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Optimal Concentration of Information Con-
tent for Log-Concave Densities

Matthieu Fradelizi, Mokshay Madiman and Liyao Wang

Abstract. An elementary proof is provided of sharp bounds for the var-
entropy of random vectors with log-concave densities, as well as for
deviations of the information content from its mean. These bounds sig-
nificantly improve on the bounds obtained by Bobkov and Madiman
(Ann. Probab., 39(4):1528–1543, 2011).
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1. Introduction

Consider a random vector Z taking values in Rn, drawn from the standard
Gaussian distribution γ, whose density is given by

φ(x) =
1

(2π)
n
2
e−
|x|2
2

for each x ∈ Rn, where | · | denotes the Euclidean norm. It is well known that
when the dimension n is large, the distribution of Z is highly concentrated
around the sphere of radius

√
n; that

√
n is the appropriate radius follows by

the trivial observation that E|Z|2 =
∑n
i=1 EZ

2
i = n. One way to express this

concentration property is by computing the variance of |Z|2, which is easy to
do using the independence of the coordinates of Z:

Var(|Z|2) = Var

( n∑
i=1

Z2
i

)
=

n∑
i=1

Var(Z2
i ) = 2n.
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In particular, the standard deviation of |Z|2 is
√

2n, which is much smaller
than the mean n of |Z|2 when n is large. Another way to express this con-
centration property is through a deviation inequality:

P

{
|Z|2

n
− 1 > t

}
≤ exp

{
− n

2
[t− log(1 + t)]

}
(1.1)

for the upper tail, and a corresponding upper bound on the lower tail. These
inequalities immediately follow from Chernoff’s bound, since |Z|2/n is just
the empirical mean of i.i.d. random variables.

It is natural to wonder if, like so many other facts about Gaussian
measures, the above concentration property also has an extension to log-
concave measures (or to some subclass of them). There are two ways one
may think about extending the above concentration property. One is to ask
if there is a universal constant C such that

Var(|X|2) ≤ Cn,
for every random vector X that has an isotropic, log-concave distribution on
Rn. Here, we say that a distribution on Rn is isotropic if its covariance matrix
is the identity matrix; this assumption ensures that E|X|2 = n, and provides
the normalization needed to make the question meaningful. This question has
been well studied in the literature, and is known as the “thin shell conjecture”
in convex geometry. It is closely related to other famous conjectures: it implies
the hyperplane conjecture of Bourgain [13, 14], is trivially implied by the
Kannan-Lovasz-Simonovits conjecture, and also implies the Kannan-Lovasz-
Simonovits conjecture up to logarithmic terms [12]. The best bounds known
to date are those of Guédon and E. Milman [18], and assert that

Var(|X|2) ≤ Cn4/3.
The second way that one may try to extend the above concentration

property from Gaussians to log-concave measures is to first observe that the
quantity that concentrates, namely |Z|2, is essentially the logarithm of the
Gaussian density function. More precisely, since

− log φ(x) =
n

2
log(2π) +

|x|2

2
,

the concentration of |Z|2 about its mean is equivalent to the concentration
of − log φ(Z) about its mean. Thus one can ask if, for every random vector
X that has a log-concave density f on Rn,

Var(− log f(X)) ≤ Cn (1.2)

for some absolute constant C. An affirmative answer to this question was
provided by Bobkov and Madiman [3]. The approach of [3] can be used to
obtain bounds on C, but the bounds so obtained are quite suboptimal (around
1000). Recently V. H. Nguyen [27] (see also [28]) and L. Wang [32] indepen-
dently determined, in their respective Ph.D. theses, that the sharp constant
C in the bound (1.2) is 1. Soon after this work, simpler proofs of the sharp
variance bound were obtained independently by us (presented in the proof of
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Theorem 2.3 in this paper) and by Bolley, Gentil and Guillin [7] (see Remark
4.2 in their paper). An advantage of our proof over the others mentioned is
that it is very short and straightforward, and emerges as a consequence of a
more basic log-concavity property (namely Theorem 2.9) of Lp-norms of log-
concave functions, which may be thought of as an analogue for log-concave
functions of a classical inequality of Borell [8] for concave functions.

If we are interested in finer control of the integrability of − log f(X),
we may wish to consider analogues for general log-concave distributions of
the inequality (1.1). Our second objective in this note is to provide such
an analogue (in Theorem 4.1). A weak version of such a statement was an-
nounced in [4] and proved in [3], but the bounds we provide in this note
are much stronger. Our approach has two key advantages: first, the proof
is transparent and completely avoids the use of the sophisticated Lovasz-
Simonovits localization lemma, which is a key ingredient of the approach in
[3]; and second, our bounds on the moment generating function are sharp,
and are attained for example when the distribution under consideration has
i.i.d. exponentially distributed marginals.

While in general exponential deviation inequalities imply variance bounds,
the reverse is not true. Nonetheless, our approach in this note is to first prove
the variance bound (1.2), and then use a general bootstrapping result (Theo-
rem 3.1) to deduce the exponential deviation inequalities from it. The boot-
strapping result is of independent interest; it relies on a technical condition
that turns out to be automatically satisfied when the distribution in question
is log-concave.

Finally we note that many of the results in this note can be extended to
the class of convex measures; partial work in this direction is done by Nguyen
[28], and results with sharp constants are obtained in the forthcoming paper
[16].

2. Optimal varentropy bound for log-concave distributions

Before we proceed, we need to fix some definitions and notation.

Definition 2.1. Let a random vector X taking values in Rn have probability
density function f . The information content of X is the random variable

h̃(X) = − log f(X). The entropy of X is defined as h(X) = E(h̃(X)). The

varentropy of a random vector X is defined as V (X) = Var(h̃(X)).

Note that the entropy and varentropy depend not on the realization of X
but only on its density f , whereas the information content does indeed depend
on the realization of X. For instance, one can write h(X) = −

∫
Rn f log f and

V (X) = Var(log f(X)) =

∫
Rn

f(log f)2 −
(∫

Rn

f log f

)2

.

Nonetheless, for reasons of convenience and in keeping with historical con-
vention, we slightly abuse notation as above.



4 Fradelizi, Madiman and Wang

As observed in [3], the distribution of the difference h̃(X) − h(X) is

invariant under any affine transformation of Rn (i.e., h̃(TX) − h(TX) =

h̃(X)−h(X) for all invertible affine maps T : Rn → Rn); hence the varentropy
V (X) is affine-invariant while the entropy h(X) is not.

Another invariance for both h(X) and V (X) follows from the fact that
they only depend on the distribution of log(f(X)), so that they are unchanged
if f is modified in such a way that its sublevel sets keep the same volume. This
implies (see, e.g., [25, Theorem 1.13]) that if f̃ is the spherically symmetric,

decreasing rearrangement of f , and X̃ is distributed according to the density
f̃ , then h(X) = h(X̃) and V (X) = V (X̃). The rearrangement-invariance
of entropy was a key element in the development of refined entropy power
inequalities in [33].

Log-concavity is a natural shape constraint for functions (in particular,
probability density functions) that represents an infinite-dimensional gener-
alization of the class of Gaussian distributions.

Definition 2.2. A function f : Rn → [0,∞) is log-concave if f can be written
as

f(x) = e−U(x),

where U : Rn 7→ (−∞,+∞] is a convex function, i.e., U(tx + (1 − t)y) ≤
tU(x) + (1 − t)U(y) for any x, y and 0 < t < 1. When f is a probability
density function and is log-concave, we say that f is a log-concave density.

We can now state the optimal form of the inequality (1.2), first obtained
by Nguyen [27] and Wang [32] as discussed in Section 1.

Theorem 2.3. [27, 32] Given a random vector X in Rn with log-concave den-
sity f ,

V (X) ≤ n

Remark 2.4. The probability bound does not depend on f– it is universal over
the class of log-concave densities.

Remark 2.5. The bound is sharp. Indeed, let X have density f = e−ϕ, with
ϕ : Rn → [0,∞] being positively homogeneous of degree 1, i.e., such that
ϕ(tx) = tϕ(x) for all t > 0 and all x ∈ Rn. Then one can check that the
random variable Y = ϕ(X) has a gamma distribution with shape parameter
n and scale parameter 1, i.e., it is distributed according to the density given
by

fY (t) =
tn−1e−t

(n− 1)!
.

Consequently E(Y ) = n and E(Y 2) = n(n + 1), and therefore V (X) =
Var(Y ) = n. Particular examples of equality include:

1. The case where ϕ(x) =
∑n
i=1 xi on the cone of points with non-negative

coordinates (which corresponds to X having i.i.d. coordinates with the
standard exponential distribution), and
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2. The case where ϕ(x) = inf{r > 0 : x ∈ rK} for some compact convex set
K containing the origin (which, by taking K to be a symmetric convex
body, includes all norms on Rn suitably normalized so that e−ϕ is a
density).

Remark 2.6. Bolley, Gentil and Guillin [7] in fact prove a stronger inequality,
namely,

1

V (X)
− 1

n
≥
[
E
{
∇U(X) ·Hess(U(X))−1∇U(X)

}]−1
.

This gives a strict improvement of Theorem 2.3 when the density f = e−U

of X is strictly log-concave, in the sense that Hess(U(X)) is, almost surely,
strictly positive definite. As noted by [7], one may give another alternative
proof of Theorem 2.3 by applying a result of Hargé [19, Theorem 2].

In order to present our proof of Theorem 2.3, we will need some lem-
mata. The first one is a straightforward computation that is a special case of
a well known fact about exponential families in statistics, but we write out a
proof for completeness.

Lemma 2.7. Let f be any probability density function on Rn such that f ∈
Lα(Rn) for each α > 0, and define

F (α) = log

∫
Rn

fα.

Let Xα be a random variable with density fα on Rn, where

fα :=
fα∫

Rn fα
.

Then F is infinitely differentiable on (0,∞), and moreover, for any α > 0,

F ′′(α) =
1

α2
V (Xα).

Proof. Note that the assumption that f ∈ Lα(Rn) (or equivalently that
F (α) < ∞) for all α > 0 guarantees that F (α) is infinitely differentiable
for α > 0 and that we can freely change the order of taking expectations and
differentiation.

Now observe that

F ′(α) =

∫
fα log f∫
fα

=

∫
fα log f ;

if we wish, we may also massage this to write

F ′(α) =
1

α
[F (α)− h(Xα)]. (2.1)
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Differentiating again, we get

F ′′(α) =

∫
fα(log f)2∫

fα
−
(∫

fα log f∫
fα

)2

=

∫
fα(log f)2 −

(∫
fα log f

)2

= Var[log f(Xα)] = Var

[
1

α
{log fα(Xα) + F (α)}

]
=

1

α2
Var[log fα(Xα)] =

V (Xα)

α2
,

as desired. �

The following lemma is a standard fact about the so-called perspective
function in convex analysis. The use of this terminology is due to Hiriart-
Urruty and Lemaréchal [20, p. 160] (see [10] for additional discussion), al-
though the notion has been used without a name in convex analysis for a
long time (see, e.g., [30, p. 35]). Perspective functions have also seen recent
use in convex geometry [11, 2, 16]) and empirical process theory [31]. We give
the short proof for completeness.

Lemma 2.8. If U : Rn → R ∪ {+∞} is a convex function, then

w(z, α) := αU(z/α)

is a convex function on Rn × (0,+∞).

Proof. First note that by definition, w(az, aα) = aw(z, α) for any a > 0 and
any (z, α) ∈ Rn × (0,+∞), which implies in particular that

1

α
w(z, α) = w

(
z

α
, 1

)
.

Hence

w(λz1 + (1− λ)z2, λα1 + (1− λ)α2)

= [λα1 + (1− λ)α2]U

(
λα1

z1
α1

+ (1− λ)α2
z2
α2

λα1 + (1− λ)α2

)
≤ λα1U

(
z1
α1

)
+ (1− λ)α2U

(
z2
α2

)
= λw(z1, α1) + (1− λ)w(z2, α2),

for any λ ∈ [0, 1], z1, z2 ∈ Rn, and α1, α2 ∈ (0,∞). �

The key observation is the following theorem.

Theorem 2.9. If f is log-concave on Rn, then the function

G(α) := αn
∫
f(x)αdx

is log-concave on (0,+∞).
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Proof. Write f = e−U , with U convex. Make the change of variable x = z/α
to get

G(α) =

∫
e−αU(z/α)dz.

The function w(z, α) := αU(z/α) is convex on Rn × (0,+∞) by Lemma 2.8,
which means that the integrand above is log-concave. The log-concavity of
G then follows from Prékopa’s theorem [29], which implies that marginals of
log-concave functions are log-concave. �

Remark 2.10. An old theorem of Borell [8, Theorem 2] states that if f is
concave on Rn, then Gf (p) := (p+ 1) · · · (p+n)

∫
fpis log-concave as a func-

tion of p ∈ (0,∞). Using this and the fact that a log-concave function is a
limit of α-concave functions with α → 0, one can obtain an alternate, indi-
rect proof of Theorem 2.9. One can also similarly obtain an indirect proof of
Theorem 2.9 by considering a limiting version of [5, Theorem VII.2], which
expresses a log-concavity property of (p− 1) . . . (p− n)

∫
φ−p for any convex

function φ on Rn, for p > n+1 (an improvement of this to the optimal range
p > n is described in [16, 2], although this is not required for this alternate
proof of Theorem 2.9).

Proof of Theorem 2.3. Since f is a log-concave density, it necessarily holds
that f ∈ Lα(Rn) for every α > 0; in particular, G(α) := αn

∫
fα is finite and

infinitely differentiable on the domain (0,∞). By definition,

logG(α) = n logα+ log

∫
fα = n logα+ F (α).

Consequently,

d2

dα2
[logG(α)] = − n

α2
+ F ′′(α).

By Theorem 2.9, logG(α) is concave, and hence we must have that

− n

α2
+ F ′′(α) ≤ 0

for each α > 0. However, Lemma 2.7 implies that F ′′(α) = V (Xα)/α2, so
that we obtain the inequality

V (Xα)− n
α2

≤ 0.

For α = 1, this implies that V (X) ≤ n. �

Notice that if f = e−U , where U : Rn → [0,∞] is positively homo-
geneous of degree 1, then the same change of variable as in the proof of
Theorem 2.9 shows that

G(α) =

∫
e−αU(z/α)dz =

∫
e−U(z)dz =

∫
f(z)dz = 1.

Hence the functionG is constant. Then the proof above shows that V (X) = n,
which establishes the equality case stated in Remark 2.5.
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3. A general bootstrapping strategy

The purpose of this section is to describe a strategy for obtaining exponential
deviation inequalities when one has uniform control on variances of a family
of random variables. Log-concavity is not an assumption made anywhere in
this section.

Theorem 3.1. Suppose X ∼ f , where f ∈ Lα(Rn) for each α > 0. Let
Xα ∼ fα, where

fα(x) =
fα(x)∫
fα

.

If K = K(f) := supα>0 V (Xα), then

E
[
eβ{h̃(X)−h(X)}] ≤ eKr(−β), β ∈ R,

where

r(u) =

{
u− log(1 + u) for u > −1
+∞ for u ≤ −1 .

Proof. Suppose X is a random vector drawn from a density f on Rn, and
define, for each α > 0, F (α) = log

∫
fα. Set

K = sup
α>0

V (Xα) = sup
α>0

α2F ′′(α);

the second equality follows from Lemma 2.7. Since f ∈ Lα(Rn) for each α > 0,
F (α) is finite and moreover, infinitely differentiable for α > 0, and we can
freely change the order of integration and differentiation when differentiating
F (α).

From Taylor-Lagrange formula, for every α > 0, one has

F (α) = F (1) + (α− 1)F ′(1) +

∫ α

1

(α− u)F ′′(u)du.

Using that F (1) = 0, F ′′(u) ≤ K/u2 for every u > 0 and the fact that for
0 < α < u < 1, one has α− u < 0, we get

F (α) ≤ (α− 1)F ′(1) +K

∫ α

1

α− u
u2

du

= (α− 1)F ′(1) +K
[
−α
u
− log(u)

]α
1
.

Thus, for α > 0, we have proved that

F (α) ≤ (α− 1)F ′(1) +K(α− 1− logα).

Setting β = 1− α, we have for β < 1 that

eF (1−β) ≤ e−βF
′(1)eK(−β−log(1−β)). (3.1)

Observe that eF (1−β) =
∫
f1−β = E[f−β(X)] = E[e−β log f(X)] = E

[
eβh̃(X)

]
and e−βF

′(1) = eβh(X); the latter fact follows from the fact that F ′(1) =
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−h(X) as is clear from the identity (2.1). Hence the inequality (3.1) may be
rewritten as

E
[
eβ{h̃(X)−h(X)}] ≤ eKr(−β), β ∈ R. (3.2)

�

Remark 3.2. We note that the function r(t) = t − log(1 + t) for t > −1,
(or the related function h(t) = t log t − t + 1 for t > 0, which satisfies
sh(t/s) = tr1(s/t) for r1(u) = r(u − 1)) appears in many exponential con-
centration inequalities in the literature, including Bennett’s inequality [1] (see
also [9]), and empirical process theory [34]. It would be nice to have a clearer
understanding of why these functions appear in so many related contexts even
though the specific circumstances vary quite a bit.

Remark 3.3. Note that the function r is convex on R and has a quadratic

behavior in the neighborhood of 0 (r(u) ∼0
u2

2 ) and a linear behavior at +∞
(r(u) ∼∞ u).

Corollary 3.4. With the assumptions and notation of Theorem 3.1, we have
for any t > 0 that

P{h̃(X)− h(X) ≥ t} ≤ exp

{
−Kr

(
t

K

)}
P{h̃(X)− h(X) ≤ −t} ≤ exp

{
−Kr

(
− t

K

)}
The proof is classical and often called the Cramér-Chernoff method (see

for example section 2.2 in [9]). It uses the Legendre transform ϕ∗ of a convex
function ϕ : R→ R ∪ {+∞} defined for y ∈ R by

ϕ∗(y) = sup
x
xy − ϕ(x).

Notice that if minϕ = ϕ(0) then for every y > 0, the supremum is reached
at a positive x, that is ϕ∗(y) = supx>0 xy − ϕ(x). Similarly, for y < 0, the
supremum is reached at a negative x.

Proof. The idea is simply to use Markov’s inequality in conjunction with
Theorem 3.1, and optimize the resulting bound.

For the lower tail, we have for β > 0 and t > 0,

P[h̃(X)− h(X) ≤ −t] ≤ E

[
e−β
(
h̃(X)−h(X)

)]
e−βt

≤ exp

{
K

(
r(β)− βt

K

)}
.

Thus minimizing on β > 0, and using the remark before the proof, we get

P[h̃(X)− h(X) ≤ −t] ≤ exp

{
−K sup

β>0

(
βt

K
− r(β)

)}
= e−Kr

∗( t
K ). (3.3)
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Let us compute the Legendre transform r∗ of r. For every t, one has

r∗(t) = sup
u
tu− r(u) = sup

u>−1
(tu− u+ log(1 + u)) .

One deduces that r∗(t) = +∞ for t ≥ 1. For t < 1, by differentiating, the
supremum is reached at u = t/(1− t) and replacing in the definition we get

r∗(t) = −t− log(1− t) = r(−t).

Thus r∗(t) = r(−t) for all t ∈ R. Replacing, in the inequality (3.3), we get
the result for the lower tail.

For the upper tail, we use the same argument: for β > 0 and t > 0,

P[h̃(X)− h(X) ≥ t] ≤ E

[
eβ
(
h̃(X)−h(X)

)]
e−βt

≤ exp

{
K

(
r(−β)− βt

K

)}
.

Thus minimizing on β > 0, we get

P[h̃(X)− h(X) ≥ t] ≤ exp

{
−K sup

β>0

(
βt

K
− r(−β)

)}
. (3.4)

Using the remark before the proof, in the right hand side term appears the
Legendre transform of the function r̃ defined by r̃(u) = r(−u). Using that
r∗(t) = r(−t) = r̃(t), we deduce that (r̃)∗ = (r∗)∗ = r. Thus the inequality
(3.4) gives the result for the upper tail.

�

4. Conclusion

The purpose of this section is to combine the results of Sections 2 and 3 to
deduce sharp bounds for the moment generating function of the information
content of random vectors with log-concave densities. Naturally these yield

good bounds on the deviation probability of the information content h̃(X)

from its mean h(X) = Eh̃(X). We also take the opportunity to record some
other easy consequences.

Theorem 4.1. Let X be a random vector in Rn with a log-concave density f .
For β < 1,

E

[
eβ[h̃(X)−h(X)]

]
≤ E

[
eβ[h̃(X

∗)−h(X∗)]
]
,

where X∗ has density f∗ = e−
∑n

i=1 xi , restricted to the positive quadrant.

Proof. Taking K = n in Theorem 3.1 (which we can do in the log-concave
setting because of Theorem 2.3), we obtain:

E
[
eβ{h̃(X)−h(X)}] ≤ enr(−β), β ∈ R.
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Some easy computations will show:

E
[
eβ{h̃(X

∗)−h(X∗)}] = enr(−β), β ∈ R.
This concludes the proof.

�

As for the case of equality of Theorem 2.3, discussed in Remark 2.5,
notice that there is a broader class of densities for which one has equality in
Theorem 4.1, including all those of the form e−‖x‖K , where K is a symmetric
convex body.

Remark 4.2. The assumption β < 1 in Theorem 4.1 is strictly not required;
however, for β ≥ 1, the right side is equal to +∞. Indeed, already for β = 1,
one sees that for any random vector X with density f ,

E
[
eh̃(X)−h(X)

]
= e−h(X)E

[
1

f(X)

]
= e−h(X)

∫
supp(f)

dx

= e−h(X)Voln(supp(f)),

where supp(f) = {x ∈ Rn : f(x) > 0} is the support of the density f and Voln
denotes Lebesgue measure on Rn. In particular, this quantity for X∗, whose
support has infinite Lebesgue measure, is +∞.

Remark 4.3. Since

lim
α→0

2

α2
E

[
eα(log f(X)−E[log f(X)])

]
= V (X),

we can recover Theorem 2.3 from Theorem 4.1.

Taking K = n in Corollary 3.4 (again because of Theorem 2.3), we
obtain:

Corollary 4.4. Let X be a random vector in Rn with a log-concave density f .
For t > 0,

P[h̃(X)− h(X) ≤ −nt] ≤ e−nr(−t),
P[h̃(X)− h(X) ≥ nt] ≤ e−nr(t),

where r(u) is defined in Theorem 3.1.

The original concentration of information bounds obtained in [3] were
suboptimal not just in terms of constants but also in the exponent; specifically
it was proved there that

P

{
1

n

∣∣h̃(X)− h(X)
∣∣ ≥ t} ≤ 2 e−ct

√
n (4.1)

for a universal constant c > 1/16 (and also that a better bound with ct2n in
the exponent holds on a bounded range, say, for t ∈ (0, 2]). One key advantage
of the method presented in this paper, apart from its utter simplicity, is the
correct linear dependence of the exponent on dimension. Incidentally, we
learnt from a lecture of B. Klartag [22] that another proof of (4.1) can be
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given based on the concentration property of the eigenvalues of the Hessian
of the Brenier map (corresponding to optimal transportation from one log-
concave density to another) that was discovered by Klartag and Kolesnikov
[23]; however, the latter proof shares the suboptimal

√
nt exponent of [3].

The following inequality is an immediate corollary of Corollary 4.4 since
it merely expresses a bound on the support of the distribution of the infor-
mation content.

Corollary 4.5. Let X have a log-concave probability density function f on Rn.
Then:

h(X) ≤ − log ‖f‖∞ + n.

Proof. By Corollary 4.4, almost surely,

log f(X) ≤ E[log f(X)] + n,

since when t ≥ 1, P[log f(X)−E[log f(X)] ≥ nt] = 0. Taking the supremum
over all realizable values of X yields

log ‖f‖∞ ≤ E[log f(X)] + n,

which is equivalent to the desired statement. �

Corollary 4.5 was first explicitly proved in [5], where several applications
of it are developed, but it is also implicitly contained in earlier work (see, e.g.,
the proof of Theorem 7 in [17]).

An immediate consequence of Corollary 4.5, unmentioned in [5], is a
result due to [15]:

Corollary 4.6. Let X be a random vector in Rn with a log-concave density f .
Then

‖f‖∞ ≤ enf(E[X]).

Proof. By Jensen’s inequality,

log f(EX) ≥ E[log f(X)].

By Corollary 4.5,

E[log f(X)] ≥ log ‖f‖∞ − n.

Hence,

log f(EX) ≥ log ‖f‖∞ − n.

Exponentiating concludes the proof. �

Finally we mention that the main result may also be interpreted as a
small ball inequality for the random variable f(X). As an illustration, we
record a sharp form of [24, Corollary 2.4] (cf., [21, Corollary 5.1] and [6,
Proposition 5.1]).
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Corollary 4.7. Let f be a log-concave density on Rn. Then

P{f(X) ≥ cn‖f‖∞} ≥ 1−
(
e · c · log

(
1

c

))n
,

where 0 < c < 1
e .

Proof. Note that

P{f(X) ≤ cn‖f‖∞} = P{log f(X) ≤ log ‖f‖∞ + n log c}

= P{h̃(X) ≥ − log ‖f‖∞ − n log c}

≤ P{h̃(X) ≥ h(X)− n(1 + log c)}.
using Corollary 4.5 for the last inequality. Applying Corollary 4.4 with t =
− log c− 1 yields

P{f(X) ≤ cn‖f‖∞} ≤ e−nr(−1−log c).
Elementary algebra concludes the proof. �

Such “effective support” results are useful in convex geometry as they
can allow to reduce certain statements about log-concave functions or mea-
sures to statements about convex sets; they thus provide an efficient route to
proving functional or probabilistic analogues of known results in the geometry
of convex sets. Instances where such a strategy is used include [24, 6]. These
and other applications of the concentration of information phenomenon are
discussed in [26].
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equality? (and why one may want to). Preprint, 2015.

[3] S. Bobkov and M. Madiman. Concentration of the information in data with
log-concave distributions. Ann. Probab., 39(4):1528–1543, 2011.

[4] S. Bobkov and M. Madiman. Dimensional behaviour of entropy and informa-
tion. C. R. Acad. Sci. Paris Sér. I Math., 349:201–204, Février 2011.

[5] S. Bobkov and M. Madiman. The entropy per coordinate of a random vector is
highly constrained under convexity conditions. IEEE Trans. Inform. Theory,
57(8):4940–4954, August 2011.



14 Fradelizi, Madiman and Wang

[6] S. Bobkov and M. Madiman. Reverse Brunn-Minkowski and reverse entropy
power inequalities for convex measures. J. Funct. Anal., 262:3309–3339, 2012.

[7] F. Bolley, I. Gentil, and A. Guillin. Dimensional improvements of the
logarithmic sobolev, talagrand and brascamp-lieb inequalities. Preprint,
arXiv:1507:01086, July 2015.

[8] C. Borell. Complements of Lyapunov’s inequality. Math. Ann., 205:323–331,
1973.

[9] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford
University Press, Oxford, 2013. A nonasymptotic theory of independence, With
a foreword by Michel Ledoux.

[10] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, Cambridge, 2004.

[11] D. Cordero-Erausquin, M. Fradelizi, G. Paouris, and P. Pivovarov. Volume of
the polar of random sets and shadow systems. Math. Ann., 2014.

[12] R. Eldan. Thin shell implies spectral gap up to polylog via a stochastic local-
ization scheme. Geom. Funct. Anal., 23(2):532–569, 2013.

[13] R. Eldan and B. Klartag. Approximately gaussian marginals and the hyper-
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