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ON THE VOLUME OF SECTIONS

OF A CONVEX BODY BY CONES

MATTHIEU FRADELIZI, MATHIEU MEYER, AND VLAD YASKIN

(Communicated by Thomas Schlumprecht)

Abstract. We prove that in small codimensions, the sections of a convex
body in R

n through its centroid are quite symmetric with respect to volume.
As a consequence of our estimates we give a positive answer to a problem
posed by M. Meyer and S. Reisner regarding convex intersection bodies.

1. Introduction

Let K be a convex body in R
n. The centroid of K is the point 1

|K|
∫
K
x dx,

where |K| denotes the volume of K. According to a result of Grünbaum [9], if the
centroid of a convex body K is at the origin, then for every u ∈ Sn−1 we have

|K ∩ u+| ≥
(
1 +

1

n

)−n

|K| ≥ e−1|K|,

where u+ = {x ∈ R
n : 〈u, x〉 ≥ 0}, with equality on the left hand side inequality if

and only if K is a cone in the direction u, i.e. K = conv(a,K ∩ (u⊥ + b)), for some
a, b ∈ R

n.
It is a natural question whether there is a similar result for sections of K; in

other words, does there exist an absolute constant c > 0 such that

|K ∩ v⊥ ∩ u+|n−1 ≥ c|K ∩ v⊥|n−1,

for every u, v ∈ Sn−1 such that u �= ±v? Here and below, v⊥ = {x ∈ R
n : 〈v, x〉 =

0}. The centroid of K ∩ v⊥ may not be at the origin, and so we cannot apply
Grünbaum’s result. Nevertheless, we show in this paper that the answer to the
latter question is affirmative. More generally, there is an absolute constant c > 0
such that for every convex body K ⊂ R

n, every (n − k)-dimensional subspace V ,
0 ≤ k ≤ n− 1 and any u ∈ Sn−1 ∩ V we have

|K ∩ V ∩ u+|n−k ≥ c

(k + 1)2

(
1 +

k + 1

n− k

)−(n−k−2)

|K ∩ V |n−k.

When working with volumes of sections, we often use a subindex to emphasize
the dimension of the corresponding subspace, even though most of the time the
dimension will be clear from the context.
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The results presented in this paper are actually proved in a more general setting
than described above. More specifically, we use cones instead of half-spaces; see
Theorem 1 below for a precise statement.

Our results also allow us to give a positive answer to a problem posed in [15] by
Meyer and Reisner. To state this problem, let us recall a few definitions. A star
body K in R

n is a compact set such that [0, x] ⊂ K for every x ∈ K, and whose
radial function defined by

rK(u) = max{a ≥ 0 : au ∈ K}, u ∈ Sn−1,

is positive and continuous. Geometrically, rK(u) is the distance from the origin
to the point on the boundary in the direction of u. The following concept was
introduced by Lutwak [14]. The intersection body of K is a star body I(K) whose
radial function is defined by

rI(K)(u) = |K ∩ u⊥|,
for all u ∈ Sn−1.

Busemann’s theorem asserts that ifK is origin-symmetric and convex, then I(K)
is also convex. Without the symmetry assumption this statement is generally not
true. In order to rectify the situation, Meyer and Reisner [15] suggested a new
construction, which allowed extension of Busemann’s theorem to non-symmetric
bodies. Let K be a convex body whose centroid is at the origin. Define the convex
interesection body CI(K) of K by its radial function,

rCI(K)(u) = min
z∈u⊥

|(PuK
∗)∗z|, u ∈ Sn−1,

where K∗ is the polar body of K with respect to 0, Pu is the orthogonal projection
onto the hyperplane u⊥, and for C ⊂ u⊥ and z ∈ u⊥, C∗z is the polar body of C
in u⊥ with respect to z:

C∗z = {y ∈ u⊥ : 〈y − z, x− z〉 ≤ 1 for all x ∈ C}.
It was proved in [15] that CI(K) is always convex whenever K is convex. Moreover,
CI(K) ⊂ I(K), with equality if and only if K is origin-symmetric.

Recall thatK is said to be in isotropic position if the centroid ofK is at the origin
and the integral

∫
K
〈x, u〉2 dx is independent of u ∈ Sn−1. Note that every convex

body can be put in isotropic position. It is a well-known result (see Hensley [12],
Ball [1], Schütt [17], Fradelizi [7]) that for a convex body K in isotropic position,
its intersection body I(K) (which is not necessarily convex) is “almost” a ball, in
the sense that there is a universal constant c such that

c−1 ≤
rI(K)(u1)

rI(K)(u2)
≤ c,

for any u1, u2 ∈ Sn−1.
In [15] it was asked whether the same would be true for CI(K). As an application

of our results we show that this question has a positive answer: there exists a
universal constant c > 0 such that

cI(K) ⊂ CI(K) ⊂ I(K),

for every convex body K with centroid at the origin.
In Section 2, we establish some preliminary lemmas involving inequalities about

log-concave functions. Section 3 is devoted to the statements and proofs of the
main results, and in Section 4 we apply them to the convex intersection bodies.
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2. Preliminary lemmas

We start by stating a few classical lemmas that will be needed for the proof of
the main theorem. Recall that for every x > 0,

Γ(x) =

∫ ∞

0

tx−1e−t dt,

and for every x, y > 0,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
.

Let s > 0. We say that a function f : Rn → R+ is s-concave if fs is concave on
its support. Such a function is also log-concave; i.e. log f is concave. For example,
if K is a convex body in R

n and F is a k-dimensional subspace, then by Brunn’s
theorem, the function f(x) = |K∩(F +x)|k, x ∈ F⊥, is 1/k-concave on its support.

The following lemma is due to Berwald [2] and Borell [4]; we refer to Theorem
5.12 of the survey [11] and Lemma 2.2.4 of the book [5] for a modern presentation.

Lemma 1. Let m > 0 and g : R+ → R+ be a 1/m-concave integrable function.

For p > 0 denote Ip(g) =
(∫

R+
tp−1g(t)dt

) 1
p

. Then for 0 < p ≤ q, one has

(1)
B(p,m+ 1)

1
p

B(q,m+ 1)
1
q

g(0)
1
p−

1
q ≤ Ip(g)

Iq(g)
≤ q

1
q

p
1
p

max(g)
1
p−

1
q .

Recall that the Minkowski functional of a star body K is defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}.

If x ∈ Sn−1, then ‖x‖−1
K = rK(x).

The next lemma is mainly due to Ball [1]; see also Proposition 2.5.3, Theorem
2.5.5, and Proposition 2.5.7 of the book [5]. Observe that some of our lemmas are
closely related to the techniques used by O. Guédon and E. Milman in [10].

Lemma 2. Let f : Rk → R+ be a log-concave integrable function with 0 in the
interior of its support. For p > 0 and x ∈ R

k \ {0}, let

Ip(f, x) =

(∫
R+

tp−1f(xt)dt

) 1
p

.

Then
1) x �→ Ip(f, x) is the radial function of a convex body Lp(f) in R

k, with 0 in its
interior, and whose Minkowski functional is defined by

‖x‖Lp(f) = Ip(f, x)
−1 =

(∫
R+

tp−1f(xt)dt

)− 1
p

.

2) For every u ∈ R
k and every integer p ≥ 0 one has∫
Lk+p(f)

〈x, u〉pdx =
1

k + p

∫
Rk

〈x, u〉pf(x)dx.
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Thus, if ∫
Rk

〈x, u〉f(x)dx = 0, for all u ∈ Sk−1,

then the centroid of Lk+1(f) is at 0.
Furthermore, if for some c > 0 and for all u ∈ Sk−1 one has∫

Rk

〈x, u〉2f(x)dx = c,

then ∫
Lk+2(f)

〈x, u〉2dx =
c

k + 2
, for all u ∈ Sk−1.

As a consequence of Lemmas 1 and 2, we deduce that if a function f satisfies
the hypothesis of Lemma 2 and is 1/m-concave for some m > 0, then for 0 < p ≤ q
one has

(2)
B(p,m+ 1)

1
p

B(q,m+ 1)
1
q

f(0)
1
p−

1
q Lq(f) ⊂ Lp(f) ⊂

q
1
q

p
1
p

max(f)
1
p−

1
q Lq(f).

The next lemma was proved in [6].

Lemma 3. Let m > 0 and f : Rk → R+ be a 1/m-concave integrable function such
that

∫
Rk〈x, u〉f(x)dx = 0 for all u ∈ R

k. Then

(3) max
x∈Rk

f(x) ≤
(
1 +

k

m+ 1

)m

f(0).

Let K and L be convex bodies containing the origin in their interiors. The
geometric distance between K and L is defined by

dg(K,L) = inf{αβ : α > 0, β > 0,
1

α
K ⊂ L ⊂ βK}.

The preceding lemmas give the following estimates.

Lemma 4. Let k ≥ 1 be an integer, and m > 0, p ≥ 1 with p ≤ k + 1. Let
f : Rk → R+ be a 1/m-concave integrable function that satisfies∫

Rk

〈x, u〉f(x)dx = 0

for all u ∈ R
k. Then one has

dg(Lk+1(f), Lp(f)) ≤
(
1 +

k

m+ 1

)m
p ((k + 1)B(k + 1,m+ 1))

1
k+1

(pB(p,m+ 1))
1
p

.(4)

Furthermore,

(5) dLk+2(f) ⊂ f(0)−
1

(k+1)(k+2)Lk+1(f) ⊂ ce
1
kLk+2(f),

for some absolute constants c, d > 0.

Proof. Using (2) with q = k + 1 and applying the bound from Lemma 3, we get

dg(Lk+1(f), Lp(f)) ≤
(
1 +

k

m+ 1

)m
p − m

k+1 ((k + 1)B(k + 1,m+ 1))
1

k+1

(pB(p,m+ 1))
1
p

.
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To obtain (4), observe that

(6) e−1 ≤
(
1 +

k

m+ 1

)− m
k+1

≤ 1.

To prove (5), we use (2) with p = k+1 and q = k+2. The conclusion follows from
the left hand side of inequality (6) and the fact that there exist universal constants
c1, c2 > 0 such that for all x, y ≥ 1,

c1x

x+ y
≤ B(x, y)

1
x ≤ c2x

x+ y
.

Introducing new constants c and d, we get the result. �

The next lemma is well known and very old (see e.g. [3, p. 57]).

Lemma 5. Let L be a convex body in R
k with centroid at 0. Then −L ⊂ kL, where

−L = {−x : x ∈ L}, and thus for all θ ∈ Sk−1 one has

(7)
1

k
≤ ||θ||L

|| − θ||L
≤ k.

Another equivalent way of stating the preceding lemma is to write that
dg(L,−L) ≤ k2. Using Lemmas 2, 4, and 5, we deduce the following.

Lemma 6. Let k ≥ 1 be an integer, m > 0 and 0 ≤ p ≤ k + 1. Let f : Rk → R+

be a 1/m-concave integrable function that satisfies∫
Rk

〈x, u〉f(x)dx = 0

for all u ∈ R
k. Then

−Lp(f) ⊂ k

(
1 +

k

m+ 1

)m
p ((k + 1)B(k + 1,m+ 1))

1
k+1

(pB(p,m+ 1))
1
p

Lp(f).

Proof. Note that the centroid of Lp(f) is not necessarily at the origin, and so
Lemma 5 does not apply. However, by Lemma 2 the centroid of Lk+1(f) is at the
origin and, therefore, Lemma 5 gives

dg (−Lk+1(f), Lk+1(f)) ≤ k2.

Now we use the (multiplicative) triangle inequality to get

dg(−Lp(f), Lp(f))

≤ dg(−Lp(f),−Lk+1(f))dg(−Lk+1(f), Lk+1(f))dg(Lk+1(f), Lp(f))

≤ k2dg(Lk+1(f), Lp(f))
2.

Finally, we apply inequality (4) from Lemma 4. �

Recall that the support function of a convex body L in R
k is defined by

hL(u) = sup
x∈L

〈x, u〉 for u ∈ R
k.

The next lemma is a result due to [13]; see also [8] for a simpler proof.

Lemma 7. Let L be a convex body in R
k with centroid at 0 and let u ∈ R

k. Then

hL(u)
2

k(k + 2)
≤ 1

|L|

∫
L

〈x, u〉2dx ≤ k

k + 2
hL(u)

2.
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Notice that if we apply the preceding lemma to −u and u, we get that hL(−u) ≤
khL(u), which proves that −L ⊂ kL.

Using Lemma 7, we deduce the following proposition.

Proposition 1. Let L be a convex body in R
k with centroid at 0. If for some

γ > 0, r > 1, one has γ ≤
∫
L
〈x, u〉2dx ≤ γr2 for all u ∈ Sk−1, then for β(L) =√

γ
|L|

√
k+2
k the following holds:

β(L)Bk
2 ⊂ L ⊂ rkβ(L)Bk

2 .

The latter implies that dg(L,B
k
2 ) ≤ rk; i.e. for all θ, θ′ ∈ Sk−1, one has

(8)
1

rk
≤ ||θ||L

||θ′||L
≤ rk.

Proposition 2. Let k ≥ 1 be an integer and let f : Rk → R+ be a 1/m-concave
integrable function that satisfies∫

Rk

〈x, u〉f(x)dx = 0

for all u ∈ R
k. If for some γ > 0, r > 1 one has γ ≤

∫
Rk〈x, u〉2f(x)dx ≤ γr2, then

dg(Lk+1(f), B
k
2 ) ≤ rak

for some universal constant a.

Proof. By Lemma 2, the centroid of Lk+1(f) is at 0 and∫
Rk

〈x, u〉2f(x)dx = (k + 2)

∫
Lk+2(f)

〈x, u〉2dx.

Now, using Lemma 4, one has for some absolute constants c, d > 0,

dLk+2(f) ⊂ f(0)−
1

(k+1)(k+2)Lk+1(f) ⊂ ce
1
kLk+2(f).

Thus, integrating, we get

dk+2

∫
Lk+2(f)

〈x, u〉2dx ≤ f(0)−
1

k+1

∫
Lk+1(f)

〈x, u〉2dx ≤ ck+2e
k+2
k

∫
Lk+2(f)

〈x, u〉2dx.

This means that

dk+2 γ

k + 2
≤ f(0)−

1
k+1

∫
Lk+1(f)

〈x, u〉2dx ≤ ck+2e
k+2
k

γr2

k + 2
.

It follows that Lk+1(f) satisfies the hypotheses of Proposition 1 with the constants

γ(f) = dk+2 γ
k+2f(0)

1
k+1 and r(f) = e

k+2
2k (cd−1)

k+2
2 r. Therefore,

dg(Lk+1(f), B
k
2 ) ≤ rke

k+2
2k (cd−1)

k+2
2 ≤ rak,

for some universal constant a. �
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3. Main results

Theorem 1. Let n, p, k ≥ 1 be integers such that p ≤ k ≤ n. Let F be an (n− k)-
dimensional subspace of Rn and C ⊂ F⊥ be a closed cone with vertex at 0. Let
G = span(C), p = dim(G), and assume that |C ∩ Bn

2 |p > 0. Let K be a convex
body in R

n with centroid at the origin.
(1) Then

|K ∩ (F − C)|n−k+p

|K ∩ (F + C)|n−k+p
≤ kp

(
1 +

k

n+ 1− k

)n−k (
n+ p− k

p

)(
n+ 1

k + 1

)− p
k+1

.

(2) If, moreover, K is in isotropic position, then

b−1 |Bn
2 ∩ (F + C)|n−k+p

|Bn
2 ∩ (F +G)|n−k+p

≤ |K ∩ (F + C)|n−k+p

|K ∩ (F +G)|n−k+p
≤ b

|Bn
2 ∩ (F + C)|n−k+p

|Bn
2 ∩ (F +G)|n−k+p

,

where

b = min

{
np, akp

(
1 +

k

n+ 1− k

)n−k (
n+ p− k

p

)(
n+ 1

k + 1

)− p
k+1

}
,

and a is the absolute constant from Proposition 2.

Proof. We will first consider the case p ≤ k ≤ n − 1. Define f : F⊥ → R+ by
f(x) = |K ∩ (F + x)|n−k. Then the function f is 1/(n− k)-concave and

|K ∩ (F + C)|n−k+p =

∫
C

f(x) dx =

∫
C∩Sp−1(G)

∫ +∞

0

rp−1f(rθ) drdθ

=

∫
C∩Sp−1(G)

‖θ‖−p
Lp(f)

dθ.

Part (1). Using Lemma 6 with m = n− k, we get, for every θ ∈ Sp−1(G),

‖ − θ‖−1
Lp(f)

≤ k

(
1 +

k

n+ 1− k

)n−k
p ((k + 1)B(k + 1, n+ 1− k))

1
k+1

(pB(p, n+ 1− k))
1
p

‖θ‖−1
Lp(f)

.

For positive integers p, q one has pB(p, q+1) = p!q!
(p+q)! =

(
p+q
p

)−1
. Thus the preceding

inequality may be written in the following form:

‖ − θ‖−1
Lp(f)

≤ k

(
1 +

k

n+ 1− k

)n−k
p

(
n+ p− k

p

) 1
p
(
n+ 1

k + 1

)− 1
k+1

‖θ‖−1
Lp(f)

.

The result follows by raising this inequality to the power p and integrating over
C ∩ Sp−1(G).
Part (2). Since K is isotropic, one has for all u ∈ Sk−1(F⊥),

CK :=

∫
K

〈x, u〉2dx =

∫
F⊥

〈x, u〉2f(x)dx.

Thus the hypotheses of Proposition 2 are satisfied with γ = CK and r = 1, and so

dg(Lk+1(f), B
k
2 ) ≤ ak,

where a is the constant from Proposition 2.
Using this bound, the triangle inequality and Lemma 4, one has

dg(Lp(f), B
k
2 ) ≤ dg(Lp(f), Lk+1(f)) dg(Lk+1(f), B

k
2 ) ≤ cn,p,k,
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where

cn,p,k = ak
(
1 +

k

n+ 1− k

)n−k
p

(
n+ p− k

p

) 1
p
(
n+ 1

k + 1

)− 1
k+1

.

Now define g : F⊥ → R+ by g(x) = |Bn
2 ∩ (F + x)|n−k. Observe that Lp(g) is a

ball in F⊥ and that

|Bn
2 ∩ (F + C)|n−k+p =

∫
C∩Sp−1(G)

‖θ‖−p
Lp(g)

dθ.

Since dg(Lp(f), B
k
2 ) = dg(Lp(f), Lp(g)) ≤ cn,p,k, we have, for all θ ∈ Sk−1(F⊥),

1

α
‖θ‖−1

Lp(g)
≤ ‖θ‖−1

Lp(f)
≤ β‖θ‖−1

Lp(g)
,

where α and β are positive numbers such that αβ = cn,p,k. Raising this inequality
to the power p and integrating over C ∩ Sp−1(G), we get

1

αp
|Bn

2 ∩ (F + C)|n−k+p ≤ |K ∩ (F + C)|n−k+p ≤ βp|Bn
2 ∩ (F + C)|n−k+p.

On the other hand, integration over Sp−1(G) gives

1

αp
|Bn

2 ∩ (F +G)|n−k+p ≤ |K ∩ (F +G)|n−k+p ≤ βp|Bn
2 ∩ (F +G)|n−k+p.

After dividing the last two inequalities, we get the inequality in part (2) with the
bound (cn,p,k)

p.
Note that when k is large (comparable to n), this method does not yield a good

bound. Instead, one should proceed as follows. Since K is in isotropic position, we
have dg(K,Bn

2 ) ≤ n, which follows, for example, from Proposition 1. Therefore, for
all θ ∈ Sn−1 we have

1

α
|θ|−1

2 ≤ ‖θ‖−1
K ≤ β|θ|−1

2 ,

where α and β are positive numbers such that αβ = n. Raising to the power p,
integrating over (F + C) ∩ Sn−1 and then over (F + G) ∩ Sn−1, and dividing the
corresponding inequalities, we get

n−p |Bn
2 ∩ (F + C)|n−k+p

|Bn
2 ∩ (F +G)|n−k+p

≤ |K ∩ (F + C)|n−k+p

|K ∩ (F +G)|n−k+p
≤ np |Bn

2 ∩ (F + C)|n−k+p

|Bn
2 ∩ (F +G)|n−k+p

.

Let us remark that this approach does not require k ≤ n − 1, and so the proof of
part (2) of the theorem is complete.

To finish the proof of part (1) for the remaining case p ≤ k = n, notice that
since the centroid of K is at the origin, we have

‖ − θ‖−p
K ≤ np‖θ‖−p

K ,

for all θ ∈ Sn−1. Integrating this inequality over C ∩ Sp−1(G) and noting that
F = {0} in this case, we get the result. �

We will now discuss some corollaries of the previous theorem. First of all, observe
that there exist universal constants c, d > 0 such that for any integers n ≥ k ≥ 1
we have

d
n

k
≤

(
n+ 1

k + 1

) 1
k+1

≤ c
n

k
.
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Therefore, part (1) of Theorem 1 gives

|K ∩ (F − C)|n−k+p

|K ∩ (F + C)|n−k+p
≤

(
ck2

n

)p (
1 +

k

n+ 1− k

)n−k (
n+ p− k

p

)
.

In particular, when p = 1, we get the following.

Corollary 1. There is an absolute constant c > 0 such that for any integers n ≥
k ≥ 1, any convex body K in R

n whose centroid is at the origin, any (n − k)-
dimensional subspace F of R

n, and any θ ∈ Sn−1 ∩ F⊥, we have

|K ∩ (F + R+θ)|n−k+1

|K ∩ (F + R−θ)|n−k+1
≤ ck2

(
1 +

k

n− k + 1

)n−k−1

≤ c

(
k(n+ 1− k)

n+ 1

)2

ek.

In particular, when k = 2, we obtain the following result.

Corollary 2. There exists a constant c > 0 such that for every n ≥ 2, every convex
body K in R

n, with centroid at 0, and every u, v ∈ Sn−1 such that v �= ±u, one has

1

c
≤

∣∣{x ∈ K : 〈x, u〉 = 0, 〈x, v〉 ≥ 0}
∣∣
n−1∣∣{x ∈ K : 〈x, u〉 = 0, 〈x, v〉 ≤ 0}
∣∣
n−1

≤ c.

More generally, the following holds.

Corollary 3. Let K be an isotropic convex body in R
n and 1 ≤ p ≤ k ≤ n. Let E

be an n−k+p-dimensional subspace of Rn and let u1, . . . , up be pairwise orthogonal
vectors in E. Then, for some universal constant c > 0,

|K ∩
p⋂

i=1

{x ∈ E : 〈x, ui〉 ≥ 0}|n−k+p ≥ max
{
(2n)−p, e−ckp

}
|K ∩ E|n−k+p.

In particular if k = p and E = R
n, one has

|K ∩
p⋂

i=1

{x ∈ R
n : 〈x, ui〉 ≥ 0}|n ≥ max

{
(2n)−p, e−cp2

}
|K|n.

Proof. Let F =
⋂p

i=1{x ∈ E : 〈x, ui〉 = 0} and C = {y ∈ E ∩ F⊥ : 〈x, ui〉 ≥ 0, 1 ≤
i ≤ p}. Then F is (n − k)-dimensional and

⋂p
i=1{x ∈ E : 〈x, ui〉 ≥ 0} = F + C.

Thus we may apply Theorem 1, part (2). The estimate follows from the inequalities(
1 +

k

n+ 1− k

)n−k

≤ ek,

(
n+ p− k

p

)
≤ ep

(
n+ p− k

p

)p

≤ ep
(
n

p

)p

,

(
n+ 1

k + 1

)− p
k+1

≤ dp
(
k

n

)p

,

for an absolute constant d. �

Remark 1. We will now discuss sharpness of Corollary 1. When k is a small fixed
number, then the bound in Corollary 1 is of constant order. What happens when k
is not small, but close to n? We will see that in this case the bound in Corollary 1
gives the right order. Let Δn be a regular simplex in R

n with vertices v1, . . . , vn+1

and centroid at 0. For 1 ≤ l ≤ n − 1, let El be the l-dimensional subspace of Rn
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generated by v1, . . . vl. Then it is easy to see that El ∩Δn = conv(v1, . . . vl, fl+1),
where

fl+1 =

∑n+1
k=l+1 vk

n+ 1− l
= −

∑l
k=1 vk

n+ 1− l
.

Then we have

|Δn ∩El ∩ f+
l+1|

|Δn ∩ El|
=

(
1/(n+ 1− l)

1/(n+ 1− l) + 1/l

)l

=

(
l

n+ 1

)l

,

and, therefore,

|Δn ∩El ∩ f−
l+1|

|Δn ∩El ∩ f+
l+1|

=
1−

(
l

n+1

)l
(

l
n+1

)l =

(
n+ 1

l

)l

− 1.

Taking l = n − k + 1 in the latter expression and comparing it to the bound in
Corollary 1, we see that they differ by the factor

c

(
k(n− k + 1)

n+ 1

)2

.

The latter is essentially constant for large values of n if k is fixed or n− k is fixed.

Remark 2. The result of part (1) of Theorem 1 is sharp for p = k = n. If one
takes the regular centered simplex Δ in R

n and a small non-empty cone C around
the direction of a vertex of the simplex, then |C ∩K| ∼ nn|(−C) ∩K|, when the
spherical measure of C ∩ Sn−1 tends to 0.

Remark 3. It may be asked what is the best constant αn > 0 such that for any
isotropic convex body K in R

n and any orthonormal basis u1, . . . , un, one has(
|K ∩ {x : 〈x, ui〉 ≥ 0, 1 ≤ i ≤ n}|

|K|

)1/n

≥ αn

2
.

It is clear and follows from Corollary 3 that αn ≥ n−1. Is there a better estimate?
Some calculations on the regular simplex seem to indicate that αn could be of the
order of n− 1

2 . Observe that if K is centrally symmetric and in John’s position
(instead of being isotropic), then the bound n− 1

2 trivially holds because then Bn
2 ⊂

K ⊂ √
nBn

2 and the constant has the right order of magnitude as shown by the
example of the cube:

LetK = Bn
∞ = [−1, 1]n. If n = 2m, it is well known that one can select n vertices

f1, . . . , fn of some facet of K such that (f1, . . . , fn) are pairwise orthogonal. Let C
be the convex cone generated by f1, . . . , fn. Then

|K ∩ C| = nn/2

n!
,

and αn ≤ en− 1
2 .

4. Application to the convex intersection body

Let K ⊂ R
n be a convex body whose centroid is at the origin. As was mentioned

in the introduction, the convex intersection body CI(K) of K is the body with the
radial function

rCI(K)(u) = min
z∈u⊥

|(PuK
∗)∗z|n−1, u ∈ Sn−1.
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Since (PuK
∗)∗ = K ∩ u⊥, and since for z ∈ L,

|L∗z|n−1 =

∫
L∗

1

(1− 〈z, y〉)n dy,

for a convex body L in R
n−1 (see [16]), we get

rCI(K)(u) = min
z∈PuK∗

∫
K∩u⊥

1

(1− 〈z, y〉)n dy.

Observe that for every z ∈ PuK
∗,∫

K∩u⊥

1

(1− 〈z, y〉)n dy ≥
∫
K∩u⊥∩z+

1

(1− 〈z, y〉)n dy ≥ |K ∩ u⊥ ∩ z+|.

By Corollary 2, there is an absolute constant c > 0 such that

|K ∩ u⊥ ∩ z+| > c|K ∩ u⊥|.
Therefore, for all u ∈ Sn−1,

rCI(K)(u) ≥ crI(K)(u).

On the other hand,

rCI(K)(u) ≤
∫
K∩u⊥

1

(1− 〈z, y〉)n dy
∣∣∣
z=0

= rI(K)(u).

Thus, we obtain a positive answer to the conjecture raised by Meyer and Reisner
in [15].

Theorem 2. There exists an absolute constant c > 0 such that for every n ≥ 2
and every convex body K in R

n with centroid at the origin, one has

cI(K) ⊂ CI(K) ⊂ I(K).
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