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Abstract

This work presents a novel approach to construct surrogate models of parametric Differential Algebraic Equations
based on a tensor representation of the solutions. The procedure consists in building simultaneously, for every output
of the reference model, an approximation given in tensor-train format. A parsimonious exploration of the parameter
space coupled with a compact data representation allows to alleviate the curse of dimensionality. The approach is thus
appropriate when many parameters with large domains of variation are involved. The numerical results obtained for
a nonlinear elasto-viscoplastic constitutive law show that the constructed surrogate model is sufficiently accurate to
enable parametric studies such as the calibration of material coefficients.

Keywords: parameter-dependent model, surrogate modeling, tensor-train decomposition, Gappy POD,
heterogeneous data, elasto-viscoplasticity

1. Introduction

Predictive numerical simulations in solid mechanics require complex material laws that involve systems of highly
nonlinear Differential Algebraic Equations (DAEs). These models are essential in challenging industrial applications,
for instance to study the effects of the extreme thermo-mechanical loadings that turbine blades may sustain in heli-
copter engines [1, 2]. These DAE systems are referred to as constitutive laws in the material science community. They
express, for a specific material, the relationship between the mechanical quantities such as the strain, the stress and
miscellaneous internal variables, and stand as the closure relations of the physical equations of mechanics. Complex
constitutive equations are often tuned through a set of parameters called material coefficients.

An appropriate calibration of these coefficients is necessary to ensure that the numerical model mimics the actual
physical behavior. Numerical parametric studies, consisting in analyzing the influence of the parameter values on the
solutions, are typically used to perform the identification. However, when the number of parameters increases and
unless the computational effort required for a single numerical simulation is negligible, the exploration of the param-
eter domain turns into a tedious task and exhaustive analyses become unfeasible. Moreover, defining an unambiguous
criterion measuring the fidelity of the model to experimental data is a challenge for models with complex behaviors.

A common technique is to rely on a surrogate model (or metamodel) that maps the input parameters to the outputs
of interest of the physical model. Once built, the surrogate model can be exploited very efficiently during a so-called
online phase since its evaluation is very cheap compared to the original model. The real-time response provided by
the metamodel for any parameter value helps carrying out parametric studies. In material science, the robustness of
the calibration process could be dramatically improved if this type of methodology was followed.

The idea of representing the set of all possible parameter-dependent solutions of ODEs and PDEs as a multiway
tensor was introduced with the Proper Generalized Decomposition (PGD) [3–5]. In this representation, each dimen-
sion corresponds to a spatial/temporal coordinate or a parameter coefficient. The resulting tensor is never assembled

∗Corresponding author
Email addresses: clement.olivier@safrangroup.com (Clément Olivier), david.ryckelynck@mines-paristech.fr (David

Ryckelynck), julien.cortial@safrangroup.com (Julien Cortial)

Preprint submitted to Elsevier April 19, 2017



explicitly but instead remains an abstract object for which a low-rank approximation based on a Canonical Polyadic
decomposition [6] is computed. The PGD method further alleviates the curse of dimensionality by introducing a
multidimensional weak formulation over the entire parameter space, and the solutions are sought in a particular form
where all variables are separated. When differential operators admit a tensor decomposition, the PGD method is very
efficient because the multiple integrals involved in the multidimensional weak form of the equations are simplified as
a sum of products of simple integrals.

Unfortunately realistic constitutive equations as well as less sophisticated elasto-viscoplastic models admit no
tensor decomposition with respect to the material coefficients and the time variables. An extension of the PGD to
highly nonlinear laws is therefore non-trivial. However, many other tensor decomposition approaches have been
successfully proposed to approximate functions or solutions of differential equations defined over high dimensional
spaces. We refer the reader to [7–9] for detailed reviews on tensor decomposition techniques and their applications.
Among the existing formats – CP decomposition [6, 10, 11], Tucker decomposition [8, 12], Hierarchical Tucker
decomposition [8, 13] – this work investigates the tensor-train (TT) decomposition [14, 15]. The TT-cross algorithm,
introduced in [14] and further developed in [16, 17], is a practical procedure to build an approximation of a given
tensor under the tensor-train format.

In the present work, an alternative procedure inspired by the TT-cross algorithm is developed. As its original
counterpart, it does not break down when only a parsimonious exploration of the physics-based tensors is affordable,
in particular when their entries are solutions of a DAE system involving a high-dimensional parameter space. All
outputs of interest of the physical model are grouped into a set of physics-based tensor representations according
to their physical units or specific end user requirements. Then the proposed non-intrusive method enables to build
simultaneously TT approximations for all these objects. The original aspects of this work are:

• The introduction of an abstract TT approximation algorithm framework that encompasses TT construction pro-
cedures such as the TT-SVD and the left-to-right sweep of the TT-cross and enables the use of alternative
low-rank approximations instead of the Singular Value Decomposition (SVD) or the Pseudo-Skeleton Decom-
position (PSD);

• The development of a variant of the abstract TT algorithm based on a Gappy POD formulation that accom-
modates the heterogeneous, real-valued outputs that are ubiquitous in mechanics of materials. The resulting
procedure – termed Multiple TT algorithm in the sequel – constructs an arbitrary number of tensor representa-
tions based on a shared sampling set of the parameter domain;

• The application of the proposed tensor-decomposition-based methodology to the numerical solution of a highly
nonlinear elasto-viscoplastic constitutive law.

The text is organized as follows. Section 2 introduces the notations required for the subsequent developments.
Section 3 presents the tensor-train format and a multilinear interpolation method is detailed in Section 4. Section 5
details an abstract TT algorithm that generates an approximate tensor-train decomposition of a reference tensor. The
key step of the algorithm, namely the low-rank matrix approximation, is discussed in Section 6. Section 7 introduces
a general formulation for a class of DAE systems covered by the proposed approach. The Multiple TT algorithm
detailed in Section 8 generalizes the previously introduced TT algorithm for heterogeneous, multiple outputs. Section
9 describes the nonlinear elasto-viscoplastic law used in the numerical application and presents the associated results.
Finally, some perspectives are discussed in Section 10.

2. Notations

A tensor of order d A ∈ Rn1×···×nd (denoted with bold calligraphic letter) refers to a multidimensional array (also
called multiway array).

The entry ofA identified by the indices (i1, . . . id) ∈ I1 × · · · × Id is denoted by:

A(i1, . . . , id) ∈ R

where Ik = [1 : nk] is the set of natural numbers from 1 to nk (inclusive) for k = 1, . . . , d.
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The bracket notation allows to define a tensor as the collection of its elements:

A = [A(i1, . . . , id), ∀ (i1, . . . , id) ∈ I1 × · · · × Id]

When the respective ranges of definition of the indices are obvious, the notation can be shortened as follows:

A = [A(i1, . . . , id)]

The shape of a tensor is the tuple constituted by the size of all dimensions (in the above example (n1, . . . , nd)).
Given a tensor, the reshape operation returns a tensor of different shape with similar elements, referred to as a re-
shaped tensor. More specifically, the process of reshaping consists in re-indexing the reference tensor. From a given
tensorA ∈ Rn1×···×nd the association of consecutive dimensions enables to define reshaped tensors. For instance, the
association of the q consecutive dimensions p, (p + 1), . . . , (p + q − 1) yields a tensor of order (d − q + 1):

B ∈ Rn1×···×np−1×n̄p×np+q×···×nd where n̄p =

p+q−1∏
k=p

nk

and the relation between the elements of both tensors are given by:

A(i1, . . . , id) = B
(
i1, . . . , ip−1, ı̄p, ip+q, . . . , id

)
where ı̄p = ip +

p+q−1∑
k=p+1

(ik − 1)
k−1∏
l=p

nl (1)

When using the bracket notation, the association of dimensions is denoted by adding parentheses around the
indices thus creating a multi-index [18]. The equality (1) can be written as:

B =
[
A

(
i1, . . . , ip−1,

(
ip, . . . , i(p+q−1)

)
, i(p+q), . . . , id

)]
Two particular types of reshaping will be used in the rest of the article.
First, the matricization consists in re-indexing the elements in order to interpret a tensor as a matrix (a 2nd-order

tensor). The qth matricization of A denoted by 〈A〉q consists in associating the dimensions of A into two groups,
the q leading dimensions and the (d − q) trailing dimensions, such that the newly defined multi-indices enumerate
respectively the rows and columns of the matrix 〈A〉q. 〈A〉q is given with the bracket notation as:

〈A〉q =
[
A

(
(i1, . . . , iq), (iq+1, . . . , id)

)]
∈ R(n1...nq)×(nq+1...nd)

Second, for a given tensorA, the squeeze operation returns a tensorA? for which all dimensions of size 1 have
been removed. For instance,A ∈ R10×10×1 is transformed intoA? ∈ R10×10 such that:

A
?(i, j) =A(i, j, 1) ∀(i, j) ∈ [1 : 10]2

The Frobenius norm is denoted by ‖.‖ without the usual subscript F . ForA ∈ Rn1×...nd , it reads:

‖A‖ =

√ ∑
i1,...,id∈I1×···×Id

A(i1, . . . , id)2

The Frobenius norm of a tensor is invariant under re-indexing. In particular, all matricizations of a given tensor
share the same Frobenius norm.

The usual 2-norm of a matrix A ∈ Rn×m is denoted by ‖A‖2.
Define the tensor dot product • such that for A ∈ Rn1×···×np×r and B ∈ Rr×m1×···×mq the entries of the tensor

C =A • B ∈ Rn1×···×np×m1×···×mq are given by:

C(i1, . . . , ip, j1, . . . , jq) =

r∑
α=1

A(i1, . . . , ip, α)B(α, j1, . . . , jp)
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Considering the matrix A ∈ Rn×m, define the column selection matrix Q ∈ Rm×s associated with the set of column
indices J =

{
J (1), . . . ,J (s)

}
⊂ [1 : m] of A:

Q(i, j) = δi,J ( j) ∀(i, j) ∈ [1 : m] × [1 : s] (2)

where δ denotes the Kronecker delta.
The colon notation [19, Sections 1.1.8 and 1.2.9] is used to denote the extraction of a submatrix. The matrix

product of A by Q yields a submatrix constituted by the columns J of A such as:

AQ = A(:,J)

Similarly, define the row selection matrix P ∈ Rn×s associated with the set of row indices I =
{
I(1), . . . ,I(s)

}
⊂

[1 : n] of A:

P(i, j) = δi,I( j) ∀(i, j) ∈ [1 : n] × [1 : s] (3)

Extracting the rows I of A consists in applying the transpose of P to the matrix A such that:

PT A = A(I, :)

Remark 1. All column and row selection matrices have orthogonal columns.

3. Tensor-train format

The storage complexity for all elements of a tensor A ∈ Rn1×···×nd is O(nd) where n = max(n1, . . . , nd). The
exponential dependence on the order d prohibits to store simultaneously and explicitly all elements of the tensor even
for a “small” d. However, in the case of low-rank tensors, some representations based on tensor decompositions
enable their actual storage.

A tensor T ∈ Rn1×···×nd is said to be in tensor-train format (TT format) if its elements are given by the following
matrix products:

T (i1, . . . , id) = G1(i1) . . .Gd(id) ∈ R (4)

where for k = 1, . . . , d, the so-called tensor carriages (or core tensors) are such that:

Gk(ik) ∈ Rrk−1×rk ∀ik ∈ Ik

In the original definition of the tensor-train format [14], the leading and trailing factors (corresponding to G1(i1)
and Gd(id) for any choice of i1 and id) are respectively row and column vectors. The convention r0 = rd = 1 is adopted
so that row matrices G1(i1) and column matrices Gd(id) can be interpreted as vectors depending on the context.

The tensor carriages Gk can be further interpreted are 3rd-order tensors Gk ∈ Rrk−1×nk×rk with:

Gk(ik)(p, q) = Gk(p, ik, q) ∀(ik, p, q) ∈ Ik × [1 : rk−1] × [1 : rk]

The TT decomposition can be equivalently written:

T (i1, . . . , id) =

r1∑
α1=1

· · ·

rd−1∑
αd−1=1

G
?
1 (i1, α1)G2(α1, i2, α2) . . .Gd−1(αd−2, id−1, αd−1)G?d (αd−1, id) (5)

where G?1 and G?d are the squeezed versions of G1 and Gd.
Using the tensor dot product notation, Equation (5) can be compactly rewritten:

T = G?1 •G2 • · · · •Gd−1 •G
?
d (6)
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The TT format allows significant gains in terms of memory storage and therefore is well-suited to high order
tensors. The storage complexity is O(nr̄2d) where r̄ = max(r1, . . . , rd−1) and depends linearly on the order d of the
tensor. In many applications of practical interest the small TT-ranks rk enable to alleviate the curse of dimensionality
[14].

The sequential computational complexity of the evaluation of a single element of a tensor in TT format is O
(
dr̄2

)
.

Assuming that r̄ is small enough, the low computational cost allows a real-time evaluation of the underlying tensor.
Therefore, in terms of online exploitation, this representation conforms with the expected requirements of the surro-
gate model. Figure 1 illustrates the sequence of matrix multiplications required to compute one element of the tensor
train.

x x x x

Figure 1: Illustration of the evaluation of one element of the tensor train. The entry T (i1, . . . , id) ∈ R is obtained by multiplying the set of matrices
G1(i1),G2(i2) . . . ,Gd(id) identified by a darker shade.

4. Piecewise multilinear interpolation using the TT format

Implementations of basic operations such as addition and multiplication have been addressed [15] for tensor-train
representations. More complex operations such as convolutions, scalar products, norms, contractions, Hadamard prod-
uct and high-dimensional integration of functions, have also been studied [14, 15]. The case of piecewise multilinear
interpolation is addressed here.

Consider a multidimensional function defined over a discretized domain of dimension d. The ‘naive’ piecewise
multilinear interpolation of the function theoretically requires the evaluation of 2d points. However, the multilin-
ear interpolation is a tensor product of one-dimensional piecewise linear interpolations. Considering a tensor-train
representation of the function and exploiting its particular structure, an efficient formula to compute the piecewise
multilinear interpolation can be derived.

Consider a function:

F∆ : D∆ = D∆
1 × · · · × D

∆
d → R

(µ1, . . . , µd) 7→ F∆(µ1, . . . , µd) (7)

where the definition domainD∆ is the Cartesian product of the setsD∆
k representing discretized intervals of R:

D∆
k =

{
µ(ik)

k ∈ R | ∀ik ∈ Ik

}
with Ik = [1 : nk] (8)

with

µ(1)
k < µ(2)

k < · · · < µ(nk)
k (9)

The function F∆ is naturally associated with the tensor T ∈ Rn1×...nd such that:

T (i1, . . . , id) = F∆
(
µ(i1)

1 , . . . , µ(id)
d

)
∀ (i1, . . . , id) ∈ I1 × · · · × Id (10)

Assume that the latter admits a tensor-train decomposition such that:

T (i1, . . . , id) = G1(i1) . . .Gd(id) (11)
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with

Gk(ik) ∈ Rrk−1×rk ∀ik ∈ Ik (12)

Define the continuous domain D = D1 × · · · × Dd such that Dk =
[
µ(1)

k , µ(nk)
k

]
are intervals of R. Define over D a

function F which corresponds to F∆ onD∆ and is a piecewise multilinear interpolation overD.

Proposition 1. The evaluation of F at the point (µ1, . . . , µd) ∈ D reads:

F(µ1, . . . , µd) = L1(µ1) . . . Ld(µd) (13)

with

Lk(µk) =
1

µ̂+1
k − µ̂

−1
k

[(
µ̂+1

k − µk

)
Gk

(
i−1
k

)
−

(
µ̂−1

k − µk

)
Gk

(
i+1
k

)]
where µ̂+1

k and µ̂−1
k are respectively the upper and lower closest elements to µk that belong toD∆

k , and i−1
k and i+1

k are
defined such that:

µ̂+1
k = µ

(i+1
k )

k and µ̂−1
k = µ

(i−1
k )

k (14)

The proof is given in Appendix B.
Lk can be interpreted as a matrix-valued function defined overDk that coincide with Gk onD∆

k , that is:

Lk

(
µ(ik)

k

)
= Gk(ik) for ik ∈ Ik

and is a piecewise multilinear interpolation overDk.
The computational complexity of the evaluation of Lk(µk) (piecewise linear interpolation between two matrices)

is O(r̄2) with r̄ = max(r0, . . . , rd). The evaluation of F(µ1, . . . , µd) involves d interpolations of matrices (G1, . . . ,Gd).
Hence, the computational complexity for interpolating all the matrices Gk is O

(
dr̄2

)
. Since the computational com-

plexity to compute an element of a tensor in TT format is O
(
dr̄2

)
, the computational complexity for evaluating F at

one point is O
(
2dr̄2

)
. There is only a factor 2 between the complexities of the evaluation of the piecewise multilinear

interpolation and the evaluation of a tensor-train decomposition. When the function F∆ is a restriction of a reference
continuous function, the expression (13) enables to estimate efficiently an approximation of this reference function.

Remark 2. The computational cost of finding the indices i+1
k and i−1

k according to Equation (14) may be not negligible.
In particular, if the grid D∆

k is not regular (that is, with non constant steps) the cost is O(log nk) (search in an ordered
list). For a regular grid, the cost is independent from nk.

5. Generic algorithm for approximate tensor-train decomposition

5.1. Core tensors definition
Given a tensorA ∈ Rn1×···×nd , Algorithm 1 generates a set of matrices {H1, . . . ,Hd} that enables to define a tensor-

train decomposition:

T =H?
1 •H2 • · · · •Hd−1 •H

?
d ∈ R

n1×···×nd (15)

where

H k ∈ Rsk−1×nk×sk for k = 1, . . . , d

such that :

〈H k〉2 = Hk ∈ R(sk−1nk)×sk (16)

T is an approximation of the tensorA up to an error whose expression is detailed in Section 5.2.

Remark 3. The outputs Hk of the algorithm are not necessarily given as explicit matrices but instead may be returned
as matrix decompositions. The latter format may be preferable when applying the refactoring procedure presented in
Section 5.4.

Remark 4. For k = d − 1, the matricization step (20) returns Ad ∈ R(sd−1nd)×1, hence the convention sd = 1.
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Algorithm 1: Generic TT approximation algorithm
Input: A tensorA ∈ Rn1×···×nd whose elements are given by a blackbox procedure.
Output: A set of matrices {H1, . . . ,Hd}

Initial matricization:
Define the matrix A1 ∈ R(s0n1)×(n2...nd) with s0 = 1, as the first matricization of the tensorA:

A1 = 〈A〉1 (17)

for k = 1, . . . , d − 1 do
Low-rank approximation:
Build a rank-rk approximation Tk of the matrix Ak ∈ R(sk−1nk)×(nk+1...nd) given in the form:

Tk = HkPT
k Ak with Hk, Pk ∈ R(sk−1nk)×sk and sk ≥ rk (18)

Tensorization:
Define the tensorA(k+1) ∈ Rsk×nk+1×···×nd such that:〈

A
(k+1)

〉
1

= PT
k Ak ∈ Rsk×(nk+1...nd) (19)

Matricization:
Define the matrix Ak+1 ∈ R(sknk+1)×(nk+2...nd) as the second matricization of the tensorA(k+1):

Ak+1 =
〈
A

(k+1)
〉

2
(20)

Finalization:
Define the matrix Hd ∈ R(sd−1nd)×sd with sd = 1 such that:

Hd = Ad (21)
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5.2. Approximation error

For k = 1, . . . , d − 1, define the error matrices Ek ∈ R(sk−1nk)×(nk+1...nd) as:

Ek = Ak − Tk (22)

and the corresponding error tensors:

Ek ∈ Rsk−1×nk×···×nd

such that

〈Ek〉2 = Ek ∈ R(sk−1nk)×(nk+1...nd) (23)

Proposition 2. The approximation error between a given tensorA and its tensor-train approximation T obtained by
Algorithm 1 is:

A − T = H
?
1 •H2 • · · · •Hd−2 • Ed−1

+H?
1 •H2 • · · · •Hd−3 • Ed−2

+ . . .

+H?
1 • E2

+ E?1

(24)

See Appendix C for proof.
A corollary (Proposition 3) of Proposition 2 exhibits an upper bound for the norm of the approximation error as a

function of the norm of the output matrices Hk and the error matrices Ek.

Proposition 3. With the hypotheses of Proposition 2:

‖A − T ‖
2
≤

d−1∑
k=1

k−1∏
k′=1

‖Hk′‖
2
2 ‖Ek‖

2 (25)

See Appendix D for proof.

5.3. Low-rank approximation step

The low-rank approximation step (18) of the algorithm is expressed as an abstract matrix factorization, namely:

Tk = HkPT
k Ak

to emphasize that several concrete alternatives are possible. For the sake of simplicity, the rest of the article will be
restricted to the cases where Hk ∈ R(sk−1nk)×sk has rank rk with sk ≤ rk and Pk ∈ R(sk−1nk)×sk has orthogonal columns.

Equations (19) and (20) taken together indicate that the matrix Ak+1, that will be exploited at the next iteration, is a
reshaped version of the matrix PT

k Ak. Depending on the adopted low-rank approximation, the matrix Pk has a different
structure and thus leads to different definition of the matrices Ak+1. That choice also determines which elements of
the reference tensor must computed at each iteration. A key objective is thus to chose a low-rank approximation
that retains sufficient accuracy and only requires a parsimonious exploration of the entries of A to make Algorithm
1 computationally affordable. A detailed discussion of some candidates and their respective properties is postponed
until Section 6.
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5.4. Refactoring procedure

Depending on the selected low-rank approximation (18) in Algorithm 1, the TT decomposition (15) may be sub-
optimal. More specifically, the tensor A may admit an alternate TT decomposition whose tensor carriages involve
fewer elements. The refactoring procedure introduced below shows how to obtain a more compact tensor-train de-
composition. The refactored decomposition is equivalent to the reference decomposition (15) in the sense that their
evaluations coincide (at least in exact arithmetic). The new decomposition relies only on the outputs Hk of Algorithm
1 (See Remark 3) and therefore requires no further computation of any elements of the reference tensorA.

The low-rank approximation (18) features a matrix Hk ∈ R(sk−1nk)×sk of rank rk. Hence, there exists Kk ∈ R(sk−1nk)×rk

and Lk ∈ Rrk×sk such that:

Hk = KkLk with rk ≤ sk (26)

The matrices Kk and Lk can be further interpreted as the tensorsKk ∈ Rsk−1×nk×rk and Lk ∈ Rrk×sk such that:

Kk = 〈Kk〉2 and Lk = Lk

Hence, for k = 1, . . . , d − 1:

H k = Kk •Lk (27)

Casting (27) into (15) reads:

T = K?
1 •L1 •K2 •L2 • · · · •Kd−1 •Ld−1 •H

?
d (28)

For k = 1, . . . , d, define Gk ∈ Rrk−1×nk×rk such that:

G1 = K1 (29)
Gk = Lk−1 •Kk for k = 2, . . . , d − 1 (30)
Gd = Ld−1 •Hd (31)

Equations (28), (29), (30) and (31) enable to define the refactored TT decomposition:

T = G?1 •G2 • · · · •Gd−1 •G
?
d (32)

6. Selection of a concrete low-rank matrix approximation

The operation left to be detailed in Algorithm 1 is the construction of the low-rank approximation (18).

6.1. Singular Value Decomposition

In [14], the Singular Value Decomposition (SVD) is first considered and leads to the algorithm called TT-SVD.
With usual notations, for a matrix A ∈ Rn×m, the low-rank approximation Tsvd given by the truncated SVD reads:

A = VsvdΣsvdWT
svd︸         ︷︷         ︸

= Tsvd

+Esvd where ‖Esvd‖ ≤ εsvd ‖A‖ (33)

where εsvd is the truncation tolerance.
The columns of the matrix Vsvd ∈ Rn×r constitute the POD reduced basis (where POD stands for Proper Orthogonal

Decomposition) and correspond to the r most significant left singular vectors of the SVD [19, Section 5.5.4] of A.
Algorithm 1 is specialized into the TT-SVD with the following matrix substitutions:

Tk = Tsvd and Hk = Pk = Vsvd
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The TT-SVD enables to assert that any tensor can be represented exactly by a tensor-train decomposition. More-
over, the reference [14, Theorem 2.2] provides an upper bound for the approximation error given predefined TT-ranks.

The computation of PT
k Ak (19) requires the availability of the entire matrix Ak. Since A1 is the first matricization of

A (Equation (17)), all elements of the full tensor have to be explicitly computed at the first iteration. Furthermore, at
all subsequent iterations, the whole matrices Ak have to be assembled and stored. The resulting computational burden
makes the TT-SVD intractable in high parametric dimension.

The remedy shared by the alternative low-rank approximations presented in Section 6.2 to 6.4 consists in using
only a parsimonious exploration of the reference tensor to keep the computational effort reasonable.

6.2. Snapshot POD

A first approach consists in avoiding building the POD basis from the full matrix Ak. An approximate POD
reduced basis of rank rk can be obtained via the Snapshot POD method [20]. The method consists in applying the
truncated SVD on the submatrix Ã = A(:,Jpod) constituted by a selection of columns Jpod of A. Hence the accuracy
of the resulting POD reduced basis relies on the quality of the sampling procedure that generally introduces a sampling
error. The discussion of the selection of Jpod is postponed until Section 8.

Using this approach leads to an alternate algorithm, referred to as the TT-POD, with the following matrix substi-
tutions:

Tk = Tpod, Hk = VpodVT
pod, and Pk = I

In this case, the recursive definition of Ak indicates that it corresponds to the kth matricization of the tensor A.
Using the Snapshot POD to build the basis matrix Vk is not sufficient to relieve the curse of dimensionality. Indeed,
the number of rows of the matrices Ak grows with k and becomes too large to consider computing a single column.
Hence, the TT-POD remains practically unfeasible for large tensors.

6.3. Pseudo-Skeleton Decomposition

A more practical approach to effectively construct an approximate TT decomposition, called the TT-cross method,
is proposed in [14]. The TT-cross consists in dropping the concept of a POD basis and using the Pseudo-Skeleton
Decomposition (PSD) introduced in [21] as low-rank approximation. Unlike the TT-SVD and the TT-POD, the TT-
cross enables to build an approximation based on a sparse exploration of the reference tensor. The TT-PSD presented
hereafter, is a specialization of Algorithm 1 where the low-rank approximation is the PSD. It is similar to the first
left-to-right sweep of the TT-cross.

The Pseudo-Skeleton Decomposition can be used to approximate any matrix A ∈ Rn×m and is written as:

A = AQpsd

[
PT

psdAQpsd

]−1
PT

psdA︸                              ︷︷                              ︸
= Tpsd

+Epsd (34)

where Ppsd ∈ Rn×s and Qpsd ∈ Rm×s are respectively row and column selection matrices associated with the sets Ipsd

and Jpsd. The definition is valid only when the matrix PT
psdAQpsd is non-singular. In particular, the number s of rows

and columns has to be identical. The approximation decomposition (34) can be written with the colon notation as:

Tpsd = A(:,Jpsd)
[
A(Ipsd,Jpsd)

]−1
A(Ipsd, :)

This approximation (34) features an interpolation property at the selected rows and columns:

T (Ipsd, :) = A(Ipsd, :) and T (:,Jpsd) = A(:,Jpsd) (35)

The Pseudo-Skeleton Decomposition is a matrix factorization similar to the decomposition used in the Adaptive
Cross Approximation (ACA) [22] and the CUR decomposition [23, 24]. Additionally, these references provide al-
gorithms to effectively build the factorization. That decomposition has also been used in the context of model order
reduction, for instance in the Empirical Interpolation Method (EIM) proposed in [25, 26].
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Algorithm 1 specializes into the TT-PSD with the following matrix substitutions:

Tk = Tpsd, Hk = AQpsd

[
PT

psdAQpsd

]−1
and Pk = Ppsd

Pk is a row selection matrix associated with the set Ik of sk rows of Ak. Hence, the matrix Ak+1, used at the next
iteration, consists of a reshaped version of the submatrix Ak(Ik, :). By induction, it can be shown that the matrices
Ak are constituted by sets of multi-indices of the reference tensorA. Each iteration amounts then to the computation
a low-rank approximation of the kth matricization of a subtensor of A. The number of rows of Ak is then limited
and enables in practice to construct the low-rank approximation when sk � sk−1nk. The provided sparse exploration
makes the TT-PSD affordable to compute.

6.4. Gappy POD
A last, novel approach consists in using the Gappy POD introduced in [27] as the low-rank approximation in

(18). This strategy aims at combining beneficial features of the Snapshot POD and the PSD. Indeed, the Gappy POD
a) relies on a POD basis that remains computationally affordable and b) requires only a limited number of rows of
the matrix to be approximated. Both properties are key ingredients for an efficient, parsimonious exploration of the
reference tensor during Algorithm 1.

6.4.1. Formulation
The Gappy POD approximation Tgap of a matrix A ∈ Rn×m is given by:

A = Vpod

[
PT

gapVpod

]†
PT

gapA︸                       ︷︷                       ︸
= Tgap

+Egap (36)

where † denotes the Moore-Penrose pseudo-inverse [19, Section 5.5.2]. Vpod ∈ Rn×r is a POD basis matrix of rank r
and Pgap ∈ Rn×s is a row selection matrix associated with a set of s rows Igap ⊂ [1 : n].

The matrix PT
gapVpod must have linearly independent columns to ensure that the approximation is meaningful.

Since Vpod is a rank-r POD basis, there exists a set of s rows such that this property holds as long as s ≥ r. In
the numerical results presented hereafter the rows are selected using the Q-DEIM algorithm [28] that was shown to
be a superior alternative to the better-known DEIM procedure [29, Algorithm 1]. For the sake of completeness, the
Q-DEIM algorithm is detailed in Appendix E.

Remark 5. When PT
gapVpod has linearly independent columns, its Moore-Penrose pseudoinverse can be computed as:[

PT
gapVpod

]†
=

[
VT

podPgapPT
gapVpod

]−1
VT

podPgap

It follows that
[
PT

gapVpod

]†
is a left inverse of PT

gapVpod since:[
PT

gapVpod

]†
PT

gapVpod = Ir

Unlike the PSD, the Gappy POD enables to select a number of rows that exceeds the rank of the low-rank approx-
imation. In this case, the interpolation property does not hold as in the PSD case (35).

Algorithm 1 is specialized into the proposed TT-Gappy with the following matrix substitutions:

Tk = Tgap, Hk = Vpod

[
PT

gapVpod

]†
and Pk = Pgap (37)

Similarly to the PSD case, the row selection matrix Pgap enables a sparse exploration of the reference tensorA in
Algorithm 1.

6.4.2. Error bound for the TT decomposition
To quantify the theoretical accumulation of errors introduced at each iteration, Proposition 4 gives an upper bound

for the approximation error associated with a tensor-train decomposition built by the TT-Gappy.
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Proposition 4. ConsiderA ∈ Rn1×···×nd and its tensor-train approximation T constructed by the TT-Gappy. Assuming
that for all k ∈ [1 : d − 1]

∃νk,
∥∥∥∥(I − VkVT

k

)
Ak

∥∥∥∥ ≤ νk ‖Ak‖ (38)

the following inequality holds:

‖A − T ‖
2
≤

d−1∑
k=1

ν2
k[

σmin

(
PT

1 V1

)
σmin

(
PT

2 V2

)
. . . σmin

(
PT

k Vk

)]2 ‖A‖
2 (39)

where σmin refers to the smallest singular value of its matrix argument.

The proof is given in Appendix F.

Remark 6. The property (38) is always true for the choice νk = 1. Moreover, if Vk is computed as a truncated POD
basis of rank rk of the full matrix Ak then:

Ak = VkΣkWT
k + Esvd,k with

∥∥∥Esvd,k

∥∥∥ ≤ εk ‖Ak‖ (40)

and the property (38) and therefore the bound (39) hold for νk = εk.

Remark 6 suggests that the TT-Gappy approximation error (24) can be controlled by the truncation tolerances εk

set by the user. However, the bound (39) tends to be very loose and the hypothesis (38) may be difficult to verify when
the basis Vk stems from a column sampling of the matrix Ak. Hence, the convergence should be assessed empirically
in practical cases.

6.5. Relevance of the refactoring procedure
Table 1 summarizes the actual definitions of the matrices Kk, Lk and Pk involved in Algorithm 1 and the refactoring

procedure 5.4 for the four types of low-rank approximation introduced earlier.

Low-rank approximation Kk Lk Pk

SVD Vsvd Ir Vsvd

Snapshot POD Vpod VT
pod Ir

PSD AQpsd

[
PT

psdAQpsd

]−1
Ir Ppsd

Gappy POD Vpod

[
VT

podPgapPT
gapVpod

]−1
VT

podPgap Pgap

Table 1: Concrete definitions of the matrices appearing in expressions (18) and (26). Ir ∈ Rr×r stands for the identity matrix.

The usefulness of the refactoring procedure varies according to the selected type of low-rank matrix approxima-
tion. In the case of the SVD and the PSD, the tensorsH k (16) are already given in a compact format. The refactoring
procedure does not provide a more compressed decomposition. Even if it has been shown in Section 6.2 that the
Snapshot POD has no practical value, the refactoring procedure provides a large compression that in theory allows
to store the compressed tensor train unlike the initial representation. Finally, the size of the tensors H k constructed
following the Gappy POD approach depends on the number of sampled rows and the latter may be larger than the
rank of the approximations. The refactoring procedure allows in this case to redefine the tensor carriages such that
their respective sizes scale with the TT-ranks of the decomposition.

7. Problem formulation

7.1. Differential algebraic equations
Consider a system of parameterized Differential Algebraic Equations (DAEs):

R
(
Y1, . . . ,YN , Ẏ1, . . . , ẎN ,µ, t

)
= 0 (41)

where
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• R is a nonlinear operator;

• The parameters are denoted by µ = (µ1, . . . , µd−1) ∈ D = D1 × · · · × Dd−1 with d > 0;

• The time is t ∈ [0,T ] where T > 0;

• The variables Yχ (for χ = 1, . . . ,N) are referred to as the outputs of the DAEs.

The parameter domain D is defined as a Cartesian product of d − 1 intervals Dk ⊂ R. Such DAEs are typically
introduced in mechanics of materials to setup constitutive equations [30, 31]. In these applications, the outputs Yχ can
stand for internal variables, stress or strain.

Assuming that the hypotheses of the implicit function theorem are fulfilled, each output Yχ can be interpreted as
a time-dependent tensor-valued function with mχ components:

Yχ : D1 × · · · × Dd−1 × [0,T ] → Rmχ

(µ1, . . . , µd−1, t) 7→ Yχ(t,µ) =


Yχ

1 (t,µ)
...

Yχ
mχ (t,µ)


with Yχ

j (t,µ) ∈ R being the jth component of the output χ, at time t, for the parameter set value µ.
The outputs are described as heterogeneous in the sense that they may have different physical units and/or different

order of magnitudes. As a consequence, they might not be compared to each others in a meaningful way. This
observation justifies the construction of a distinct surrogate model for each output of interest.

Remark 7. The solution of the DAE system for a given set of parameter values µ provides all outputs Yχ at all times
t ≤ t f . Indeed:

• Unlike the parameters, time is a causal coordinate. The value of Yχ(t f ,µ) at time t f depends on the solution at
the previous time t ≤ t f .

• The outputs are correlated which means that they stem from the same DAE system.

7.2. Tensor representation of outputs
Discretizations of the parameter space and the time interval are introduced to define the tensor representations for

the various outputs Yχ. The time integration scheme used to solve the DAEs relies on a time sampling T ∆ of the
interval [0,T ]:

T ∆ =
{
t(it) ∈ [0,T ] | ∀it ∈ It

}
with t(1) < · · · < t(nt) (42)

where It = [1 : nt] and nt is the number of time steps.
The discretization of the parameter domainD is given byD∆ = D∆

1 ×· · ·×D
∆
d−1 and is similar to the one introduced

in Section 4. For χ = 1, . . . ,N, define the component index range Iχcomp = [1 : mχ]. mχ may differ from one output to
another.

The introduced discretizations leads to associate every output Yχ with a physics-based (or reference) tensor Aχ.
The latter aggregates the values of the output χ for all time steps and all possible parameter values in the discretized
parameter domain such that:

∀
(
i1, . . . , id−1, it, icomp

)
∈ I1 × . . . Id−1 × It × Iχcomp A

χ
(
i1, . . . , id−1,

(
it, icomp

))
= Yχ

icomp

(
t(it); µ(i1)

1 , . . . , µ(id−1)
d−1

)
(43)

Without restricting the generality of the proposed approach, the last two indices are paired in a single multi-index(
it, icomp

)
. ConsequentlyAχ is a tensor of order d such that:

A
χ ∈ Rn1×···×nd−1×nχd where nχd = ntmχ (44)

Accessing the elements of the physics-based tensors requires to solve the DAEs for the right choice of parameter
values. Depending on the considered physical model, the access can be expensive preventing a real-time exploration
to the elements.

13



Remark 8. The correlation between the outputs mentioned in Remark 7 is expressed as follows: For all
(
χ, it, icomp

)
∈

[1 : N] × It × Iχcomp and a single multi-index (i1, . . . , id−1) ∈ I1 × · · · × Id−1, the elements

A
χ
(
i1, . . . , id−1,

(
it, icomp

))
∈ R

are associated with the same DAE solution. As a consequence, these elements are always computed simultaneously.
This consideration will be factored in when building the surrogate model.

7.3. Approximation errors

A time discretization error (in addition to the modelisation error) is introduced when solving the DAE system with
a time integration algorithm on the interval [0,T ]. This source of error is not addressed here. In fact, the solutions
produced by the numerical model are considered as “the truth” in the sense that the quality of the surrogate model is
assessed with respect to them.

Since the physics-based tensors correspond to the solutions of the DAEs for parameter values on the discretized
grid, a parametric interpolation error is also introduced when evaluating the surrogate model for parameter values
that do not belong to the discretized grid. However, the piecewise multilinear interpolation method can be efficiently
transposed to functions represented by a tensor-train decomposition (See Section 4). The interpolation error can thus
be reduced by refining the discretized grid.

8. Multiple TT algorithm

The objective of the proposed approach is to build for each physics-based tensorAχ (44) an approximate tensor
T

χ given in TT format. Algorithm 2 provides the set of matrices {Hχ
1 , . . . ,H

χ
d } that enable to define the tensor-train

decompositions as in Section 5.1. The refactoring procedure (Section 5.4) can be transposed straightforwardly for any
tensor given in TT format.

Remark 8 asserts that solving the DAEs for one set of parameter values provides multiple elements of all physics-
based tensors Aχ. The idea of the approach, embodied in Algorithm 2, is to apply simultaneously the TT-Gappy
algorithm on the physics-based tensors to construct tensor-train approximations based on shared simulation results.

The method provided by Algorithm 2 is non-intrusive. Indeed, the implementation details of the numerical solution
of the DAEs are completely irrelevant.

8.1. Snapshot column sampling

At each iteration k = 1, . . . , d − 1, the Snapshot POD method, used to build the POD reduced basis (46), requires
to sample a set:

J
χ
k =

{
J
χ,(1)
k , . . . ,J

χ,(ñχk )
k

}
of ñχk columns of Aχ

k ∈ R
(sk−1nk)×(nk+1...nd−1nχd) for every χ .

Recall that Aχ
k is a submatrix of the kth matricization of the tensorAχ. According to Remark 8, the entire range of

indices of the last dimension forAχ correspond to the same DAE solution and are therefore obtained simultaneously.
The column sampling amounts, consequently, to a parsimonious selection of ñk points in the partial discretized param-
eter domainD∆

k+1 × · · · × D
∆
d−1 and an exhaustive sampling of the last dimension for each tensorAχ. The considered

submatrices Ãχ
k = Aχ

k

(
:,Jχ

k

)
are then constituted of ñχk = ñknχd columns (See Figure 2).

In the present work, the sampling of the partial discretized domain D∆
k+1 × · · · × D

∆
d−1 is done by a design of

experiment based on a low-discrepancy Halton sequence [32]. The estimation of the quality of the selection is carried
out a posteriori thanks to a measurement of the error between the surrogate and the physical model (See Section 9.4).
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Algorithm 2: Multiple TT decomposition

Input: TensorsAχ ∈ Rn1×···×nd−1×nχd for χ = 1, . . . ,N associated with a DAE system (Equation (41))
Output: Sets of matrices

{
Hχ

1 , . . . ,H
χ
d

}
for χ = 1, . . . ,N.

Initialization:
For each χ, define the matrix Aχ

1 ∈ R
(s0n1)×(n2...nd−1nχd) with s0 = 1, as the first matricization of the tensorAχ:

Aχ
1 = 〈Aχ〉1 (45)

for k = 1, . . . , d − 1 do
Snapshot POD:
Define consistent sets of sampling columns Jχ

k (See Section 8.1). And compute from the DAEs the
submatrices:

Ãχ
k = Aχ

k

(
:,Jχ

k

)
for χ = 1, . . . ,N

Apply the truncated SVD (33) on each Ãχ
k with the truncation tolerance εk to get the rank-rχk matrices:

Vχ
k ∈ R

(sk−1nk)×rχk for χ = 1, . . . ,N (46)

Row Sampling:
From each χ, select a set of rows Iχk applying the Q-DEIM algorithm [28] (See Algorithm 3 in Appendix

E) to the basis Vχ
k . Define the union of all selected rows and the corresponding row selection matrix:

Ik =

N⋃
χ=1

I
χ
k (47)

and

Pk = Isk−1nk (:,Ik) ∈ R(sk−1nk)×sk where sk = Card(Ik) (48)

Output definitions:
Compute the matrices Hχ

k ∈ R
(sk−1nk)×sk such that:

Hχ
k = Vχ

k

[
(Pk)T Vχ

k

]†
Tensorization:
Define the tensorsAχ,(k+1) ∈ Rsk×nk+1×···×nd−1×nχd such that:〈

A
χ,(k+1)

〉
1

= PT
k Aχ

k ∈ R
sk×(nk+1...nd−1nχd) (49)

Matricization:
Define the matrix Aχ

k+1 ∈ R
(sknk+1)×(nk+2...nd−1nχd) as the second matricization of the tensorAχ,(k+1):

Aχ
k+1 =

〈
A

χ,(k+1)
〉

2
(50)

Finalization:
For each χ = 1, . . . ,N, define the matrix Hχ

d ∈ R(sd−1nχd)×sd with sd = 1 such that:

Hχ
d = Aχ

d (51)
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Figure 2: Definition of the submatrix Ãχk used to construct the POD reduced basis. In the illustration, the Snapshot POD sample size is ñk = 3

8.2. Row sampling

In the row sampling step, specific sets of rows Iχk are first determined independently for each output χ but a
common, aggregated set Ik (47) is then used to sample the entries of all outputs via Pk (48). Indeed, according to
Remark 8, computing the elements of all submatrices Aχ

k (Ik, :) requires no more calls to the DAE system solver than
evaluating the entries of all (smaller) submatrices Aχ

k

(
I
χ
k , :

)
. Furthermore, the Gappy POD naturally accommodates a

number of rows larger than the rank rχk for each approximation of Aχ
k , and considering a larger sample size for each

individual χ is expected to provide an approximation with a better precision.

Remark 9. The idea of aggregating sample points generated for various outputs of a simulation has already been
used in the context of projection-based model order reduction, for instance in the hyper-reduction approach [33] or
in the GNAT method [34].

8.3. Tensorization and matricization

The tensorization and matricization steps define the matrices to be approximated at the next iteration. The recursive
definition of the matrix Aχ

k implies that the latter is equal to the kth matricization of a subtensor extracted from Aχ.
Equivalently, the matrix Aχ

k corresponds to a submatrix of the kth matricization ofAχ, as illustrated in Figure 3.

Figure 3: Definition of Aχk based onAχ. In the illustration, the number of rows selected at the previous iteration k − 1 is sk−1 = 3.

9. Application to elasto-viscoplastic constitutive equations

9.1. Physical model

The application case consists of a nonlinear constitutive law in elasto-viscoplasticity [30, 31] linking the following
time-dependent mechanical variables:

• The strain tensor: ε
∼

= ε
∼e + ε

∼vp [Dimensionless] (sum of an elastic part and a viscoplastic part);

• The stress tensor: σ
∼

[MPa];

• An internal hardening variable: X
∼

[MPa];

• The cumulative viscoplastic deformation: p [Dimensionless].
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where ε
∼

, ε
∼e, ε
∼vp, σ

∼
and X

∼
are second order tensors in R3×3.

The hypotheses of the infinitesimal strain theory are assumed to hold.
The model involves eight material coefficients: E, ν, n, K, R0, Q, b and C. The Young and Poisson coefficients

are set to E = 200 000 MPa and ν = 0.3. Table 2 presents the range of variation of the other material coefficients
considered as inputs parameters of the model.

n K [MPa.s-n] R0 [MPa] Q [MPa] b C [MPa]
Lower bound 2 100 1 1 0.02 150
Upper bound 12 10 000 200 2 000 2 000 150 000

Table 2: Parameter range of variations considered in the model. When applicable, the unit is indicated between brackets.

9.1.1. System of equations
The elastic behavior is governed by:

σ
∼

=
E

1 + ν

(
ε
∼e +

ν

1 − 2ν
Tr

(
ε
∼e

)
I
∼

)
(52)

The viscoplastic behavior is described by the Norton flow rule (53) formulated with the von Mises criterion (56).
The yield function and the normal to the yield function are given by (54) and (55). (57) gives the definition of the
deviatoric stress tensor involved in (56).

d
dt
ε
∼vp = N

∼

(
f
K

)n

+

(53)

f = J
(
σ
∼

D − X
∼

)
− R (54)

N
∼

=
3
2

σ
∼

D − X
∼

J
(
σ
∼

D − X
∼

) (55)

J
(
σ
∼

D − X
∼

)
=

√
3
2

(
σ
∼

D − X
∼

)
:
(
σ
∼

D − X
∼

)
(56)

σ
∼

D = σ
∼
−

1
3

Tr
(
σ
∼

)
I
∼

(57)

where (.)+ denotes the positive part function.
The operator : denotes the contracted product defined as:

Z
∼1:Z
∼2 =

3∑
i=1

3∑
j=1

Zi j
1 Zi j

2 for Z
∼1, Z∼2 ∈ R

3×3

The nonlinear isotropic hardening is modeled by (58) where (59) gives the viscoplastic cumulative rate.

R = R0 + Q
(
1 − e−bp

)
(58)

dp
dt

=

√
2
3

d
dt
ε
∼vp:

d
dt
ε
∼vp (59)

Finally the linear kinematic hardening is given by:

X
∼

=
2
3

Cε
∼vp (60)
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Figure 4: The applied strain component ε11(t) consists of a triangular pattern of period 400s with a peak-to-peak amplitude of 2% centered in 0.

9.1.2. Applied deformation and initial conditions
The case of a uniaxial cyclic tensile testing driven by deformation is considered. The loading is applied by

imposing ε11(t) with the pattern shown in Figure 4 and σ12(t) = σ13(t) = σ23(t) = σ22(t) = σ33(t) = 0.
The initial conditions for the internal variables are:

p(t = 0) = 0 and X
∼

(t = 0) = 0
∼

The model is highly nonlinear. First the isotropic hardening law introduces an exponential nonlinearity. The most
significant nonlinearity arises from the Norton law (53) featuring the positive part function. Capturing the resulting
threshold effect is particularly challenging for surrogate models.

9.2. Tensor abstraction
Algorithm 2 is applied to build tensor-train representations for the following mechanical variables involved in the

model:

ε
∼
, ε
∼vp, σ

∼
[MPa], p

Surrogate modeling aims at representing the relations between the parameters (inputs of the model) and the time-
dependent mechanical variables (outputs of the model):

(n,K,R0,Q, b,C) 7→
(
ε
∼

(t), ε
∼vp(t),σ

∼
(t), p(t)

)
For each parameter, the interval of definition is discretized as in (8) by a regular grid with 30 points:

n1 = n2 = n3 = n4 = n5 = n6 = 30

The time interval used for the numerical solution is discretized as in (42) by a regular grid with nt = 537 points.
To be consistent with the notations of the framework (41), define:

(µ1, µ2, . . . , µ6) = (n,K,R0,Q, b,C)

Following Voigt’s notations, the outputs are grouped as follows:

Y1 =
(
ε11, ε22, ε33, ε12, ε13, ε23

)T

Y3 =
(
ε11

vp, ε
22
vp, ε

33
vp, ε

12
vp, ε

13
vp, ε

23
vp

)T

Y2 =
(
σ11, σ22, σ33, σ12, σ13, σ23

)T

Y4 = (p)
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The discretizations allow to define 4 physics-based tensors:

A
χ ∈ Rn1×···×n6×nχ7 for χ = 1, 2, 3, 4 (61)

where the time index and component index have been paired in the last multi-index as described in Equation (44) such
that:

n1
7 = n2

7 = n3
7 = 6nt and n4

7 = nt

The Snapshot POD sample sizes (defined in Section 8.1) are:

ñ1 = ñ2 = ñ3 = ñ4 = ñ5 = 100 and ñ6 = 30

In the following applications, a common value denoted by εsvd is used for all truncation tolerances εk associated
with the POD basis at iterations k ∈ [1 : d − 1].

9.3. Performance indicators

The truncation tolerance is chosen here to be εsvd = 10−3. The construction of the tensor-train decompositions
requires to solve the system of DAEs

∑d−1
k=1 sknkñk times with as many sets of parameter values. In the proposed

numerical example, it amounts to 514 050 solutions. 15 hours are necessary on a 16-core workstation to carry out
the computations. 98% of the effort is devoted to the solution of the physical model and the remaining 2% to the
decomposition operations.

For a single simulation on a personal laptop computer, the solution of the physical model takes 0.7 s, whereas the
surrogate model is evaluated in only 1 ms, corresponding to a speed-up of 700.

Storing the Multiple TT approximations requires 2 709 405 double-precision floating-point values. For com-
parison purposes, storing a single solution (constituted of the multiple time-dependent outputs) of the DAE system
involves 10 203 values. Therefore, the storage of the tensor-train decompositions is commensurate with the storage
of 265 solutions while it can express the approximation of 306 solutions.

For χ = 1, . . . , 4, the rank rχk is bounded from above by the theoretical maximum rank rχmax,k of the matrix Aχ
k .

More specifically, rχmax,k corresponds to the case where Aχ
k has full rank and is the kth matricizations of the tensors

Aχ. Given the choice of truncation tolerance εsvd = 10−3, the TT-ranks listed in Table 3 show that the resulting tensor
trains are small enough to be stored. Table 4 emphasizes that in practice rχk � rχmax,k except for k = 1 where rχmax,k is
already “small”.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
r1

k 7 9 10 24 27 30
r2

k 13 23 29 123 143 134
r3

k 11 17 20 67 90 100
r4

k 9 12 14 24 20 21
r1

max,k = r2
max,k = r3

max,k 30 302 303 304 6 × 30nt 6 × nt

r4
max,k 30 302 303 302nt 30nt nt

Table 3: TT-ranks of the outputs of interest and theoretical maximum ranks.

9.4. Approximation error

The accuracy of the surrogate model is estimated a posteriori by measuring the discrepancy between its own
outputs and the outputs of the original physical model. The estimation is conducted by comparing solutions associated
with 20 000 samples of parameter set values randomly selected according to a uniform law on each discretized
parameter intervals. Hence, no interpolation error is introduced in the comparison. The difference between the
surrogate and the physical models is measured based on the following norms:
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
r1

max,k/r
1
k 4.3 1.0 × 102 2.7 × 103 3.4 × 104 3.6 × 103 1.1 × 102

r2
max,k/r

2
k 2.3 3.9 × 101 9.3 × 102 6.6 × 103 6.8 × 102 2.4 × 101

r3
max,k/r

3
k 2.7 5.3 × 101 1.4 × 103 1.2 × 104 1.1 × 103 3.2 × 101

r4
max,k/r

4
k 3.3 7.5 × 101 1.9 × 103 2.0 × 104 8.1 × 102 2.6 × 101

Table 4: Ratio between the theoretical maximum ranks and the TT-ranks of the outputs of interest.

‖x‖2
T

=

∫ T

0
x2dt et

∥∥∥x
∼

∥∥∥2

T
=

∫ T

0
x
∼

: x
∼

dt

where x and x
∼

are respectively scalar and tensor time-dependent function.
For the mechanical variable � (where � can stand for any one of ε

∼
, ε
∼vp, σ

∼
and p), �PM and �TT denote the output

corresponding respectively to the solution of the DAEs and the surrogate model. A relative error is associated with
each mechanical variable, namely:

• Total strain tensor: eε =

∥∥∥∥ε∼PM−ε
∼

TT
∥∥∥∥

T∥∥∥∥ε∼PM
∥∥∥∥

T

;

• Viscoplastic strain tensor: eεvp =

∥∥∥∥∥ε∼PM
vp
−ε
∼

TT
vp

∥∥∥∥∥
T∥∥∥∥ε∼PM

∥∥∥∥
T

;

• Stress tensor: eσ =

∥∥∥∥σ∼PM−σ
∼

TT
∥∥∥∥

T∥∥∥∥σ∼PM
∥∥∥∥

T

;

• Cumulative viscoplastic deformation: ep =
‖pPM−pTT‖

T∥∥∥∥ε∼PM
∥∥∥∥

T

.

Depending on the parameter values, the viscoplastic part of the behavior may or may not be negligible as measured
by the magnitudes of ‖p‖ and

∥∥∥∥ε∼vp

∥∥∥∥ relative to
∥∥∥ε
∼

∥∥∥. Hence, in the proposed application, the focus is on comparing the
norm of the approximation error for ε

∼
, ε
∼vp and p with respect to the norm of ε

∼
.

The histograms featured on Figures 5a, 5b, 5c and 5d present, for each mechanical variables, the empirical distri-
bution of the relative error for all simulation results. The surrogate model given by the tensor-train decompositions
features a level of error that is sufficiently low to carry out parametric studies such as calibration of constitutive laws
where errors lower than 2% are typically tolerable.

9.5. Convergence with respect to the truncation tolerance

A first surrogate model is constructed from the physical model with the prescribed truncation tolerance εsvd = 10−3.
Then, this first surrogate model is used as an input for Algorithm 2. Running the algorithm several times with different
truncation tolerances:

εsvd ∈
{
1 × 10−3; 2 × 10−3; 4.6 × 10−3; 1 × 10−2; 2 × 10−2; 4.6 × 10−2; 1 × 10−1

}
generates as many new surrogate models.

Figures 7a, 7b, 7c and 7d present the evolution of the relative error distribution (for the different mechanical
variables) with respect to the truncation tolerance based on a random sample of 20 000 parameter set values chosen
as in Section 9.4. Figure 6 details the graphical notations. The results empirically show for each mechanical output,
the relative error decreases together with εsvd. It is consistent with the expected behavior of the algorithm.

Plots in Figure 8a and 8b show the dependence of the number of stored elements and the number of calls to the
physical model on εsvd.
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(a) Empirical distribution for eε. The size of the histogram bucket
is 0.009%.

(b) Empirical distribution for eεvp . The size of the histogram bucket is
0.008%.

(c) Empirical distribution for eσ. The size of the histogram bucket
is 0.024%.

(d) Empirical distribution for ep. The size of the histogram bucket is
0.066%.

Figure 5: Empirical distribution of the errors for every mechanical variables.

9.6. Online coherence estimators

Based on the physical model, the surrogate model gives an approximation of each output of interest. However, the
approximate outputs may be inconsistent with the physics in the sense that they may lead to non-zero residuals when
introduced into (the discrete version of) the system (41).

A coherence estimator is an indicator that measures how closely the physical equations are verified by the outputs
of the surrogate model. It is reasonable to expect the accuracy of the metamodel to be correlated with the coherence
estimator.

Using Equation (52) let:

σ
∼

eq,TT =
E

1 + ν

(
ε
∼

TT
e +

ν

1 − 2ν
Tr

(
ε
∼

TT
e

)
I
∼

)
and define the associated coherence estimator as follows:

ησ =

∥∥∥σ
∼

TT − σ
∼

eq,TT
∥∥∥

T∥∥∥σ
∼

TT
∥∥∥

T

(62)

Figure 9 displays the relation between the relative error for σ
∼

and the effectivity of the estimator ησ/eσ for 20 000
simulation results drawn randomly. The error increases with the final cumulative deformation, that is when the mate-
rial exhibits a more intense viscoplastic behavior.

Furthermore, the plot shows a correlation between the coherence estimator and the relative error. In particular, the
effectivity tends to be larger than 1 which indicates that the coherence estimator behaves like an upper bound of the
relative error. Excluding a few outliers, the coherence estimator does not overestimate the relative error by more than
a factor 7.
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Q1 Q3

IQR

Q1 - 1.5 x IQR Q3 + 1.5 x IQR

Median

Outliers

Figure 6: The left and right sides are the first and third quartiles (respectively Q1 and Q3). The line inside the box represents the median. The
reach of the whiskers past the first and third quartiles is 1.5 times the interquartile range (IQR). The crosses represent the outliers lying beyond the
whiskers.

(a) Empirical distribution for eε (b) Empirical distribution for eεvp

(c) Empirical distribution for eσ (d) Empirical distribution for ep

Figure 7: Empirical distribution of the relative approximation error for every mechanical variables.

Finally, the effectivity of the coherence estimator empirically converges to 1 (that is, the estimator becomes
sharper) as the magnitude of the relative error increases.

This coherence estimator is very cheap to compute and only relies on outputs of the surrogate model. The results
suggest that the coherence estimator could be used as an online error indicator that increases the reliability of the
surrogate model at the current point when exploring in real-time the parameter domain.

10. Conclusions and perspectives

The present work assesses the performance of tensor-train representations for the approximation of numerical so-
lutions of nonlinear DAE systems. The proposed method enables to incorporate a large number of simulation results
(' 500 000 scalar values) to produce a metamodel that is accurate over the entire parameter domain. More specifically,
numerical results show that the Multiple TT decomposition gives promising results when used as a surrogate model
for an elasto-viscoplastic constitutive law. For this particular application, the surrogate model exhibits a satisfying
accuracy given the moderate computational effort spent for its construction and the data storage requirements. More-
over, the observed behavior of the proposed empirical coherence estimator indicates that the latter could be exploited
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(a) Dependence of the number of calls to physical model on εsvd (b) Dependence of the number of stored elements on εsvd

Figure 8: Dependence of computational cost and memory storage indicators on εsvd

Figure 9: Effectivity of the coherence estimator ησ (62) associated with σ. The color scale indicates the final cumulative deformation.

to assess the approximation error in real time.
The application to more complex material constitutive laws involving a larger number of parameters is under

way. In addition, ongoing work concerns the actual calibration of constitutive laws with the help of the Multiple TT
approach. Surrogate models have the potential to transform the way of carrying out parametric studies in material
science. In particular, they may enable the design of efficient methods for sensibility estimation or uncertainty quan-
tification of numerical models. Future work will investigate the combination of the proposed method with “usual”
model order reduction techniques such as hyper-reduction [33] in order to take into account the space dimension.

Appendix A. Preliminaries

Lemma 1. LetA ∈ Rn1×···×np×r and B ∈ Rr×m1×···×mq , then:

‖A •B‖
2
≤

∥∥∥〈A〉p∥∥∥2
2 ‖B‖

2

Proof. From the definition of matricization (See Section 2) it comes:

〈A •B〉p = 〈A〉p 〈B〉1
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Hence

‖A •B‖
2 =

∥∥∥〈A •B〉p∥∥∥2

=
∥∥∥〈A〉p 〈B〉1∥∥∥2

≤
∥∥∥〈A〉p∥∥∥2

2 ‖〈B〉1‖
2

≤
∥∥∥〈A〉p∥∥∥2

2 ‖B‖
2

Appendix B. Proof of Proposition 1

Proof. The generalization in arbitrary dimension d of the classical linear, bilinear and trilinear interpolation yields:

F(µ1, . . . , µd) =
∑

η1,...,ηd=±1

F∆
(
µ̂
−η1
1 , . . . , µ̂

−ηd
d

) d∏
k=1

wηk (µk)

 (B.1)

where F∆
(
µ̂
−η1
1 , . . . , µ̂

−ηd
d

)
∈ R and

wηk : [µ̂−1
k , µ̂+1

k ] → R

µk 7→
ηk

(
µ̂
ηk
k − µk

)(
µ̂+1

k − µ̂
−1
k

)
is an affine function of µk with ηk = ±1.

It can be shown that the function F defined at Equation (B.1) is piecewise multilinear (that is, piecewise affine
with respect to each of the variables µk) and coincides with F∆ (defined by Equation (7)) onD∆.

According to the definition of µ−1
l and µ+1

l (14), (B.1) can be rewritten:

F(µ1, . . . , µd) =
∑

η1,...,ηd=±1

F∆

(
µ

(
i−η1
1

)
1 , . . . , µ

(
i−ηd
d

)
d

) d∏
k=1

wηk (µk) (B.2)

Based on the definition of T (Equation (10)), (B.2) becomes:

F(µ1, . . . , µd) =
∑

η1,...,ηd=±1

T
(
i−η1
1 , . . . , i−ηd

d

) d∏
k=1

wηk (µk)

Since T is given in TT format (Equation (11)):

F(µ1, . . . , µd) =
∑

η1,...,ηd=±1

d∏
k=1

Gk

(
i−ηk
k

) d∏
k=1

wηk (µk)

=
∑

η1,...,ηd=±1

d∏
k=1

wηk (µk)Gk

(
i−ηk
k

)
=

d∏
k=1

∑
ηk=±1

wηk (µk)Gk

(
i−ηk
k

)
=

d∏
k=1

Lk(µk)
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Appendix C. Proof of Proposition 2

Proof. Following the notation of Algorithm 1, defineA(1) ∈ Rs0×n1×···×nd with s0 = 1 such that:(
A

(1)
)?

=A (C.1)

.
Equation (17) can be written:

A1 =
〈
A

(1)
〉

2
(C.2)

Hence, Equations (C.2), (18), (19), (20) and the definition of the error (22) yield:〈
A

(k)
〉

2
= Hk

〈
A

(k+1)
〉

1
+ Ek for k = 1, . . . , d − 1 (C.3)

With the indicial notation (C.3) reads:〈
A

(k)
〉

2
((αk−1, ik), (ik+1, . . . , id)) =

sk∑
αk=1

Hk ((αk−1, ik), αk)
〈
A

(k+1)
〉

1
(αk, (ik+1, . . . , id))

+Ek ((αk−1, ik), (ik+1, . . . , id))

(C.4)

Based on the definitions (16) and (23), Equation (C.4) can be written:

A
(k)(αk−1, ik, . . . , id) =

sk∑
αk=1

H k(αk−1, ik, αk)A(k+1)(αk, ik+1, . . . , id) + Ek(αk−1, ik, . . . , id) (C.5)

and can be shortened with the tensor dot product as follows:

A
(k) =H k •A

(k+1) + Ek for k = 1, . . . , d − 1 (C.6)

Define:

H (k) =H1 • · · · •H k for k = 1, . . . , d − 1 and H (0) = I (C.7)

Given k ∈ [1 : d − 1], let Pk denote the property

A
(1) =H (k) •A

(k+1) +

k−1∑
k′=0

H (k′) • Ek′+1 (C.8)

Pk is proved hereafter by induction on the index k.
Base case Equation (C.6) for k = 1 implies:

A
(1) =H1 •A

(2) + E1

=H (1) •A
(2) +H (0) • E1 according to (C.7)

(C.9)

Hence P1 holds.
Inductive step Let k ≤ d − 2 such that Pk is true. Then:

A
(1) =H (k) •A

(k+1) +

k−1∑
k′=0

H (k′) • Ek′+1

=H (k) •
[
H k+1 •A

(k+2) + Ek+1

]
+

k−1∑
k′=0

H (k′) • Ek′+1 according to (C.6) since k + 1 ≤ d − 1

=H (k) •H k+1 •A
(k+2) +H (k) • Ek+1 +

k−1∑
k′=0

H (k′) • Ek′+1

=H (k+1) •A
(k+2) +

k∑
k′=0

H (k′) • Ek′+1

25



Hence Pk+1 holds and by induction, the property (C.8) is true for all k ∈ [1 : d − 1].
Equation (C.8) for k = d − 1 implies:

A
(1) =H (d−1) •A

(d) +

d−2∑
k′=0

H (k′) • Ek′+1 (C.10)

Equation (19) definesA(d) such that Equations (16) and (21) yield:

A
(d) =H?

d (C.11)

Equations (C.10) and (C.11) give:

A
(1) = H (d−1) •H

?
d

+H (d−2) • Ed−1

+ . . .

+H (0) • E1

(C.12)

Given the definition of T (15):

T =
(
H (d−1) •H

?
d

)?
(C.13)

Finally, (C.1), (C.12) and (C.13) yield:

A − T =

d−1∑
k=1

[
H (k−1) • Ek

]? (C.14)

which ends the proof of Proposition 2.

Appendix D. Proof of Proposition 3

Proof. The triangle inequality for the Frobenius norm applied to (C.14) and the invariance of the Frobenius norm
under reshaping yield:

‖A − T ‖
2
≤

d−1∑
k=1

∥∥∥H (k−1) • Ek

∥∥∥2
(D.1)

For k = 1, . . . , d − 1, applying recursively Lemma 1 to
∥∥∥H (k−1) • Ek

∥∥∥2
yields:∥∥∥H (k−1) • Ek

∥∥∥2
≤ ‖〈H1〉2‖

2
2 ‖〈H2〉2‖

2
2 . . . ‖〈H k−1〉2‖

2
2 ‖Ek‖

2

Hence, according to the definition ofH k (16):∥∥∥H (k−1) • Ek

∥∥∥2
≤ ‖H1‖

2
2 ‖H1‖

2
2 . . . ‖Hk−1‖

2
2 ‖Ek‖

2

Finally (D.1) becomes:

‖A − T ‖
2
≤

d−1∑
k=1

‖H1‖
2
2 . . . ‖Hk−1‖

2
2 ‖Ek‖

2

which ends the proof of Proposition 3.
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Appendix E. Q-DEIM Algorithm

Algorithm 3: Q-DEIM [28]
Input: A matrix U ∈ Rn×r with r ≤ n with orthogonal columns.
Output: A set I =

{
I(1), . . . ,I(r)

}
⊂ [1 : n] of r row indices.

Define A = UT and compute the QR decomposition of A with the Businger-Golub column pivoting strategy
[19, Algorithm 5.4.1]. It yields:

AΠ = QR with Π ∈ Rn×n, Q ∈ Rr×r and R ∈ Rr×n

where Π is a permutation matrix, Q is orthogonal and R is an upper trapezoidal matrix.
Define the list of columns IΠ such that:

AΠ = A(:,IΠ)

Define I as the set of r first indices of the list IΠ:

I = IΠ(: r)

Remark 10. Algorithm 5.4.1 of [19] is meant to be applied to matrices with more rows than columns. Nevertheless,
the strategy of column pivoting is the same as in the Q-DEIM algorithm.

Appendix F. Proof of Proposition 4

Proof. Recall the Gappy POD approximation of a matrix A ∈ Rn×m (See Equation (36)):

A = PA + E

where P ∈ Rn×n is the gappy projection:

P = HPT

= V
[
PT V

]†
PT

and V ∈ Rn×r has orthogonal columns.
From the definition of H:

‖H‖2 =

∥∥∥∥∥V
[
PT V

]†∥∥∥∥∥
2

=

∥∥∥∥∥[PT V
]†∥∥∥∥∥

2
since V has orthogonal columns

=
1

σmin
(
PT V

) since PT V has full column rank (F.1)

where σmin refers to the smallest singular value.
Following the notations of Algorithm 1, Equation (F.1) yields for k = 1, . . . , d − 1:

‖Hk‖2 =
1

σmin

(
PT

k Vk

)
Define the projection matrix Pr = VVT ∈ Rn×n then:

PPr = Pr (F.2)
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since:

PPr = HPT VVT

= V
[
PT V

]†
PT VVT

= VVT according to Remark 5
= Pr

Therefore

E = A − PA

= (A − PrA) − (PA − PrA)

= (A − PrA) − (PA − PPrA)

= (I − P) (A − PrA)

= (I − P) (I − Pr) A

where I ∈ Rn×n denotes the identity matrix.
Moreover:

‖I − P‖2 = ‖P‖2 assuming that P is neither 0 nor I (See [35])

=
∥∥∥HPT

∥∥∥
2

≤ ‖H‖2 since PT has orthogonal rows (See Remark 1)

≤
1

σmin
(
PT V

) according to (F.1) (F.3)

Then

‖E‖ = ‖(I − P) (I − Pr) A‖

≤ ‖I − P‖2 ‖(I − Pr) A‖

≤
1

σmin
(
PT V

) ‖(I − Pr) A‖ according to (F.3) (F.4)

Following the notations of Algorithm 1 and using the assumption (38), it comes:

‖Ek‖ ≤

∥∥∥(I − VkVT
k )Ak

∥∥∥
σmin

(
PT

k Vk

) ≤
νk

σmin

(
PT

k Vk

) ‖Ak‖

and based on the definition of Ak:

‖Ak‖ =
∥∥∥A(k)

∥∥∥ ≤ ‖A‖
therefore

‖Ek‖ ≤
νk

σmin

(
PT

k Vk

) ‖A‖
Finally, according to (25):

‖A − T ‖
2
≤

d−1∑
k=1

ν2
k[

σmin

(
PT

1 V1

)
σmin

(
PT

2 V2

)
. . . σmin

(
PT

k Vk

)]2 ‖A‖
2 (F.5)
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