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MULTIPLE SOLUTIONS FOR A SELF-CONSISTENT

DIRAC EQUATION IN TWO DIMENSIONS

WILLIAM BORRELLI

Abstract. This paper is devoted to the variational study of an ef-
fective model for the electron transport in a graphene sample. We
prove the existence of infinitely many stationary solutions for a nonlin-
ear Dirac equation which appears in the WKB limit for the Schrödinger
equation describing the semi-classical electron dynamics. The interac-
tion term is given by a mean field, self-consistent potential which is
the trace of the 3D Coulomb potential. Despite the nonlinearity be-
ing 4-homogeneous, compactness issues related to the limiting Sobolev

embedding H
1
2 (Ω,C) ↪→ L4(Ω,C) are avoided thanks to the regular-

ization property of the operator (−∆)−
1
2 . This also allows us to prove

smoothness of the solutions. Our proof follows by direct arguments.
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1. Introduction

New two-dimensional materials possessing Dirac fermions as low-energy
excitations have been discovered, the most famous being the graphene (see,
e.g. [9, 22, 10]), which can be described as a honeycomb lattice of carbon
atoms. Those Dirac materials possess unique electronic properties which are
consequence of the Dirac spectrum. The conical intersection of quasi-particle
dispersion relation at degeneracy points leads to the effective massless Dirac
equation. A rigorous proof of the existence of Dirac cones in honeycomb
structures can be found in [13]. In this paper we are interested in the
mathematical analysis of a model for the quantum transport of electron in
a graphene sample, modeled as a bounded domain in the plane. In [3] the
authors gave a rigorous proof of the large, but finite, time-scale validity of
a cubic Dirac equation, as a good approximation for the dynamics of the
cubic nonlinear Schrödinger equation (NLS) with a honeycomb potential,
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2 W. BORRELLI

in the weakly nonlinear regime. Their analysis indicates that an analogous
result holds for the case of NLS with Hartree nonlinearity. We remark that
the linear dynamics has been studied by Fefferman and Weinstein in [14].

The (semi-classical) dynamics of electrons in a graphene layer can be
described by the following NLS, the interaction being described by a self-
consistent potential:{

iε∂tΦ
ε = −ε2∆Φε + V

(
x
ε

)
Φε + εκ

(
1
|x| ∗ |Φ

ε|2
)

Φε

Φε(0, x) = Φε
0(x)

(1)

where V is a honeycomb potential and κ ∈ R is a coupling constant.
One expects that, as ε → 0, the dynamics of WKB waves spectrally

concentrated around a vertex of the Brillouin zone of the lattice (where
the conical degeneracy occurs) can be effectively described by the following
Dirac-Hartree equation:{

i∂tϕ = (−iσ̃ · ∇)ϕ+ κ
(

1
|x| ∗ |ϕ|

2
)
ϕ

ϕ(0, x) = ϕ0(x)
(2)

where ϕ : Rt × R2
x −→ C2, σ̃ := (σ̃1, σ̃2) = (Λσ1,Λσ2), with σi being the

first two Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
(3)

and

Λ :=

(
λ 0
0 λ

)
. (4)

Here λ is a constant depending on the potential V (formula 4.1 in [13]).
In the above model, the particles can move in all the plane and the po-

tential is the trace on the plane {z = 0} of the 3D Coulomb potential.
We shall rather consider the case where the electrons are constrained to a
bounded domain Ω ⊆ R2 modeling an electronic device. Following El-Hajj
and Mehats [11], we define the self-consistent potential using the spectral

resolution of (−∆)
1
2 , with zero boundary conditions. A formal justification

of this choice can be found in the same paper, where the authors prove local
well-posedness for two models of electron transport in graphene. The case

of a bounded domain is treated replacing Dirac by the operator σ1(−∆)
1
2

with zero Dirichlet data.
From now on Ω ⊆ R2 will denote a smooth bounded open set.
Let (en)n∈N ⊆ L2(Ω) be an orthonormal basis of eigenfunctions of the

Dirichlet laplacian (−∆), with associated eigenvalues 0 < µn ↑ +∞.
We define the potential V(ϕ) as

V(ϕ) :=
∑
n>0

µ
− 1

2
n 〈|ϕ|2, en〉en (5)

Working on a bounded domain, we need to choose local (for physical reasons)
boundary conditions for the Dirac operator. We shall use infinite mass
boundary conditions, which have been employed in the Physics literature
to model quantum dots in graphene (see [2] and reference therein). In [20]
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the Dirac operator with infinite mass conditions is proved to be the limit,
in the sense of spectral projections, of a Dirac operator with a mass term
supported outside Ω, as the mass goes to infinity.

Formally, infinite mass boundary conditions are defined imposing

Pψ :=
1

2
(12 − σ̃ · t)ψ = 0, on ∂Ω (6)

where t is the tangent to the boundary and 12 is the unit matrix. It can
be easily seen that such conditions make the Dirac operator

T := (−iσ̃ · ∇)

symmetric on L2(Ω,C2).
They actually belong to a larger class of local boundary conditions for

the Dirac operator (see [2]) employed in the theory of graphene, and which
are related to M.I.T. and chiral boundary conditions.

Proposition 1. The unbounded operator D formally acting as T := (−iσ̃·∇)
on L2(Ω,C2) is self-adjoint on the domain

D∞ := {ψ ∈ H1(Ω,C2) : (P ◦ γ)ψ = 0} (7)

where P is the matrix defined in (6) and γ is the trace operator.

The theorem can be proved using the abstract results in [6] or following
the method of [4], which only requires C2-regularity of the boundary.

The model we are going to study thus is given by{
i∂tϕ = Dϕ+ κV(ϕ)ϕ, in R× Ω

ϕ(0, x) = ϕ0(x)
(8)

Before stating our main theorem, we quickly review the spectral theory
for the Dirac operator with infinite-mass boundary conditions.

The compactness of the Sobolev embedding H1(Ω,C2) ↪→ L2(Ω,C2) gives
that the spectrum of D is discrete. Moreover, the domain D∞ is invariant
with respect to the antiunitary transformation U := σ1C, where C is the
complex conjugation on L2(Ω,C2). Given ϕ ∈ D∞ we have

UDϕ = −DUϕ.
The above observations can be summarized in the following

Proposition 2. The spectrum σ(D) ⊆ R of D is purely discrete, symmetric
and accumulates at ±∞.

Let (ψk)k∈Z be a Hilbert basis of L2(Ω,C2) composed of eigenspinors of
D, and (λk)k∈Z the associated eigenvalues, with limk→±∞ λk = ±∞.

It has been noted in the Physics literature that Dirac operators with
infinite mass boundary condition are gaped. A rigorous proof has been
recently given in [5], where the following result is proved.

Proposition 3. For any k ∈ Z we have

λ2
k >

2π

|Ω|
,

where |Ω| denotes the area of Ω.
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Remark 4. In this case the zero-energy corresponds to the Fermi level.
Then the positive part of the spectrum corresponds to massive conduction
electrons, while the negative one to valence electrons.

We look for stationary solutions to the equation (8), that is, of the form

ϕ(t, x) = e−iωtψ(x).

Plugging it into the equation one gets

(D − ω)ψ + κV(ψ)ψ = 0 (9)

Our main result is the following:

Theorem 5. Fix ω /∈ σ(D). Then equation (9) admits infinitely many
solutions in C∞(Ω,C2) satisfying the boundary condition (6).

We remark that a variational proof of existence and multiplicity for 3D
Maxwell-Dirac and Dirac-Coulomb equations can be found in [12]. Those
results have been improved in [1]. The case of subritical Dirac equations
on compact spin manifolds has been treated in [15], for nonlinearity with
polynomial growth, and using a Galerkin-type approximation. Our proof
is variational and based on direct arguments. The present work has been
inspired by the above mentioned articles and by the papers [3, 11].

For the sake of simplicity we will restrict ourselves to ω ∈ (−λ1, λ1).

Remark 6. Without loss of generality, we can choose κ < 0. In particular,
we take κ = −1. The case κ > 0 follows considering the functional

L(ψ) := −I(ψ)

(see below).

Solutions to (9) will be obtained as critical points of the functional

I(ψ) =
1

2

ˆ
Ω
〈(D − ω)ψ,ψ〉 − 1

4

ˆ
Ω
V(ψ)|ψ|2 (10)

which is defined and of class C2 on the Hilbert space

X :=

{
ψ ∈ L2(Ω,C2) : ‖ψ‖2X :=

∑
k∈Z
|λk − ω||〈ψ,ψk〉|2 <∞

}
(11)

endowed with the scalar product

〈ϕ,ψ〉X := 〈ϕ,ψ〉L2 +
∑
k∈Z
|λk − ω|〈ϕ,ψk〉L2〈ψ,ψk〉L2 .

Remark 7. Using a simple interpolation argument, one can easily prove

that the X-norm above defined and the H
1
2 -norm are equivalent on the space

X. This will be repeatedly used in the sequel in connection with Sobolev
embeddings.

We can thus split X as the direct sum of the positive and the negative
spectral subspaces of (D − ω):

X = X+ ⊕X− (12)

Accordingly we will write ψ = ψ+ + ψ−.
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The functional (10) then takes the form

I(ψ) =
1

2

(
‖ψ+‖2X − ‖ψ−‖2X

)
− 1

4

ˆ
Ω
V(ψ)|ψ|2 (13)

Smoothness of the solutions will follow by standard bootstrap arguments.

Remark 8. Despite the term in (10) involving the potential being 4-homogeneous

we can take advantage of regularization property of (−∆)−
1
2 , thus avoiding

compactness issues related to the limiting Sobolev embedding X ↪→ L4. This
is in constrast with [7], where we studied the case of a Kerr-like, cubic non-
linearity. We dealt with the lack of compactness through a suitable radial
ansatz, reducing the proof to dynamical systems arguments.

In the sequel, we will denote X-norm and the Lp-norm of a spinor ψ by
‖ψ‖ and ‖ψ‖p, respectively. Occasionally, we will also omit the domain of
definition of functions, denoting Lp and Sobolev spaces.

2. The variational argument

This section is devoted to the proof of our main theorem.
The functional I is even :

I(−ψ) = I(ψ), ∀ψ ∈ X

and this allows us to prove a multiplicity result using a straightforward
generalization of the fountain theorem, well-known for semi-definite func-
tionals (see, e.g. [23]). It in turn relies on the following infinite-dimensional
Borsuk-Ulam theorem [19].

Let H be an Hilbert space.

Definition 9. A map Φ : H −→ H is called Leray-Schauder map (LS-map)
if it is of the form

Φ = I +K (14)

where I is the identity and K is a compact operator.

Theorem 10. (Borsuk-Ulam in Hilbert spaces) Let Y 6 H be a codimension
one subspace of H and U be a symmetric bounded neighborhood of the origin.
If Φ : ∂U −→ Y is an odd LS-map, then there exists x ∈ ∂U such that
Φ(x) = 0.

The proof of the above theorem is achieved approximating the compact
map by finite rank operators and using the finite-dimensional Borsuk-Ulam
theorem, as shown in [19].

Consider an Hilbert basis (ek)k∈Z of H. For j ∈ Z we define

H1(j) := span{ek}
k=j

−∞, H2(j) := span{ek}
+∞
k=j (15)

Given 0 < rj < ρj we set

B(j) := {ψ ∈ H1(j) : ‖ψ‖ 6 ρj}

S(j) := {ψ ∈ H1(j) : ‖ψ‖ = ρj}

N(j) := {ψ ∈ H2(j) : ‖ψ‖ = rj}
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Let L ∈ C1(H,R) be an even functional of the form

L(ψ) =
1

2
〈Lψ,ψ〉+ F (ψ) (16)

where
L : H1(j)⊕H2(j) −→ H1(j)⊕H2(j)

is linear, bounded and self-adjoint and dF is a compact map.
It is a well-known result (see,e.g. ([17], Appendix) and [21]) that such a

functional admits an odd pseudo-gradient flow of the form

η(t, ∗) = Λ(t, ∗) +K(t, ∗) = Λ1,j(t, ∗)⊕ Λ2,j(t, ∗) +K(t, ∗), (17)

where Λi,j(t, ∗) : Hi(j)→ Hi(j) is an isomorphism (i = 1, 2), and K(t, ∗)
is a compact map.

Theorem 11. (Fountain theorem) With the above notations, define the min-
max level

cj := inf
γ∈Γ(j)

supL(γ(1, B(j))) (18)

where Γ(j) is the class of maps γ ∈ C0([0, 1]×B(j), H) such that

γ(t, ψ) = ψ, ∀(t, ψ) ∈ [0, 1]× S(j)

and which are homotopic to the identity through a family of odd maps of the
form (17).

If there holds

inf
ψ∈N(j)

L(ψ) =: bj > aj := sup
ψ∈S(j)

L(ψ)

then cj > bj and there exists a Cerami sequence (ψjn)n∈N ⊆ H, that is{
L(ψjn) −→ cj

(1 + ‖ψjn‖)dL(ψjn)
H∗
−−→ 0 as n −→∞

where H∗ is the dual space of H.
Moreover, if Cerami sequences are pre-compact, then cj is a critical value.

Proof. The proof follows by a standard deformation argument (see [17, 21]).
We only need to prove the intersection property

γ(1, B(j)) ∩N(j) 6= ∅
for any γ ∈ Γ(j). Since γ is odd, γ(1, 0) = 0 and the set

U = {u ∈ B(j) : ‖γ(1, u)‖ < r} (19)

is a bounded neighborhood of the origin such that −U = U .

Let P : H −→ Y := span{ek}
k=j−1

−∞ be the projection. Consider the map
(P ◦ γ)(1, ∗) : ∂U −→ Y . We have to prove that the equation

(P ◦ γ)(1, u) = 0 (20)

admits a solution u0 ∈ ∂U .
Recall that γ(1, ∗) is of the form (17). Then (20) is equivalent to

u+ (P ◦ Λ−1(1, ∗) ◦K)︸ ︷︷ ︸
compact

(1, u) = 0
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and the claim follows by the Borsuk-Ulam theorem (Theorem 10). �

Our aim is to apply the fountain theorem to the functional I.

Proposition 12. The functional

I(ψ) =
1

2

ˆ
Ω
〈(D − ω)ψ,ψ〉 − 1

4

ˆ
Ω
V(ψ)|ψ|2

is of the form (16).

Proof. The term involving the potential is 4-homogeneous, but we can avoid

compactness issues related to the critical Sobolev embedding H
1
2 (Ω,C2) ↪→

L4(Ω,C2) thanks to the regularizing properties of (−∆)−
1
2 , as shown in

Proposition (19). �

For each j > 1, consider the splitting

X = X1(j)⊕X2(j) =
(
span{ψk}

j

k=−∞

)
⊕
(
span{ψk}

+∞
k=j

)
(21)

where (ψk)k∈Z is an orthonormal basis of eigenspinors of D.

Lemma 13. Let j > 1, there exists ρj > 0 such that I(ψ) 6 0, for ψ ∈ X1(j)
and ‖ψ‖ > ρj.

Proof. Let ψ ∈ X1(j) be such that ‖ψ‖ > ρj > 0. Recall that

ψ = ψ− + ψ+ ∈ Y := X− ⊕ span{ek}k=1
j .

Suppose that

‖ψ−‖ > ‖ψ+‖. (22)

It is immediate from (13) that I(ψ) 6 0.
Now assume

‖ψ+‖ > ‖ψ−‖. (23)

We claim that there exists C = C(j) > 0 such that

Q(ψ) :=

ˆ
Ω
V(ψ)|ψ|2 > C‖ψ‖4 (24)

for all ψ ∈ Y satisfying (23).
Suppose the claim is false. Then arguing by contradiction and by the

4-homogeneity of Q, there exists a sequence (ψn)n∈N ⊆ Y satisfying (23),
and such that ‖ψn‖ = 1 and

Q(ψn) −→ 0, as n→ +∞.

Notice that (23) implies that

‖ψ+
n ‖ >

1√
2

(25)

Up to subsequences, we can assume that there exists ψ∞ ∈ Y such that
ψ−n weakly converges to ψ−∞, while ψ+

n strongly converges to ψ+
∞, the latter

sequence lying in a finite-dimensional space. Thus there holds

‖ψ+
∞‖ >

1√
2
. (26)
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Since Q is continuous and convex it also is weakly lower semi-continuous,
and then

Q(ψ∞) = 0.

This implies that
ψ∞ = ψ+

∞ + ψ−∞ = 0

and thus
ψ+
∞ = 0 (27)

ψ−∞ and ψ+
∞ being orthogonal, contradicting (26).

Then , given (24), we have

I(ψ) 6 ‖ψ+‖ − ‖ψ−‖ − C‖ψ‖4 (28)

for all ψ ∈ Y such that (23) holds. Thus I(ψ) 6 0, for ρj > 0 large enough.
�

Lemma 14. For 1 6 p < 4 define

βj,p := sup{‖ψ‖p : ψ ∈ X2(j), ‖ψ‖ = 1}.
Then βj,p −→ 0 as j →∞.

Proof. By definition, for each j > 1 there exists ψj ∈ X2(j) such that
‖ψj‖ = 1 and 1

2βj,p < ‖ψj‖p. The compactness of the Sobolev embedding
implies that, up to subsequences, ψj ⇀ ψ weakly in X and ψj −→ ψ strongly
in Lp(Ω,C2). It is evident that ψ = 0. Then

1

2
βj,p < ‖ψj‖p −→ 0.

�

The above result allows us to prove the following:

Lemma 15. There exists rj > 0 such that

bj := inf{I(ψ) : ψ ∈ X2(j), ‖ψ‖ = rj} −→ +∞
as j −→ +∞.

Proof. By the Hölder inequality, we get
ˆ

Ω
V(ψ)|ψ|2 6

(ˆ
Ω
|ψ|3

) 2
3
(ˆ

Ω
V(ψ)3

) 1
3

6 C‖ψ‖43. (29)

Recall that V(ψ) := (−∆)−
1
2 (|ψ|2). Since |ψ|2 ∈ L

3
2 (Ω, C2), and (−∆)−

1
2

sends L
3
2 (Ω,C2) into W 1, 3

2 (Ω,C2) ↪→ L3(Ω,C2), we easily get (29).
Take ψ ∈ X2(j) such that ‖ψ‖ = r. Then by (29) and Lemma 14 we have

I(ψ) =
1

2

ˆ
Ω
〈(D − ω)ψ,ψ〉 −

ˆ
Ω
V(ψ)|ψ|2

>
1

2
‖ψ‖2 − 1

2
‖ψ‖22 − C‖ψ‖43

>
1

2
r2 − 1

2
r2β2

j,2 − Cr4β4
j,3

>
1

4
r2 − Cβ4

j,3r
4

(30)
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where we used the fact that β2
j,2 6

1
2 .

The function r 7→ 1
4r

2 − Cβ4
j,3r

4 attains its maximum at r = (8Cβ4
j,3)−

1
2 .

Then taking rj := (8Cβ4
j,3)−

1
2 we get

b(j) > (64Cβ3
j,3)−1 −→ +∞

and this concludes the proof. �

The above results allow us to apply the Fountain theorem (Theorem 11)
to the functional I. We thus get the existence of a sequence of min-max
values

cj −→ +∞, as j → +∞, (31)

and, for each j ∈ N, of a Cerami sequence (ψnj )n∈N ∈ X:{
I(ψnj ) −→ cj

(1 + ‖ψnj ‖)dI(ψnj )
X∗
−−→ 0 as n −→∞

(32)

Lemma 16. Cerami sequences for I are pre-compact .

Proof. Let (ψn) ⊆ X be an arbitrary Cerami sequence for I.
Then {

I(ψn) −→ c

(1 + ‖ψn‖)(Dψn − V(ψn)ψn)
X∗
−−→ 0 as n −→∞

(33)

for some c > 0.
The second condition in (33) implies thatˆ

Ω
〈Dψn, ψn〉 −

ˆ
Ω
V(ψn)|ψn|2 −→ 0. (34)

Combining (34) and the first line in (33) one gets

‖V(ψn)‖2
H̊

1
2

=

ˆ
Ω
|(−∆)

1
4V(ψn)|2 =

ˆ
Ω
V(ψn)|ψn|2 −→ 2c. (35)

By the Sobolev embedding (V(ψn))n∈N is thus bounded in L4. Moreover,

since (−∆)−
1
2 is positive-preserving (see section 3), (35) implies that (V(ψn)|ψn|2)n∈N

is bounded in L1.
By the above remarks, writing

V(ψn)|ψn| =
(
V(ψn)|ψn|2

) 1
2︸ ︷︷ ︸

L2−bounded

(V(ψn))
1
2︸ ︷︷ ︸

L8−bounded

(36)

and by the Hölder inequality, we easily get that (V(ψn)ψn)n∈N is bounded

in L
8
5 . The second line of (33) gives

ψn = ψ1
n + ψ2

n := (D − ω)−1(V(ψn)ψn) + o(1), in H
1
2 (Ω,C2) (37)

It is immediate to see that (ψ1
n)n∈N is bounded in W 1, 8

5 ↪→ H
1
2 , and thus

(ψn)n∈N is bounded in H
1
2 .

Up to subsequences, there exists ψ∞ ∈ X such that ψn ⇀ ψ∞ weakly in
X and ψn → ψ∞ strongly in Lp for all 1 6 p < 4.
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Since (ψn)n∈N is a Cerami sequence, there holds

o(1) = 〈dI(ψn), ψ+
n −ψ+

∞〉 =

ˆ
Ω
〈Dψ+

n , ψ
+
n −ψ+

∞〉 −
ˆ

Ω
V(ψn)〈ψn, ψ+

n −ψ+
∞〉.

(38)
Moreover, the Hölder inequality gives∣∣∣∣ˆ

Ω
V(ψn)〈ψn, ψ+

n − ψ+
n 〉
∣∣∣∣ 6 ˆ

Ω
V(ψn)|ψn||ψ+

n − ψ+
n |

6 ‖V(ψn)|ψn|‖2‖ψ+
n − ψ+

∞‖2
6 ‖V(ψn)‖6‖ψn‖3‖ψ+

n − ψ+
n ‖2

6 C‖ψ+
n − ψ+

n ‖2

(39)

where in the last line we used the fact that (ψn) is bounded in H
1
2 ↪→ L3

and that (V(ψn))n∈N is L6-bounded. Combining (38) and (39) we getˆ
Ω
〈Dψ+

n , ψ
+
n − ψ+

∞〉 = o(1) (40)

On the other hand, for any η+ ∈ X+, there holdsˆ
Ω
〈Dη+, η+〉 > (1 + (λ1)−1)‖η+‖2 (41)

as it can be easily checked. By (41) and (40) we thus obtain

‖ψ+
n − ψ+

∞‖2 6 C
ˆ

Ω
〈D(ψ+

n − ψ+
∞), ψ+

n − ψ+
∞〉 = o(1). (42)

An analogous argument gives

‖ψ−n − ψ−∞‖2 = o(1) (43)

thus proving the pre-compactness of Cerami sequences. �

Our main theorem (Theorem 5) is thus proved, as the regularity of solu-
tions follows by standard bootstrap techniques, exploiting the regularization

property of (−∆)−
1
2 .

3. Auxiliary results

This section contains some auxiliary results used in the proof of our main
theorem.
Compactness of dF.

Lemma 17. Let (Y, ‖ · ‖Y ) be a reflexive Banach space and consider a se-
quence (yn)n∈N ⊆ Y . Suppose that yn ⇀ y weakly in Y and ‖yn‖Y → ‖y‖Y .

Then yn −→ y strongly in Y , as n→ +∞.

See [8] for a proof. The above lemma allows us to prove the following

Proposition 18. Let (ψn)n∈N ⊆ X be a sequence such that ψn → ψ ∈ X
strongly in Lp, for all 1 6 p < 4.

Then, up to a subsequence |ψn|2 → |ψ|2 strongly in L
3
2 , as n→ +∞.
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Proof. We have

‖|ψn|2‖ 3
2

= ‖ψn‖23 −→ ‖ψ‖23 = ‖|ψ|2‖ 3
2

(44)

as n→ +∞, since ψn → ψ strongly in L3.
Moreover, it is easy to see that

‖|ψn|2‖ 3
2

= ‖ψn‖23 6 C (45)

and thus, up to a subsequence, |ψn|2 ⇀ |ψ|2 weakly in L
3
2 .

Then the claim follows by Lemma (17) . �

Proposition 19. The differential of the map F : X −→ R, defined as

F (ψ) :=
1

4

ˆ
Ω
V(ψ)|ψ|2

is compact.

Proof. Let (ψn)n∈N ⊆ X be a bounded sequence. Then the compactness of

the Sobolev embedding H
1
2 (Ω,C2) ↪→ Lp(Ω,C2), for 1 6 p < 4, implies that

ψn → ψ ∈ X, strongly in Lp.
Take ϕ ∈ X with ‖ϕ‖ 6 1. We then have∣∣∣∣ˆ

Ω
(V(ψn)ψn − V(ψ)ψ)ϕ

∣∣∣∣ 6 ˆ
Ω
|(V(ψn)ψn − V(ψn)ψ)ϕ|

+

ˆ
Ω
|(V(ψn)ψ − V(ψ)ψ)ϕ|

(46)

We estimate the first term in the r.h.s. as follows.
Applying the Cauchy-Schwarz we get
ˆ

Ω
|(V(ψn)ψn − V(ψn)ψ)ϕ| 6

(ˆ
Ω
|V(ψn)ϕ|2

) 1
2
(ˆ

Ω
|ψn − ψ|2

) 1
2

6 ‖ϕ‖4‖V(ψn)‖4‖ψn − ψ‖2
6 C‖ψn − ψ‖2 −→ 0

(47)

for n→ +∞, using the fact that (−∆)−
1
2 maps continuously L2 toH1 ↪→ L4,

and V(ψ) = (−∆)−
1
2 |ψ|2.

For the second term in (46), we use again the Cauchy-Schwarz inequality
and get
ˆ

Ω
|(V(ψn)ψ − V(ψ)ψ)ϕ| 6

(ˆ
Ω
|ψϕ|2

) 1
2
(ˆ

Ω
|V(ψn)− V(ψ)|2

) 1
2

6 ‖ϕ‖4‖ψ‖4‖V(ψn)− V(ψ)‖2
6 C‖V(ψn)− V(ψ)‖2 −→ 0

(48)

as n → +∞, since V(ψn) = (−∆)−
1
2 |ψn|2 ∈ W 1, 3

2 (Ω,C2) ↪→ L2(Ω,C2) and

|ψn|2 → |ψ|2 strongly in L
3
2 , as shown in Prop.(18).

Thus combining (47) and (48) we have∣∣∣∣ˆ
Ω

(V(ψn)ψn − V(ψ)ψ)ϕ

∣∣∣∣ −→ 0 (49)

uniformly with respect to ϕ, as n→ +∞. �
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(−∆)−
1
2 is positive preserving. For the sake of brevity we will only sketch

the argument, referring to the mentioned references for more details.
Recall that −∆ is the Dirichlet laplacian on L2(Ω), with domain H1

0 (Ω).
The starting point is the following identity of L2-operators:

(−∆)−
1
2 =

1√
π

ˆ +∞

0
e−t

2∆dt. (50)

Indeed, let (en)n∈N ⊆ L2(Ω) be a Hilbert basis of eigenfunctions of −∆, with
associated eigenvalues 0 < µn ↑ +∞.

For any n ∈ N the operator on the r.h.s. of (50) acts on each en as the
multiplication operator by the function

1√
π

ˆ +∞

0
e−t

2µndt =
1
√
µn
. (51)

To prove the claim it is thus sufficient to prove that the heat kernel e−s∆

is positive-preserving. This follows from the

Theorem 20. (First Beurling-Deny criterion) Let L > 0 be a self-adjoint
operator on L2(Ω). Extend 〈u, Lu〉L2 to all L2 by setting it equal to +∞,
when u doesn’t belong to the form-domain of L. The following are equivalent:

• e−sL is positive-preserving for all s > 0;
• 〈|u|, L|u|〉L2 6 〈u, Lu〉L2 , ∀u ∈ L2(Ω).

A proof of the above result can be found in ([18], Theorem XIII.50).
Taking L = −∆, the second condition in the above theorem corresponds

to the well-known fact that for any u ∈ H1
0 (Ω) there holds

|∇|u|| 6 |∇u| a.e. in Ω

and then

〈|u|, L|u|〉L2 =

ˆ
Ω
|∇|u||2 6

ˆ
Ω
|∇u|2 = 〈u, Lu〉L2

(see Theorem 6.1 in [16]). This concludes the proof.
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