
Thus, with the matrices Fγ,D,G defined by

{fγ} = Fγ{γ} , {∇s · v} = D{v} , {v} = G{f} (48)
18



No preconditioner preconditioner
Nel λ = 1 Ca = 1 λ = 1 Ca = 1

Ca λ Ca λ
0.1 1 10 0.1 10 0.1 1 10 0.1 10

320 18 18 18 18 18 10 12 12 13 13
1280 39 42 44 46 43 13 15 16 17 16
5120 68 76 78 81 77 14 17 18 19 13

Table 1: Tension solver preconditioning : number of GMRES iterations needed to ensure
a ε = 10−9 residual for the surface divergence free constraint (equation 43), for a vesicle
under shear flow v = γ̇xey, under various flow conditions measured by capillary number

Ca = γ̇ηextR
3

κ and viscosity contrast λ = ηint

ηext
.

the preconditioner D̂γ is defined as

D̂γ = DC−1GFγ (49)

and we solve:

Dγ
(
D̂γ
)−1

{y} = −{∇s · v∞ + ∇s · vκ} , D̂γ{Γ} = {y} (50)

with {y} an intermediate variable of calculus. In theory, the C−1 is not
necessary since for preconditioning, every variable is interpolated on the
linear mesh. However, numerical tests have shown that including this ma-
trix in the definition of D̂γ lowered the number of iteration. While we lack a
rigorous explanation for this, we propose the following heuristic argument:
Note that on a linear mesh, the value of the surface divergence of velocity
depends only on the values of velocity at adjacent nodes. This is not the
case with Loop subdivision, where the value of surface divergence on one
node depends on the values of velocity at each node separated by at most
two edges. There is thus an important loss of information in the C0 approx-
imation of Fγ,D,G, which is balanced by the inclusion of the inverse of the
collocation matrix (C−1). Note that the inverse of collocation matrix (C−1)
depends only on mesh connectivity and not on the real shape of the mesh.
Thus, it has to be computed only once at the beginning of the simulation.

This preconditioner is computed once at the beginning of each time step
with the current position xn of the interface, an then an LU-factorization
is performed using LAPACK [1]. This factorization is then used for all the
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intermediate steps if Runge-Kutta scheme is used or for all the Newton it-
erations if trapezoidal scheme is used. This renders simulations of vesicles
much costlier than drop or capsule simulations, since precondition factor-
ization can represent as much as 50% of the computational cost of a time
step. Also, viscosity contrast was not included in the G matrix to avoid the
need to solve an additional linear system. However, as shown in table 1,
the preconditioning is still efficient even with large viscosity constrast. For
the coupled system given by (58), the preconditioner is simply

P =

(
I 0
0 DC−1GFγ

)
(51)

3.5. Time stepping algorithm

Two solvers are used for integrating the time evolution of the interface
given by equation (9) : an explicit high-order solver and an implicit solver.
Note that, for a given position of the interface xn, membrane forces can
be computed directly from equation (31) and then the velocity can be com-
puted by equation (18), possibly with a projection stage described in section
3.4 in order to satisfy the surface incompressibility constraint. We note by
v(xn) the velocity computed at position xn.

The explicit solver is a Runge-Kutta Fehlberg fourth-fifth order solver
[21], whose advantages are high-order and adaptive time stepping, allowing
for very good preservation of invariants such as enclosed volume of fluid.
Given a position and tension (xn, γn) at time tn, the position and tension
(xn+1, γn+1) at time tn+1 are such that:

xn+1 = xn + ∆t
4∑
i=0

civ
(i)
n (52)

where the intermediate velocities are computed by:

v(0)
n = v(xn, γn) , ∇s · v(0)

n = 0

v(k)
n = v

(
x(k)
n , γ(k)

n

)
, ∇s · v(k)

n = 0

with x(k)
n = xn + ∆t

k−1∑
i=0

βikv
(i)
n

(53)

and ci, βik the coefficients of the Runge-Kutta Fehlberg method [21]. The

intermediate velocities v
(k)
n are computed by moving the interface position
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to x
(k)
n and using this intermediate position to compute all integrals needed

to build systems given by (31) and (18). Note that if this scheme is used for
vesicles, the surface incompressibility constraint is enforced at each Runge-
Kutta stage (see section 3.4 for details). A fifth order combination is also
used to form another solution x̂n+1

x̂n+1 = x̂n + ∆t
5∑
i=0

ĉiv
(i)
n (54)

which permits to estimate numerical error and thus select adaptively the
time step.

For capsules without bending, the stability condition ∆t ≤ O(∆x/Gs)
allows reasonable time steps to be selected, while for vesicles, the stability
condition ∆t ≤ O(∆x3/κ) prevents the use of such an explicit scheme in
practical conditions.

The implicit solver is the trapezoidal time scheme. Given a position and
tension (xn, γn) at time tn, the position and tension (xn+1, γn+1) at time
tn+1 are such that:

xn+1 = xn +
∆t

2
[v(xn, γn) + v(xn+1, γn+1)]

∇s · v(xn+1, γn+1)) = 0
(55)

To solve these implicit equations, we proceed by iteration, and let

xn+1
(0) = xn + ∆t(v(xn, γn))

γ
(0)
n+1 = γn

(56)

For the first time step, the tension γ0 is found by solving ∇s ·v(x0, γ0) = 0.

Now, given a value of (xn+1
(r), γ

(r)
n+1) at the r-th iteration, the residual writes:

resx = x
(r)
n+1 −

[
xn +

∆t

2
(v(xn, γn) + v(x

(r)
n+1, γ

(r)
n+1))

]
resγ = ∇s · v(x

(r)
n+1, γ

(r)
n+1)

(57)

If both residuals are less than a prescribed tolerance, the iteration finishes.
If not, we seek a correction (δx, δγ) such that (x

(r)
n+1+δx, γ

(r)
n+1 +δγ) satisfies

the linearization of (55):[
I− ∆t

2
Jx
]
δx− ∆t

2
vγ(x

(r)
n+1, δγ) = −resx

∇s · (Jxδx) + ∇s ·
(
vγ(x

(r)
n+1, δγ)

)
= −resγ

(58)
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∆t
Nel 5.10−4 10−3 2.10−3

320 6.3 (2) 6.4 (2) 7.4 (2)
1280 7.3 (2.1) 9.2 (2.3) 10.5 (2.8)
5120 16.3 (3) 18.8 (4) 33.1 (4)

Table 2: Average GMRES iteration count for the resolution of equation (58), the average
number of Newton iterations (r) necessary to solve (57) is indicated in parenthesis. The
average is performed over the 10 first time steps of a simulation of a vesicle in shear flow
with Ca = 1.

where Jx is the Jacobian with respect to x, and vγ is the velocity due solely
to tension, that is, the velocity given by equation (16) with f = fγ and
v∞ = 0. Note that tension-induced velocity is a linear operator in γ and
thus vγ(x, δγ) is exactly the Jacobian with respect to γ applied to δγ ,
that is Jγδγ = vγ(x, δγ). Equation (58) is solved with the Jacobian-free
Newton-Krylov method [32]. Thus, in the GMRES solver, the Jacobian is
not constructed explicitly, but only evaluated numerically through its action
on vectors :

Jxδx ≈
v(x

(r)
n+1 + εδx, γn+1)− v(x

(r)
n+1, γn+1)

ε
(59)

with ε a small parameter [32]. Again, intermediate velocities are computed

by moving the interface position to e.g. x
(r)
n+1 + εδx and using this interme-

diate position to compute all integrals for (31) and (18).
The average number of GMRES iteration required to solve (58) and the

average number of Newton iteration required to solve (57) are reported in
table 2. It can be noticed that, due to the ill-conditioning of Jx, keeping the
time step fixed while increasing the mesh resolution increases the number
of iterations required. A possible remedy would be to design a precondi-
tioner for the Jx operator, as has been done in [53] for vesicle simulations
with spectral methods. Note that both the explicit and implicit solver are
described for vesicle, but can be applied for capsules or drops, in which case
the equations for tension γ are not solved.

3.6. Mesh quality preserving algorithm

For capsules, the shear elasticity prevents severe mesh distortion while
for drops or vesicles, the membrane fluidity allows velocity fields that may
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Figure 3: (color online) Effect of mesh quality preserving algorithm on a tank-treading
drop Ca = 0.3 : (a) evolution of Taylor parameter as a function of dimensionless time.
(b) relative error on volume conservation (c) Snapshots of the shape and mesh at different
dimensionless times (from top to bottom) : γ̇t = 0; 3; 6; 15; 30. Left (respectively right)
part of the shape is a simulation without (respectively with) mesh quality preservation
algorithm.
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strongly distort the mesh, as can be seen in figure 3 (c). Interestingly,
even with badly shaped elements, the simulation is still stable for some
time, and gives acceptable results. The most noticeable effect of poor mesh
quality is an order of magnitude increase in the enclosed volume variation
as shown in figure 3 (b), and increased variations in the Taylor parameter
and inclination angle as shown in figure 3 (a), for a clean drop submitted to
simple shear flow (v∞ = γ̇yex). Note that the oscillation amplitude in the
Taylor parameter is less than 0.5% and thus that the global picture is still
correct, even without any treatment on the control mesh. One may argue
that Taylor deformation parameter is a global quantity which thus hides
the local details. To check the impact of the control mesh quality on local
quantities we take four cross-section of the shape at z = 0; 0.5; 0.75; 0.85 as
shown in figure 4 (a) and compare results for a control mesh without any
treatment (left part of the shape) and a control mesh with a mesh quality
preservation algorithm (described in the following) applied (right part of the
shape). One can first notice that the cross-sections almost overlap, showing
that the local limit shapes are very similar. Then, we measure the membrane
force norm (thus essentially the curvature) along these cross sections and
plot the results as a function of the polar angle in figure 4 (b). Again,
results are almost identical, with the most noticeable difference being that
the shape without mesh treatment overestimates the curvature at the tip of
the drop. This example illustrates that control mesh quality seems not too
critical to obtain acceptable results, and that Loop elements are certainly
more robust than linear or quadratic Lagrange elements. A more systematic
study would be needed to investigate this point further. Moreover, it is still
worthwhile to preserve mesh quality, as it improves volume conservation,
reduces parasitic oscillations of the Taylor parameter, and more importantly,
allows to keep a reasonable time step : indeed, if mesh elements become to
small, the stable time step will decrease dramatically, leading to increased
computational cost.

A mesh quality preserving algorithm has thus been designed to redis-
tribute mesh nodes onto the interface.

This algorithm is similar in principle to existing algorithms such as
[36, 63, 11, 56, 62] : using the fact that, for vesicles or drops, there is
no tangential reference configuration means that the tangent velocities can
be described in an Eulerian manner, that is, decoupled from mesh veloci-
ties. In other words, it is possible to move grid points along the surface in
order to preserve/improve mesh quality, without affecting the physics. In
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Figure 4: Influence of control mesh quality on the solution at γ̇t = 37.5 (parameters
are the same as in figure 3. (a) control mesh nodes projected onto the limit shape, and
cross section of the shape in the z = 0; 0.5; 0.75; 0.85 planes. Red (resp. black) curve
is with (respectively without) mesh quality preserving algorithm. (b) comparison of the
membrane force norm on the different cross-section. The curves are plotted as a function
of θ, the polar angle defined with respect to x-axis.
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Figure 5: (a) Evolution of Taylor parameter for a clean drop in extensional flow as a
function of dimensionless time. (Inset) Evolution of relative error on enclosed volume as
function of dimensionless time. (b) Snapshots of the shape of a clean drop in extensional
flow at different dimensionless times.
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γ̇ t=2.5 γ̇ t=5.0

x – y x – z x – yx – z

Figure 6: Effect of mesh quality preserving algorithm on a drop in Poiseuille flow (Ca =
0.5). Left part of the drop comes from a simulation without any node redistribution,
right part comes from a simulation with application of algorithm described in section
3.6.

their pioneering work, [36] update the shape with only normal component
of the physical velocity, and introduces a tangential ”velocity” field aiming
to preserve mesh quality. Subsequent developments [63, 11, 56, 62] are all
based on introducing somehow a ”mesh energy”, either ”kinetic energy”
[63, 62], or ”elastic energy” [11, 56]. In [63], passive stabilization algorithm
seeks to preserve the edges current length, while introducing an elastic en-
ergy [56] may permit to improve mesh quality over time, for instance when
starting with a not-optimal mesh. Adaptivity to local features [11, 62] is
done by introducing local reference length scales based on e.g. curvature
or element area. The idea of the present algorithm is to treat the mesh
as a network of springs, similar to elastic mesh approach, but with varying
stiffness aiming to take into account local properties. Doing so allows to
keep the network under tension and avoids numerical instabilities that we
found using a local reference length approach when this length scales varies
too rapidly in the mesh or when the current configuration is too far from
optimal. Elastic energy is then minimized by tangential displacements of
the nodes along the shape that relax forces in the network. This is done
by overdamped dynamics, that is computing on each node the velocity uMQ

such that fMQ − µuMQ = 0 where µ is a fictitious viscosity and fMQ is the
sum of forces due to network of springs. Since we do not want the redis-
tribution of nodes to change the shape, only the tangent part of the mesh
quality velocity is kept, thus uMQ = (I− n⊗ n) · fMQ/µ. On a given node
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of position xi, the mesh quality force is computed as:

fMQ
i =

∑
j∈neighbours

[
(ki + kj)

(
lij − l0ij

) tij
lij

]
(60)

where tij = xj−xi, lij = ||tij|| and l0ij is an equilibrium length, and the sum
is taken over all ”neighbors” nodes, that is, nodes connected by one edge
to node i. This equilibrium length is defined as α× Lij, where Lij was the
distance between xi and xj the last time that the mesh quality algorithm
was applied. In practice, mesh quality algorithm is generally applied at the
end of each time step, in which case Lij is thus simply the distance between
xi and xj at the beginning of the time step. α ≤ 1 is a parameter of the
mesh quality algorithm algorithm to allow nodes displacement even if nodes
have not moved between two time steps (e.g. a stationary state has been
reached). The constants kj are defined such that the mesh quality algorithm
tries to maintain an uniform distribution of area of elements (variable Ae in
61), while also having a more refined mesh in highly curved regions (variable
(2H)2

e in 61). Thus, kj is computed as:

kj =
cA

< A >

∑
e∈Ej

Ae
3

+
cH

< (2H)2 >

∑
e∈Ej

(2H)2
e

3
(61)

where cA, cH are constants selecting the relative importance of the terms.
Ae is the area of the element, (2H)2

e is the value of the curvature energy
integrated over the element, and

< A >=
1

N

∫
S

dS , < (2H)2 >=
1

N

∫
S

(2H)2dS (62)

are the average value of area and curvature energy by node, with N the
number of nodes in the mesh. The nodes positions are then evolved follow-
ing:

dx

dt∗
= uremesh (63)

Equation (63) is integrated in fictitious time t∗ by an adaptive third order
Runge-Kutta time integrator, until the residual of forces

∑
i ||fi|| is below a

prescribed parameter ε. The effect of this mesh quality algorithm algorithm
is illustrated with parameters (α = 0.9, ε/cA = 0.05, cH = cA) which yielded
good results for all cases simulated so far, as exemplified for a drop in: shear
flow (see 3 (c)), planar extensional flow (see figure 3.6 (b)) and Poiseuille
flow (see figure 3.6 (b)). Note that the value of the fictitious viscosity µ
only changes the time scale necessary to reach the equilibrium.
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4. Numerical validations and applications of the coupled algo-
rithm

In this section, the algorithm is used to simulate several test cases, in
order to validate its implementation and demonstrate possible applications.
Since an extensive validation of the numerical algorithm applied to drops
has been performed in [25], only an example of drop simulation is presented
in section 4.1 and then the numerical algorithm and its implementation are
tested with respect to reference results of the literature for capsules and
vesicles dynamics.

4.1. Drops

(a) 320 elements (b) 1280 elements

Figure 7: (color online) Evolution of a drop in shear flow with Ca = 0.47, with (a)
320 and (b) 1280 elements. From top to bottom, times are : t = 0; 25; 50; 75; 95; 100.
The slice of the shape in the x − y plane is shown, as well as the control mesh vertices
projected onto their limit position. For comparison, the slice of the simulation with 5120
elements is superposed (red curve).

To illustrate the application of Loop subdivision elements to drop dy-
namics, we consider the evolution of a drop in simple shear flow (v∞ =
γ̇yex), with a capillary number Ca = 0.47 above the critical capillary num-
ber for breakup: numerous works have considered similar simulations (in
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particular, in the context of BEM methods, [11, 62]), but it is still a good il-
lustration of the potential of the method. Starting from an initially spherical
shape, the drop elongates and develops a thin neck connecting two bulges,
which will then leads to breakup by neck pinching. Since the mesh used here
is of fixed topology, the breakup process is not described. For such elon-
gated shapes, a sphero-cylindrical mesh [19, 50] is more adapted than the
classical spherical mesh obtained by regular subdivision of an icosahedron,
and is used here. Simulations are performed with three different number
of elements : 320, 1280 and 5120 elements. The evolution of the shape at
different times is presented in figure 7. The difference between coarse mesh
and fine mesh starts to be visible only in the latter stages of the elongation,
while shapes obtained with medium and fine resolution cannot be distin-
guished for the whole duration of the simulation. Note also that at t = 100,
the volume drift is around 0.7% for 320 elements and 0.03% for 1280 ele-
ments. Thus, even with low resolution and elongated shapes, it is possible
to obtain acceptable results, which could be interesting for simulations of
suspensions.

4.2. Capsules
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Figure 8: Comparison of present work with literature results for Taylor parameter D as a
function of capillary number Ca for (a) neo-Hookean capsule in extensional flow [18, 55]
(b) Skalak capsule in shear flow [55, 23]

Capsules dynamics and steady state deformation in simple flows have
been studied by several independent groups and thus constitute an excellent
validation case. We thus consider the steady state deformation of a Neo-
Hookean (NH) capsule and of a Skalak (Sk) capsule, placed either in planar
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Figure 9: (a) Evolution of Taylor parameter and inclination angle of a Skalak capsule
in shear flow (Ca = 1.5) as a function of time, for different number of elements. (b)
Corresponding evolution of the relative error on enclosed volume as a function of time,
for different number of elements.

extensional flow (v∞ = γ̇[xex − yey]) or in simple shear flow (v∞ = γ̇yex).
In both cases, an initially spherical capsule of radius R0 will deform into a
roughly ellipsoidal shape. The deformation of the capsule is measured by
the Taylor parameter D = L−l

L+l
, where L and l are semi-axis of the ellipsoid

having the same tensor of inertia, and is represented as a function of the
capillary number Ca = γ̇R0ηext

Gs
in figures 8 (a) for NH capsule in extensional

flow and 8 (b) for Sk capsule in shear flow. As can be seen in these figures,
the agreement with results of [18, 55, 23] is excellent. The meshes used to
obtain these results contains between 320 and 20480 elements.

A convergence study is carried out for a Sk capsule in shear flow (Ca =
1.5, λ = 1) to assess the dependency on the number of elements, which is var-
ied from 80 to 81920. As shown in figure 9 (a), when the Taylor parameter
D or the inclination angle θ are plotted as a function of dimensionless time
γ̇t, the results from the different simulations overlap almost perfectly, the
only noticeable difference being seen with the coarsest mesh (80 elements).
A more important effect of mesh refinement is seen on the preservation of
enclosed volume: the relative error εv = V0−V (t)

V0
is represented as a function

of dimensionless time in figure 9 (b), where V0 = 4
3
πR3

0 is the volume of
the initially spherical capsule. This figure shows that one mesh refinement
(multiplying the number of elements by four) leads to roughly gaining one
order of magnitude in the volume preservation. However, one can also no-
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Figure 10: Convergence study of the numerical algorithm : relative error on the steady
state value (taken at t = 26.25) of the Taylor parameter of a Skalak capsule under
shear flow (Ca = 1.5) with respect to (a) number of elements (b) time step size for
trapezoidal scheme. For spatial convergence (a), the RK45 scheme is used and the
reference solution is computed with 81920 elements. The spatial convergence of a capsule
with bending resistance modeled by Helfrich membrane is also included for two values
of the dimensionless bending modulus κ̂ = 10−4, 10−2. For temporal convergence of
trapezoidal scheme, a mesh with 5120 elements is used, and the reference solution is
computed with RK45 scheme.

tice that even with the coarsest mesh (80 elements) volume preservation is
still acceptable : the volume drift after a dimensionless time of γ̇t = 30 is
only 1%.

To estimate the convergence order of the numerical method, the relative
error =

Dref−D
Dref

on Taylor parameter D at a dimensionless time γ̇t = 26.25

(thus in stationary state) is represented as a function of the number of el-
ements in figure 10 (a), with the reference solution computed with 81920
elements. As can be seen in the figure 10 (a), the relative error is second
order in number of elements O(N−2). Note that in [19], the authors men-
tion that using the singularity-subtraction with standard quadrature will
leads asymptotically to a O(N−1) convergence because the gradient of the
Green function is still singular. For the number of elements used here, this
seems not to affect the convergence rate of our method, but could possibly
degrade it for finer resolutions, in which case adaptive integration scheme
as described in [20] could be used to restore the O(N−2) convergence. To
check whether inclusion of bending rigidity affects the convergence order of
the method, we also run the same convergence test with two dimensionless
bending modulus κ̂ = κ

GR2
0

= 10−4, 10−2. Note that in this test case, the
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bending rigidity is added by simply taking into account Helfrich energy for
the membrane. Results displayed in figure 10 (a) shows that the conver-
gence order of the method is not affected by inclusion of bending rigidity,
still displaying a O(N−2) convergence rate. Finally, we also use this test case
to check the time convergence order of the trapezoidal time scheme as de-
scribed in section 3.5 : a mesh containing 5120 elements is used to compute
the solution, both with a Runge-Kutta scheme (52) and with trapezoidal
scheme (55) for various time step. As expected, the relative error on Taylor
parameter converges as O(∆t2) when using the trapezoidal rule.
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Figure 11: Neo-Hookean capsule in uniaxial extensional flow (Ca = 0, 07; κ̂ = 10−4) :
(a) Top - view in the x-y plane . Bottom - view in the y-z plane (b) Cross section in the
z = 0 plane.

A possible application of our algorithm is to simulate capsules with
bending resistance, which is necessary to describe capsule dynamics in the
parameter region where compressive stresses are found. The simplest inclu-
sion of bending resistance is to describe the interface energy as the simple
sum of a two-dimensional membrane model (e.g., NH, Sk) and a Helfrich
membrane. Note that more elaborate model of thin-shells can easily be
implemented within the framework presented here, but we choose this ap-
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proach for its simplicity. We thus simulate the stretching by an uniaxial
extensional flow (v∞ = γ̇

[
−x

2
ex − y

2
ey + zez

]
) of a NH membrane supple-

mented with Helfrich energy. After an initial transient, the capsule reach
a steady stated showed in figure 4.2. Runs at three different resolutions
(N = 5120, 20480, 81920 elements) have been performed, and the compari-
son of the cross-section in the z = 0 plane is shown in figure 4.2 (b), showing
an excellent agreement for all resolutions.

4.3. Vesicles
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Figure 12: (a) Steady state inclination angle θ for a tank-treading vesicle in simple
shear flow (λ = 1, Ca = 10) as a function of excess area ∆. (b) Dimensionless VB-
TR/TU period (T ) as a function of viscosity contrast λ for a quasi-spherical vesicle
(v = 0.95, Ca = 6.0)

We then test our numerical algorithm applied to vesicles on the proto-
typical configuration of a vesicle immersed in shear flow : v∞ = γ̇yex. In
this configuration, several dynamics may be observed, the simplest being
a tank-treading configuration where the vesicle reach a steady deformation
and inclination angle similarly to drops or capsules. This steady angle de-
pends on the viscosity contrast λ and on the excess area ∆ which measures
the deformability of the vesicle. Indeed, since for a vesicle both enclosed
volume and total surface must be preserved, an initially spherical vesicle
will not deform, whatever the flow strength is. To be deformed, the vesicle
must thus be deflated, and a measure of this deflation is provided either by

the reduced volume v = V
4
3
π( A

4π )
3/2 or by the excess area ∆ = A

(
4π
3V

)2/3−4π.
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The ratio between external flow time scale and bending time scale defines

the capillary number : Ca =
γ̇ηextR3

0

κ
. The evolution of the inclination angle

as a function of excess area for a vesicle without viscosity contrast is re-
ported in figure 12 (a) where it is compared to spectral simulations of [59]
and simulations of [57]. The agreement with [59] is excellent, even with 320
elements.

If one includes viscosity contrast, different dynamics can be observed,
such as tumbling, where the vesicle inclination axis undergoes a full rota-
tion. In between tank-treading and tumbling, for sufficiently high capil-
lary number, a more complex dynamics termed vacillating-breathing [40]
or trembling [17, 59] can be observed, where the inclination axis undergoes
oscillation without full rotations, while the shape also oscillates. The evolu-
tion of the VB-TR / TU period is plotted as a function of viscosity contrast
in figure 12 (b) and compared to spectral simulations of [59] and simulations
of [19], showing an excellent agreement with both, except for λ = 9 where
results deviates slightly from [59], but seems consistent with [19] in doing
so.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0  20  40  60  80  100

ε

γ̇ t

N=320, dt=1e-2
N=320, dt=1e-3

N=1280,dt=1e-2
N=1280, dt=1e-3

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0  20  40  60  80  100  120  140

ε

γ̇ t

Relative error on volume

Relative error on area

(a) (b)

Figure 13: (a) Relative error on reduced volume for a tank treading vesicle in simple
shear flow (Ca = 10, λ = 1, v = 0.95), comparison of two meshes and two different
time steps. (b) Relative error on volume and area for a tumbling vesicle in shear flow
(Ca = 6, λ = 20), for 1280 elements and a time step of ∆t = 10−2.

For vesicles, both the enclosed volume and the total surface should be
preserved. The relative error for a tank treading vesicle is shown in figure 13
(a), and for a tumbling vesicle in figure 13 (b). In figure 13 (a), influence of
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mesh size and time step on reduced volume preservation is also studied. The
reduced volume drifts for long simulation times (stationary state is reached
around γ̇t ≈ 5), but even with the coarsest mesh the relative error is below
0.5% after several full tank-treading period. As in figure 9 (a), refining
the mesh once leads to an order of magnitude decrease in the variation of
reduced volume, because the slope of the drift depends on the mesh used.
There is also an important effect of the time step used, because for 1280
elements, the major part of the variation of the enclosed volume occurs in
the transient part where the vesicles deforms from its initial ellipsoidal shape
towards the stationary tank treading shape. Significant gains in reduced
volume preservation could thus be obtained by using an adaptive implicit
time scheme, as has been done recently by [46].
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Figure 14: (a) Snapshots of shape at different dimensionless times γ̇t =
0; 18.1; 23.3; 25.9; 27.2; 28.5 (b) Evolution of L2 norm of the radial velocity. The dashed
line corresponds to an exponential growth with a growth rate of ω = 8.57 × 10−2 as
computed by [60, 50].

We also simulate a deflated v = 0.65 vesicle in uniaxial extensional flow
(v∞ = γ̇

[
−x

2
ex − y

2
ey + zez

]
), which is known [60, 50, 42, 12] to exhibit

instability. For comparison, we follow the procedure described in [60, 50]:
starting from the equilibrium shape at v = 0.65, we first simulate the sta-

tionary state under flow, with CaA = 4. Here, CaA = γ̇η
κ

(
A
4π

) 3
2 is the

capillary number with a reference length based on the area. After reaching
the stationary state, the shape is then perturbed with a sinusoidal pertur-
bation, and the L2-norm of the radial velocity is monitored as a function of
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time, as in [60, 50]. Snapshots of the shape at different dimensionless times
γ̇t as well as evolution of L2 norm of radial velocity are shown in figure 14,
and show an excellent agreement with reference results of [60, 50].
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Figure 15: (a) Stationary shape of a settling deflated vesicle (= 0.93, Bo = 216) (b)
Stationary profiles for different Bond numbers (Bo = 59; 118; 196). Symbols are present
results and solid lines are comparison with axisymmetric code [9, 52].

Finally, we simulate vesicles settling due to a density contrast between
the inner and outer fluids, and compare with results obtained with an axi-
symmetric code using linear elements [9, 52]. The dimensionless parameter

controlling the shape is the Bond number, defined as Bo =
∆ρgR4

0

κ
. Starting

with a prolate ellipsoid of excess area ∆ = 0.93, shape evolves toward a
rounded vesicle at the front with a protrusion at the rear, whose length
reaches a plateau at stationary state. Depending on the strength of the
forcing, shapes varies continuously from pear-like shapes to tethered shapes.
Comparison of profiles showed in figure 15 show an excellent agreement with
[9, 52].

5. Conclusion

In this paper, we have presented an algorithm to simulate the dynamics
of soft objects such as drops, capsules or vesicles under Stokes flow. The
algorithm is based on the use of Loop subdivision surfaces to describe the
interface of these objects. This surface representation is used both for the
finite element solver for membrane forces and for the boundary element
method for the fluid solver. The surface incompressibility constraint for
vesicles is treated by the introduction of a local Lagrange multiplier which
is solved by an iterative method. To avoid the growth of the number of
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iterations, a preconditioner based on a linear approximation of the surface
[7] is introduced. The whole algorithm spatial discretization error decreases
as O(N−2), where N is the typical mesh number of elements (or vertices),
and is coupled with either a second order implicit time scheme for simulation
with bending rigidity, or with an adaptive RK45 time scheme for capsule
or drop simulations.

The combination of an high order spatial scheme with second order time
algorithm allows a very good preservation of invariants such as enclosed vol-
ume or area for vesicles, without any correction on the velocity field, intro-
duction of a reference/target volume or area, or rescaling of the shape after
each time step. Note that it is of course possible to include these corrections
into the proposed algorithm without difficulties to eliminate possible drift
of the solution at long simulation times, but these corrections cannot be
used for simulations of multiple objects where the rescaling of the shape
will lead to a modification of inter-objects distances, which might crucially
affect the dynamics. We plan to improve the conservation of invariants by
using adaptive quadratures to limit volume drift and adaptive time stepping
with implicit algorithm to limit both volume and area variations, such as
the recent algorithm of [46] designed for 2D vesicles suspensions.

Finally, the algorithm presented here can be extended to account for
more complex interfacial rheology (e.g. surface viscosity effects, Marangoni
effects). Its extension to drops with viscous interfaces has been discussed in
[25]. The inclusion of surface viscosity for other soft objects (capsules, vesi-
cles) is likely to strongly influence the dynamics, and might be necessary to
have a more accurate representation of real capsules, as recent experiments
suggest [16].
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paradigm for thin-shell finite-element analysis. International Journal for Numerical
Methods in Engineering, 47(12):2039–2072, 2000.

[11] Vittorio Cristini, Jerzy Bawzdziewicz, and Michael Loewenberg. An adaptive mesh
algorithm for evolving surfaces: Simulations of drop breakup and coalescence. Jour-
nal of Computational Physics, 168(2):445 – 463, 2001.

[12] Joanna B. Dahl, Vivek Narsimhan, Bernardo Gouveia, Sanjay Kumar, Eric S. G.
Shaqfeh, and Susan J. Muller. Experimental observation of the asymmetric in-
stability of intermediate-reduced-volume vesicles in extensional flow. Soft Matter,
12:3787–3796, 2016.

[13] Timothy Davis. Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software, 30(2):196–199, 2004.

[14] Timothy Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.
[15] C. de Loubens, J. Deschamps, G. Boedec, and M. Leonetti. Stretching of capsules

in an elongation flow, a route to constitutive law. Journal of Fluid Mechanics, 767,
3 2015.

[16] C. de Loubens, J. Deschamps, F. Edwards-Levy, and M. Leonetti. Tank-treading of
microcapsules in shear flow. Journal of Fluid Mechanics, 789, 2016.

[17] J. Deschamps, V. Kantsler, and V. Steinberg. Phase diagram of single vesicle dy-
namical states in shear flow. Phys. Rev. Lett., 102:118105, Mar 2009.

[18] W. R. Dodson and P. Dimitrakopoulos. Dynamics of strain-hardening and strain-
softening capsules in strong planar extensional flows via an interfacial spectral
boundary element algorithm for elastic membranes. Journal of Fluid Mechanics,
641:263–296, 12 2009.

[19] Alexander Farutin, Thierry Biben, and Chaouqi Misbah. 3d numerical simulations

38



of vesicle and inextensible capsule dynamics. Journal of Computational Physics,
275(0):539 – 568, 2014.

[20] Alexander Farutin and Chaouqi Misbah. Exact singularity subtraction from bound-
ary integral equations in modeling vesicles and red blood cells. Numerical Mathe-
matics: Theory, Methods Applications, 7:413–434, 2014.

[21] E. Fehlberg. Low-order classical runge-kutta formulas with step size control and
their application to some heat transfer problems. Technical report, NASA, 1969.

[22] Feng Feng and William S. Klug. Finite element modeling of lipid bilayer membranes.
J. Comput. Phys., 220(1):394–408, December 2006.
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