Clément Olivier
email: clement.olivier@safrangroup.com

David Ryckelynck
email: david.ryckelynck@mines-paristech.fr

Julien Cortial
email: julien.cortial@safrangroup.com

Tensor-train approximation of parametric constitutive equations in elasto-viscoplasticity

Keywords: parameter-dependent model, surrogate modeling, tensor-train decomposition, Gappy POD, heterogeneous data, elasto-viscoplasticity

Introduction

Predictive numerical simulations in solid mechanics require complex material laws that involve systems of highly nonlinear Differential Algebraic Equations (DAEs). These models are essential in challenging industrial applications, for instance to study the effects of the extreme thermo-mechanical loadings that turbine blades may sustain in helicopter engines [START_REF] Ghighi | A microstructure sensitive approach for the prediction of the creep behaviour and life under complex loading paths[END_REF][START_REF] Le Graverend | A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature[END_REF]. These DAE systems are referred to as constitutive laws in the material science community. They express, for a specific material, the relationship between the mechanical quantities such as the strain, the stress and miscellaneous internal variables, and stand as the closure relations of the physical equations of mechanics. Complex constitutive equations are often tuned through a set of parameters called material coefficients.

An appropriate calibration of these coefficients is necessary to ensure that the numerical model mimics the actual physical behavior. Numerical parametric studies, consisting in analyzing the influence of the parameter values on the solutions, are typically used to perform the identification. However, when the number of parameters increases and unless the computational effort required for a single numerical simulation is negligible, the exploration of the parameter domain turns into a tedious task and exhaustive analyses become unfeasible. Moreover, defining an unambiguous criterion measuring the fidelity of the model to experimental data is a challenge for models with complex behaviors.

A common technique is to rely on a surrogate model (or metamodel) that maps the input parameters to the outputs of interest of the physical model. Once built, the surrogate model can be exploited very efficiently during a so-called online phase since its evaluation is very cheap compared to the original model. The real-time response provided by the metamodel for any parameter value helps carrying out parametric studies. In material science, the robustness of the calibration process could be dramatically improved if this type of methodology was followed.

The idea of representing the set of all possible parameter-dependent solutions of ODEs and PDEs as a multiway tensor was introduced with the Proper Generalized Decomposition (PGD) [START_REF] Ladevèze | On a multiscale computational strategy with time and space homogenization for structural mechanics[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF][START_REF] Nouy | A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations[END_REF]. In this representation, each dimension corresponds to a spatial/temporal coordinate or a parameter coefficient. The resulting tensor is never assembled explicitly but instead remains an abstract object for which a low-rank approximation based on a Canonical Polyadic decomposition [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF] is computed. The PGD method further alleviates the curse of dimensionality by introducing a multidimensional weak formulation over the entire parameter space, and the solutions are sought in a particular form where all variables are separated. When differential operators admit a tensor decomposition, the PGD method is very efficient because the multiple integrals involved in the multidimensional weak form of the equations are simplified as a sum of products of simple integrals.

Unfortunately realistic constitutive equations as well as less sophisticated elasto-viscoplastic models admit no tensor decomposition with respect to the material coefficients and the time variables. An extension of the PGD to highly nonlinear laws is therefore non-trivial. However, many other tensor decomposition approaches have been successfully proposed to approximate functions or solutions of differential equations defined over high dimensional spaces. We refer the reader to [START_REF] Khoromskij | Tensors-structured numerical methods in scientific computing: Survey on recent advances[END_REF][START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF][START_REF] Bigoni | Spectral tensor-train decomposition[END_REF] for detailed reviews on tensor decomposition techniques and their applications. Among the existing formats -CP decomposition [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF][START_REF] Harshman | Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multi-modal factor analysis[END_REF][START_REF] Kiers | Towards a standardized notation and terminology in multiway analysis[END_REF], Tucker decomposition [START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF][START_REF] Tucker | The extension of factor analysis to three-dimensional matrices, Contributions to mathematical psychology[END_REF], Hierarchical Tucker decomposition [START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF][START_REF] Hackbusch | A new scheme for the tensor representation[END_REF] -this work investigates the tensor-train (TT) decomposition [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF][START_REF] Oseledets | Tensor-train decomposition[END_REF]. The TT-cross algorithm, introduced in [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF] and further developed in [START_REF] Savostyanov | Fast adaptive interpolation of multi-dimensional arrays in tensor train format[END_REF][START_REF] Savostyanov | Quasioptimality of maximum-volume cross interpolation of tensors[END_REF], is a practical procedure to build an approximation of a given tensor under the tensor-train format.

In the present work, an alternative procedure inspired by the TT-cross algorithm is developed. As its original counterpart, it does not break down when only a parsimonious exploration of the physics-based tensors is affordable, in particular when their entries are solutions of a DAE system involving a high-dimensional parameter space. All outputs of interest of the physical model are grouped into a set of physics-based tensor representations according to their physical units or specific end user requirements. Then the proposed non-intrusive method enables to build simultaneously TT approximations for all these objects. The original aspects of this work are:

• The introduction of an abstract TT approximation algorithm framework that encompasses TT construction procedures such as the TT-SVD and the left-to-right sweep of the TT-cross and enables the use of alternative low-rank approximations instead of the Singular Value Decomposition (SVD) or the Pseudo-Skeleton Decomposition (PSD);

• The development of a variant of the abstract TT algorithm based on a Gappy POD formulation that accommodates the heterogeneous, real-valued outputs that are ubiquitous in mechanics of materials. The resulting procedure -termed Multiple TT algorithm in the sequel -constructs an arbitrary number of tensor representations based on a shared sampling set of the parameter domain;

• The application of the proposed tensor-decomposition-based methodology to the numerical solution of a highly nonlinear elasto-viscoplastic constitutive law.

The text is organized as follows. Section 2 introduces the notations required for the subsequent developments. Section 3 presents the tensor-train format and a multilinear interpolation method is detailed in Section 4. Section 5 details an abstract TT algorithm that generates an approximate tensor-train decomposition of a reference tensor. The key step of the algorithm, namely the low-rank matrix approximation, is discussed in Section 6. Section 7 introduces a general formulation for a class of DAE systems covered by the proposed approach. The Multiple TT algorithm detailed in Section 8 generalizes the previously introduced TT algorithm for heterogeneous, multiple outputs. Section 9 describes the nonlinear elasto-viscoplastic law used in the numerical application and presents the associated results. Finally, some perspectives are discussed in Section 10.

Notations

A tensor of order d A ∈ R n 1 ו••×n d (denoted with bold calligraphic letter) refers to a multidimensional array (also called multiway array).

The entry of A identified by the indices (i 1 , . . .

i d) ∈ I 1 × • • • × I d is denoted by: A(i 1 , . . . , i d) ∈ R
where

I k = [1 : n k] is the set of natural numbers from 1 to n k (inclusive) for k = 1, . . . , d.
The bracket notation allows to define a tensor as the collection of its elements:

A = [A(i 1 , . . . , i d), ∀ (i 1 , . . . , i d) ∈ I 1 × • • • × I d]
When the respective ranges of definition of the indices are obvious, the notation can be shortened as follows:

A = [A(i 1 , . . . , i d)]
The shape of a tensor is the tuple constituted by the size of all dimensions (in the above example (n 1 , . . . , n d)). Given a tensor, the reshape operation returns a tensor of different shape with similar elements, referred to as a reshaped tensor. More specifically, the process of reshaping consists in re-indexing the reference tensor. From a given tensor A ∈ R n 1 ו••×n d the association of consecutive dimensions enables to define reshaped tensors. For instance, the association of the q consecutive dimensions p, (p + 1), . . . , (p + q -1) yields a tensor of order (dq + 1):

B ∈ R n 1 ו••×n p-1 ×n p ×n p+q ו••×n d where np = p+q-1 k=p n k
and the relation between the elements of both tensors are given by:

A(i 1 , . . . , i d) = B i 1 , . . . , i p-1 , īp , i p+q , . . . , i d where īp = i p + p+q-1 k=p+1 (i k -1) k-1 l=p n l (1)
When using the bracket notation, the association of dimensions is denoted by adding parentheses around the indices thus creating a multi-index [START_REF] Hackbusch | Tensor spaces and numerical tensor calculus[END_REF]. The equality (1) can be written as:

B = A i 1 , . . . , i p-1 , i p , . . . , i (p+q-1) , i (p+q) , . . . , i d
Two particular types of reshaping will be used in the rest of the article. First, the matricization consists in re-indexing the elements in order to interpret a tensor as a matrix (a 2 nd -order tensor). The q th matricization of A denoted by A q consists in associating the dimensions of A into two groups, the q leading dimensions and the (dq) trailing dimensions, such that the newly defined multi-indices enumerate respectively the rows and columns of the matrix A q . A q is given with the bracket notation as:

A q = A (i 1 , . . . , i q), (i q+1 , . . . , i d) ∈ R (n 1 ...n q)×(n q+1 ...n d)
Second, for a given tensor A, the squeeze operation returns a tensor A for which all dimensions of size 1 have been removed. For instance, A ∈ R 10×10×1 is transformed into A ∈ R 10×10 such that:

A (i, j) = A(i, j, 1) ∀(i, j) ∈ [1 : 10] 2
The Frobenius norm is denoted by . without the usual subscript F . For A ∈ R n 1 ×...n d , it reads:

A = i 1 ,...,i d ∈I 1 ו••×I d A(i 1 , . . . , i d) 2
The Frobenius norm of a tensor is invariant under re-indexing. In particular, all matricizations of a given tensor share the same Frobenius norm.

The usual 2-norm of a matrix A ∈ R n×m is denoted by A 2 . Define the tensor dot product ×m q are given by: C(i 1 , . . . , i p , j 1 , . . . , j q) = r α=1 A(i 1 , . . . , i p , α)B(α, j 1 , . . . , j p) Considering the matrix A ∈ R n×m , define the column selection matrix Q ∈ R m×s associated with the set of column indices J = J (1) , . . . , J (s) ⊂ [1 : m] of A:

• such that for A ∈ R n 1 ו••×n p ×r and B ∈ R r×m 1 ו••×m q the entries of the tensor C = A • B ∈ R n 1 ו••×n p ×m
Q(i, j) = δ i,J (j) ∀(i, j) ∈ [1 : m] × [1 : s] (2)
where δ denotes the Kronecker delta.

The colon notation [19, Sections 1.1.8 and 1.2.9] is used to denote the extraction of a submatrix. The matrix product of A by Q yields a submatrix constituted by the columns J of A such as:

AQ = A(:, J)
Similarly, define the row selection matrix P ∈ R n×s associated with the set of row indices I = I (1) , . . . ,

I (s) ⊂ [1 : n] of A: P(i, j) = δ i,I (j) ∀(i, j) ∈ [1 : n] × [1 : s] (3)
Extracting the rows I of A consists in applying the transpose of P to the matrix A such that:

P T A = A(I, :) Remark 1.
All column and row selection matrices have orthogonal columns.

Tensor-train format

The storage complexity for all elements of a tensor

A ∈ R n 1 ו••×n d is O(n d)
where n = max(n 1 , . . . , n d). The exponential dependence on the order d prohibits to store simultaneously and explicitly all elements of the tensor even for a "small" d. However, in the case of low-rank tensors, some representations based on tensor decompositions enable their actual storage.

A tensor T ∈ R n 1 ו••×n d is said to be in tensor-train format (TT format) if its elements are given by the following matrix products:

T (i 1 , . . . , i d) = G 1 (i 1) . . . G d (i d) ∈ R (4)
where for k = 1, . . . , d, the so-called tensor carriages (or core tensors) are such that:

G k (i k) ∈ R r k-1 ×r k ∀i k ∈ I k
In the original definition of the tensor-train format [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF], the leading and trailing factors (corresponding to G 1 (i 1) and G d (i d) for any choice of i 1 and i d) are respectively row and column vectors. The convention r 0 = r d = 1 is adopted so that row matrices G 1 (i 1) and column matrices G d (i d) can be interpreted as vectors depending on the context.

The tensor carriages G k can be further interpreted are 3 rd -order tensors G k ∈ R r k-1 ×n k ×r k with:

G k (i k)(p, q) = G k (p, i k , q) ∀(i k , p, q) ∈ I k × [1 : r k-1] × [1 : r k]
The TT decomposition can be equivalently written:

T (i 1 , . . . , i d) = r 1 α 1 =1 • • • r d-1 α d-1 =1 G 1 (i 1 , α 1)G 2 (α 1 , i 2 , α 2) . . . G d-1 (α d-2 , i d-1 , α d-1)G d (α d-1 , i d) (5)
where G 1 and G d are the squeezed versions of G 1 and G d .

Using the tensor dot product notation, Equation (5) can be compactly rewritten:

T = G 1 • G 2 • • • • • G d-1 • G d (6)
The TT format allows significant gains in terms of memory storage and therefore is well-suited to high order tensors. The storage complexity is O(nr 2 d) where r = max(r 1 , . . . , r d-1) and depends linearly on the order d of the tensor. In many applications of practical interest the small TT-ranks r k enable to alleviate the curse of dimensionality [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF].

The sequential computational complexity of the evaluation of a single element of a tensor in TT format is O dr 2 . Assuming that r is small enough, the low computational cost allows a real-time evaluation of the underlying tensor. Therefore, in terms of online exploitation, this representation conforms with the expected requirements of the surrogate model. Figure 1 illustrates the sequence of matrix multiplications required to compute one element of the tensor train.

x x x x

Figure 1: Illustration of the evaluation of one element of the tensor train. The entry T (i 1 , . . . , i d) ∈ R is obtained by multiplying the set of matrices G 1 (i 1), G 2 (i 2) . . . , G d (i d) identified by a darker shade.

Piecewise multilinear interpolation using the TT format

Implementations of basic operations such as addition and multiplication have been addressed [START_REF] Oseledets | Tensor-train decomposition[END_REF] for tensor-train representations. More complex operations such as convolutions, scalar products, norms, contractions, Hadamard product and high-dimensional integration of functions, have also been studied [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF][START_REF] Oseledets | Tensor-train decomposition[END_REF]. The case of piecewise multilinear interpolation is addressed here.

Consider a multidimensional function defined over a discretized domain of dimension d. The 'naive' piecewise multilinear interpolation of the function theoretically requires the evaluation of 2 d points. However, the multilinear interpolation is a tensor product of one-dimensional piecewise linear interpolations. Considering a tensor-train representation of the function and exploiting its particular structure, an efficient formula to compute the piecewise multilinear interpolation can be derived.

Consider a function:

F ∆ : D ∆ = D ∆ 1 × • • • × D ∆ d → R (µ 1 , . . . , µ d) → F ∆ (µ 1 , . . . , µ d) (7)
where the definition domain D ∆ is the Cartesian product of the sets D ∆ k representing discretized intervals of R:

D ∆ k = µ (i k) k ∈ R | ∀i k ∈ I k with I k = [1 : n k] (8)
with

µ (1) k < µ (2) k < • • • < µ (n k) k (9)
The function F ∆ is naturally associated with the tensor T ∈ R n 1 ×...n d such that:

T (i 1 , . . . , i d) = F ∆ µ (i 1) 1 , . . . , µ (i d) d ∀ (i 1 , . . . , i d) ∈ I 1 × • • • × I d (10)
Assume that the latter admits a tensor-train decomposition such that:

T (i 1 , . . . , i d) = G 1 (i 1) . . . G d (i d) (11)
with

G k (i k) ∈ R r k-1 ×r k ∀i k ∈ I k (12)
Define the continuous domain

D = D 1 × • • • × D d such that D k = µ (1) k , µ (n k)
k are intervals of R. Define over D a function F which corresponds to F ∆ on D ∆ and is a piecewise multilinear interpolation over D.

Proposition 1. The evaluation of F at the point (µ 1 , . . . , µ d) ∈ D reads:

F(µ 1 , . . . , µ d) = L 1 (µ 1) . . . L d (µ d) (13)
with

L k (µ k) = 1 μ+1 k -μ-1 k μ+1 k -µ k G k i -1 k -μ-1 k -µ k G k i +1 k
where μ+1 k and μ-1 k are respectively the upper and lower closest elements to µ k that belong to D ∆ k , and i -1 k and i +1 k are defined such that:

μ+1 k = µ (i +1 k) k and μ-1 k = µ (i -1 k) k (14
)
The proof is given in Appendix B. L k can be interpreted as a matrix-valued function defined over

D k that coincide with G k on D ∆ k , that is: L k µ (i k) k = G k (i k) for i k ∈ I k
and is a piecewise multilinear interpolation over D k .

The computational complexity of the evaluation of

L k (µ k) (piecewise linear interpolation between two matrices) is O(r 2) with r = max(r 0 , . . . , r d). The evaluation of F(µ 1 , . . . , µ d) involves d interpolations of matrices (G 1 , . . . , G d).
Hence, the computational complexity for interpolating all the matrices G k is O dr 2 . Since the computational complexity to compute an element of a tensor in TT format is O dr 2 , the computational complexity for evaluating F at one point is O 2dr 2 . There is only a factor 2 between the complexities of the evaluation of the piecewise multilinear interpolation and the evaluation of a tensor-train decomposition. When the function F ∆ is a restriction of a reference continuous function, the expression (13) enables to estimate efficiently an approximation of this reference function.

Remark 2. The computational cost of finding the indices i +1

k and i -1 k according to Equation (14) may be not negligible. In particular, if the grid D ∆ k is not regular (that is, with non constant steps) the cost is O(log n k) (search in an ordered list). For a regular grid, the cost is independent from n k .

Generic algorithm for approximate tensor-train decomposition

Core tensors definition

Given a tensor A ∈ R n 1 ו••×n d , Algorithm 1 generates a set of matrices {H 1 , . . . , H d } that enables to define a tensortrain decomposition:

T = H 1 • H 2 • • • • • H d-1 • H d ∈ R n 1 ו••×n d (15
)
where

H k ∈ R s k-1 ×n k ×s k for k = 1, . . . , d
such that :

H k 2 = H k ∈ R (s k-1 n k)×s k (16)
T is an approximation of the tensor A up to an error whose expression is detailed in Section 5.2.

Remark 3. The outputs H k of the algorithm are not necessarily given as explicit matrices but instead may be returned as matrix decompositions. The latter format may be preferable when applying the refactoring procedure presented in Section 5.4.

Remark 4. For k = d -1, the matricization step (20) returns A d ∈ R (s d-1 n d)×1
, hence the convention s d = 1.

Algorithm 1: Generic TT approximation algorithm

Input: A tensor A ∈ R n 1 ו

Initial matricization:

Define the matrix A 1 ∈ R (s 0 n 1)×(n 2 ...n d) with s 0 = 1, as the first matricization of the tensor A:

A 1 = A 1 (17
)
for k = 1, . . . , d -1 do Low-rank approximation: Build a rank-r k approximation T k of the matrix A k ∈ R (s k-1 n k)×(n k+1 ...n d)
given in the form:

T k = H k P T k A k with H k , P k ∈ R (s k-1 n k)×s k and s k ≥ r k (18)
Tensorization: Define the tensor A (k+1) ∈ R s k ×n k+1 ו••×n d such that:

A (k+1) 1 = P T k A k ∈ R s k ×(n k+1 ...n d) (19)
Matricization: Define the matrix A k+1 ∈ R (s k n k+1)×(n k+2 ...n d) as the second matricization of the tensor A (k+1) :

A k+1 = A (k+1) 2 (20)
Finalization:

Define the matrix H d ∈ R (s d-1 n d)×s d with s d = 1 such that:

H d = A d (21)

Approximation error

For k = 1, . . . , d -1, define the error matrices E k ∈ R (s k-1 n k)×(n k+1 ...n d) as:

E k = A k -T k (22)
and the corresponding error tensors:

E k ∈ R s k-1 ×n k ו••×n d such that E k 2 = E k ∈ R (s k-1 n k)×(n k+1 ...n d) (23)
Proposition 2. The approximation error between a given tensor A and its tensor-train approximation T obtained by Algorithm 1 is:

A -T = H 1 • H 2 • • • • • H d-2 • E d-1 + H 1 • H 2 • • • • • H d-3 • E d-2 + . . . + H 1 • E 2 + E 1 (24)
See Appendix C for proof. A corollary (Proposition 3) of Proposition 2 exhibits an upper bound for the norm of the approximation error as a function of the norm of the output matrices H k and the error matrices E k .

Proposition 3. With the hypotheses of Proposition 2:

A -T 2 ≤ d-1 k=1 k-1 k =1 H k 2 2 E k 2 (25)
See Appendix D for proof.

Low-rank approximation step

The low-rank approximation step (18) of the algorithm is expressed as an abstract matrix factorization, namely:

T k = H k P T k A k
to emphasize that several concrete alternatives are possible. For the sake of simplicity, the rest of the article will be restricted to the cases where 19) and (20) taken together indicate that the matrix A k+1 , that will be exploited at the next iteration, is a reshaped version of the matrix P T k A k . Depending on the adopted low-rank approximation, the matrix P k has a different structure and thus leads to different definition of the matrices A k+1 . That choice also determines which elements of the reference tensor must computed at each iteration. A key objective is thus to chose a low-rank approximation that retains sufficient accuracy and only requires a parsimonious exploration of the entries of A to make Algorithm 1 computationally affordable. A detailed discussion of some candidates and their respective properties is postponed until Section 6.

H k ∈ R (s k-1 n k)×s k has rank r k with s k ≤ r k and P k ∈ R (s k-1 n k)×s k has orthogonal columns. Equations (

Refactoring procedure

Depending on the selected low-rank approximation [START_REF] Hackbusch | Tensor spaces and numerical tensor calculus[END_REF] in Algorithm 1, the TT decomposition (15) may be suboptimal. More specifically, the tensor A may admit an alternate TT decomposition whose tensor carriages involve fewer elements. The refactoring procedure introduced below shows how to obtain a more compact tensor-train decomposition. The refactored decomposition is equivalent to the reference decomposition [START_REF] Oseledets | Tensor-train decomposition[END_REF] in the sense that their evaluations coincide (at least in exact arithmetic). The new decomposition relies only on the outputs H k of Algorithm 1 (See Remark 3) and therefore requires no further computation of any elements of the reference tensor A.

The low-rank approximation [START_REF] Hackbusch | Tensor spaces and numerical tensor calculus[END_REF] features a matrix H k ∈ R (s k-1 n k)×s k of rank r k . Hence, there exists K k ∈ R (s k-1 n k)×r k and L k ∈ R r k ×s k such that:

H k = K k L k with r k ≤ s k (26)
The matrices K k and L k can be further interpreted as the tensors

K k ∈ R s k-1 ×n k ×r k and L k ∈ R r k ×s k such that: K k = K k 2 and L k = L k
Hence, for k = 1, . . . , d -1:

H k = K k • L k (27)
Casting (27) into (15) reads:

T = K 1 • L 1 • K 2 • L 2 • • • • • K d-1 • L d-1 • H d (28)
For k = 1, . . . , d, define G k ∈ R r k-1 ×n k ×r k such that:

G 1 = K 1 (29) G k = L k-1 • K k for k = 2, . . . , d -1 (30) G d = L d-1 • H d (31)
Equations (28), (29), [START_REF] Lemaitre | Mechanics of solid materials[END_REF] and [START_REF] Besson | Non-linear mechanics of materials[END_REF] enable to define the refactored TT decomposition:

T = G 1 • G 2 • • • • • G d-1 • G d (32)

Selection of a concrete low-rank matrix approximation

The operation left to be detailed in Algorithm 1 is the construction of the low-rank approximation (18).

Singular Value Decomposition

In [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF], the Singular Value Decomposition (SVD) is first considered and leads to the algorithm called TT-SVD. With usual notations, for a matrix A ∈ R n×m , the low-rank approximation T svd given by the truncated SVD reads:

A = V svd Σ svd W T svd = T svd +E svd where E svd ≤ svd A (33
)
where svd is the truncation tolerance. The columns of the matrix V svd ∈ R n×r constitute the POD reduced basis (where POD stands for Proper Orthogonal Decomposition) and correspond to the r most significant left singular vectors of the SVD [19, Section 5.5.4] of A.

Algorithm 1 is specialized into the TT-SVD with the following matrix substitutions:

T k = T svd and H k = P k = V svd
The TT-SVD enables to assert that any tensor can be represented exactly by a tensor-train decomposition. Moreover, the reference [14, Theorem 2.2] provides an upper bound for the approximation error given predefined TT-ranks.

The computation of P T k A k [START_REF] Golub | Matrix computations[END_REF] requires the availability of the entire matrix A k . Since A 1 is the first matricization of A (Equation (17)), all elements of the full tensor have to be explicitly computed at the first iteration. Furthermore, at all subsequent iterations, the whole matrices A k have to be assembled and stored. The resulting computational burden makes the TT-SVD intractable in high parametric dimension.

The remedy shared by the alternative low-rank approximations presented in Section 6.2 to 6.4 consists in using only a parsimonious exploration of the reference tensor to keep the computational effort reasonable.

Snapshot POD

A first approach consists in avoiding building the POD basis from the full matrix A k . An approximate POD reduced basis of rank r k can be obtained via the Snapshot POD method [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. part 1: Coherent structures[END_REF]. The method consists in applying the truncated SVD on the submatrix à = A(:, J pod) constituted by a selection of columns J pod of A. Hence the accuracy of the resulting POD reduced basis relies on the quality of the sampling procedure that generally introduces a sampling error. The discussion of the selection of J pod is postponed until Section 8.

Using this approach leads to an alternate algorithm, referred to as the TT-POD, with the following matrix substitutions:

T k = T pod , H k = V pod V T
pod , and P k = I

In this case, the recursive definition of A k indicates that it corresponds to the k th matricization of the tensor A. Using the Snapshot POD to build the basis matrix V k is not sufficient to relieve the curse of dimensionality. Indeed, the number of rows of the matrices A k grows with k and becomes too large to consider computing a single column. Hence, the TT-POD remains practically unfeasible for large tensors.

Pseudo-Skeleton Decomposition

A more practical approach to effectively construct an approximate TT decomposition, called the TT-cross method, is proposed in [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF]. The TT-cross consists in dropping the concept of a POD basis and using the Pseudo-Skeleton Decomposition (PSD) introduced in [START_REF] Tyrtyshnikov | Pseudo-skeleton approximations[END_REF] as low-rank approximation. Unlike the TT-SVD and the TT-POD, the TTcross enables to build an approximation based on a sparse exploration of the reference tensor. The TT-PSD presented hereafter, is a specialization of Algorithm 1 where the low-rank approximation is the PSD. It is similar to the first left-to-right sweep of the TT-cross.

The Pseudo-Skeleton Decomposition can be used to approximate any matrix A ∈ R n×m and is written as:

A = AQ psd P T psd AQ psd -1 P T psd A = T psd +E psd (34)
where P psd ∈ R n×s and Q psd ∈ R m×s are respectively row and column selection matrices associated with the sets I psd and J psd . The definition is valid only when the matrix P T psd AQ psd is non-singular. In particular, the number s of rows and columns has to be identical. The approximation decomposition (34) can be written with the colon notation as:

T psd = A(:, J psd) A(I psd , J psd) -1
A(I psd , :) This approximation [START_REF] Carlberg | The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows[END_REF] features an interpolation property at the selected rows and columns: T (I psd , :) = A(I psd , :) and T (:

, J psd) = A(:, J psd) (35)
The Pseudo-Skeleton Decomposition is a matrix factorization similar to the decomposition used in the Adaptive Cross Approximation (ACA) [START_REF] Bebendorf | Approximation of boundary element matrices[END_REF] and the CUR decomposition [START_REF] Berry | Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices[END_REF][START_REF] Stewart | Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix[END_REF]. Additionally, these references provide algorithms to effectively build the factorization. That decomposition has also been used in the context of model order reduction, for instance in the Empirical Interpolation Method (EIM) proposed in [START_REF] Maday | A general multipurpose interpolation procedure: the magic points[END_REF][START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF].

Algorithm 1 specializes into the TT-PSD with the following matrix substitutions:

T k = T psd , H k = AQ psd P T psd AQ psd -1
and P k = P psd P k is a row selection matrix associated with the set I k of s k rows of A k . Hence, the matrix A k+1 , used at the next iteration, consists of a reshaped version of the submatrix A k (I k , :). By induction, it can be shown that the matrices A k are constituted by sets of multi-indices of the reference tensor A. Each iteration amounts then to the computation a low-rank approximation of the k th matricization of a subtensor of A. The number of rows of A k is then limited and enables in practice to construct the low-rank approximation when s k s k-1 n k . The provided sparse exploration makes the TT-PSD affordable to compute.

Gappy POD

A last, novel approach consists in using the Gappy POD introduced in [START_REF] Everson | Karhunen-Loève procedure for gappy data[END_REF] as the low-rank approximation in [START_REF] Hackbusch | Tensor spaces and numerical tensor calculus[END_REF]. This strategy aims at combining beneficial features of the Snapshot POD and the PSD. Indeed, the Gappy POD a) relies on a POD basis that remains computationally affordable and b) requires only a limited number of rows of the matrix to be approximated. Both properties are key ingredients for an efficient, parsimonious exploration of the reference tensor during Algorithm 1.

Formulation

The Gappy POD approximation T gap of a matrix A ∈ R n×m is given by:

A = V pod P T gap V pod † P T gap A = T gap +E gap (36)
where † denotes the Moore-Penrose pseudo-inverse [19, Section 5.5.2]. V pod ∈ R n×r is a POD basis matrix of rank r and P gap ∈ R n×s is a row selection matrix associated with a set of s rows

I gap ⊂ [1 : n].
The matrix P T gap V pod must have linearly independent columns to ensure that the approximation is meaningful. Since V pod is a rank-r POD basis, there exists a set of s rows such that this property holds as long as s ≥ r. In the numerical results presented hereafter the rows are selected using the Q-DEIM algorithm [START_REF] Drmac | A new selection operator for the discrete empirical interpolation method-improved a priori error bound and extensions[END_REF] that was shown to be a superior alternative to the better-known DEIM procedure [29, Algorithm 1]. For the sake of completeness, the Q-DEIM algorithm is detailed in Appendix E.

Remark 5. When P T gap V pod has linearly independent columns, its Moore-Penrose pseudoinverse can be computed as:

P T gap V pod † = V T pod P gap P T gap V pod -1
V T pod P gap It follows that P T gap V pod † is a left inverse of P T gap V pod since:

P T gap V pod † P T gap V pod = I r
Unlike the PSD, the Gappy POD enables to select a number of rows that exceeds the rank of the low-rank approximation. In this case, the interpolation property does not hold as in the PSD case [START_REF] Szyld | The many proofs of an identity on the norm of oblique projections[END_REF].

Algorithm 1 is specialized into the proposed TT-Gappy with the following matrix substitutions:

T k = T gap , H k = V pod P T gap V pod † and P k = P gap (37)
Similarly to the PSD case, the row selection matrix P gap enables a sparse exploration of the reference tensor A in Algorithm 1.

Error bound for the TT decomposition

To quantify the theoretical accumulation of errors introduced at each iteration, Proposition 4 gives an upper bound for the approximation error associated with a tensor-train decomposition built by the TT-Gappy.

∃ν k , I -V k V T k A k ≤ ν k A k (38
)
the following inequality holds:

A -T 2 ≤ d-1 k=1 ν 2 k σ min P T 1 V 1 σ min P T 2 V 2 . . . σ min P T k V k 2 A 2 (39)
where σ min refers to the smallest singular value of its matrix argument.

The proof is given in Appendix F.

Remark 6. The property (38) is always true for the choice ν k = 1. Moreover, if V k is computed as a truncated POD basis of rank r k of the full matrix A k then:

A k = V k Σ k W T k + E svd,k with E svd,k ≤ k A k (40
)
and the property (38) and therefore the bound (39) hold for ν k = k .

Remark 6 suggests that the TT-Gappy approximation error (24) can be controlled by the truncation tolerances k set by the user. However, the bound (39) tends to be very loose and the hypothesis (38) may be difficult to verify when the basis V k stems from a column sampling of the matrix A k . Hence, the convergence should be assessed empirically in practical cases.

Relevance of the refactoring procedure

Table 1 summarizes the actual definitions of the matrices K k , L k and P k involved in Algorithm 1 and the refactoring procedure 5.4 for the four types of low-rank approximation introduced earlier.

Low-rank approximation

K k L k P k SVD V svd I r V svd Snapshot POD V pod V T pod I r PSD
AQ psd P T psd AQ psd -1

I r P psd

Gappy POD V pod V T pod P gap P T gap V pod -1

V T pod P gap P gap Table 1: Concrete definitions of the matrices appearing in expressions (18) and [START_REF] Barrault | An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations[END_REF]. I r ∈ R r×r stands for the identity matrix.

The usefulness of the refactoring procedure varies according to the selected type of low-rank matrix approximation. In the case of the SVD and the PSD, the tensors H k (16) are already given in a compact format. The refactoring procedure does not provide a more compressed decomposition. Even if it has been shown in Section 6.2 that the Snapshot POD has no practical value, the refactoring procedure provides a large compression that in theory allows to store the compressed tensor train unlike the initial representation. Finally, the size of the tensors H k constructed following the Gappy POD approach depends on the number of sampled rows and the latter may be larger than the rank of the approximations. The refactoring procedure allows in this case to redefine the tensor carriages such that their respective sizes scale with the TT-ranks of the decomposition. • The time is t ∈ [0, T] where T > 0;

Problem formulation

• The variables Y χ (for χ = 1, . . . , N) are referred to as the outputs of the DAEs.

The parameter domain D is defined as a Cartesian product of d -1 intervals D k ⊂ R. Such DAEs are typically introduced in mechanics of materials to setup constitutive equations [START_REF] Lemaitre | Mechanics of solid materials[END_REF][START_REF] Besson | Non-linear mechanics of materials[END_REF]. In these applications, the outputs Y χ can stand for internal variables, stress or strain.

Assuming that the hypotheses of the implicit function theorem are fulfilled, each output Y χ can be interpreted as a time-dependent tensor-valued function with m χ components:

Y χ : D 1 × • • • × D d-1 × [0, T] → R m χ (µ 1 , . . . , µ d-1 , t) → Y χ (t, µ) =             Y χ 1 (t, µ) . . . Y χ m χ (t, µ)            
with Y χ j (t, µ) ∈ R being the j th component of the output χ, at time t, for the parameter set value µ. The outputs are described as heterogeneous in the sense that they may have different physical units and/or different order of magnitudes. As a consequence, they might not be compared to each others in a meaningful way. This observation justifies the construction of a distinct surrogate model for each output of interest.

Remark 7. The solution of the DAE system for a given set of parameter values µ provides all outputs Y χ at all times t ≤ t f . Indeed:

• Unlike the parameters, time is a causal coordinate. The value of Y χ (t f , µ) at time t f depends on the solution at the previous time t ≤ t f .

• The outputs are correlated which means that they stem from the same DAE system.

Tensor representation of outputs

Discretizations of the parameter space and the time interval are introduced to define the tensor representations for the various outputs Y χ . The time integration scheme used to solve the DAEs relies on a time sampling T ∆ of the interval [0, T]:

T ∆ = t (i t) ∈ [0, T] | ∀i t ∈ I t with t (1) < • • • < t (n t) (42)
where I t = [1 : n t] and n t is the number of time steps. The discretization of the parameter domain D is given by D

∆ = D ∆ 1 ו • •×D ∆ d-1
and is similar to the one introduced in Section 4. For χ = 1, . . . , N, define the component index range I χ comp = [1 : m χ]. m χ may differ from one output to another.

The introduced discretizations leads to associate every output Y χ with a physics-based (or reference) tensor A χ . The latter aggregates the values of the output χ for all time steps and all possible parameter values in the discretized parameter domain such that:

∀ i 1 , . . . , i d-1 , i t , i comp ∈ I 1 × . . . I d-1 × I t × I χ comp A χ i 1 , . . . , i d-1 , i t , i comp = Y χ i comp t (i t) ; µ (i 1) 1 , . . . , µ (i d-1) d-1 (43)
Without restricting the generality of the proposed approach, the last two indices are paired in a single multi-index i t , i comp . Consequently A χ is a tensor of order d such that:

A χ ∈ R n 1 ו••×n d-1 ×n χ d where n χ d = n t m χ (44)
Accessing the elements of the physics-based tensors requires to solve the DAEs for the right choice of parameter values. Depending on the considered physical model, the access can be expensive preventing a real-time exploration to the elements. Remark 8. The correlation between the outputs mentioned in Remark 7 is expressed as follows: For all χ, i t , i comp ∈ [1 : N] × I t × I χ comp and a single multi-index (i 1 , . . . , i d-1) ∈ I 1 × • • • × I d-1 , the elements

A χ i 1 , . . . , i d-1 , i t , i comp ∈ R
are associated with the same DAE solution. As a consequence, these elements are always computed simultaneously. This consideration will be factored in when building the surrogate model.

Approximation errors

A time discretization error (in addition to the modelisation error) is introduced when solving the DAE system with a time integration algorithm on the interval [0, T]. This source of error is not addressed here. In fact, the solutions produced by the numerical model are considered as "the truth" in the sense that the quality of the surrogate model is assessed with respect to them.

Since the physics-based tensors correspond to the solutions of the DAEs for parameter values on the discretized grid, a parametric interpolation error is also introduced when evaluating the surrogate model for parameter values that do not belong to the discretized grid. However, the piecewise multilinear interpolation method can be efficiently transposed to functions represented by a tensor-train decomposition (See Section 4). The interpolation error can thus be reduced by refining the discretized grid.

Multiple TT algorithm

The objective of the proposed approach is to build for each physics-based tensor A χ (44) an approximate tensor T χ given in TT format. Algorithm 2 provides the set of matrices {H χ 1 , . . . , H χ d } that enable to define the tensor-train decompositions as in Section 5.1. The refactoring procedure (Section 5.4) can be transposed straightforwardly for any tensor given in TT format.

Remark 8 asserts that solving the DAEs for one set of parameter values provides multiple elements of all physicsbased tensors A χ . The idea of the approach, embodied in Algorithm 2, is to apply simultaneously the TT-Gappy algorithm on the physics-based tensors to construct tensor-train approximations based on shared simulation results.

The method provided by Algorithm 2 is non-intrusive. Indeed, the implementation details of the numerical solution of the DAEs are completely irrelevant.

Snapshot column sampling

At each iteration k = 1, . . . , d -1, the Snapshot POD method, used to build the POD reduced basis (46), requires to sample a set:

J χ k = J χ,(1) k , . . . , J χ,(ñ χ k) k of ñχ k columns of A χ k ∈ R (s k-1 n k)×(n k+1 ...n d-1 n χ d) for every χ . Recall that A χ
k is a submatrix of the k th matricization of the tensor A χ . According to Remark 8, the entire range of indices of the last dimension for A χ correspond to the same DAE solution and are therefore obtained simultaneously. The column sampling amounts, consequently, to a parsimonious selection of ñk points in the partial discretized parameter domain

D ∆ k+1 × • • • × D ∆ d-1
and an exhaustive sampling of the last dimension for each tensor A χ . The considered submatrices Ãχ k = A χ k :, J χ k are then constituted of ñχ k = ñk n χ d columns (See Figure 2). In the present work, the sampling of the partial discretized domain

D ∆ k+1 × • • • × D ∆ d-1
is done by a design of experiment based on a low-discrepancy Halton sequence [START_REF] Halton | On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals[END_REF]. The estimation of the quality of the selection is carried out a posteriori thanks to a measurement of the error between the surrogate and the physical model (See Section 9.4).

Algorithm 2: Multiple TT decomposition

Input: Tensors A χ ∈ R n 1 ו••×n d-1 ×n χ d for χ = 1, .
. . , N associated with a DAE system (Equation (41)) Output: Sets of matrices H χ 1 , . . . , H χ d for χ = 1, . . . , N.

Initialization:

For each χ, define the matrix A χ 1 ∈ R (s 0 n 1)×(n 2 ...n d-1 n χ d) with s 0 = 1, as the first matricization of the tensor A χ :

A χ 1 = A χ 1 (45
)
for k = 1, . . . , d -1 do Snapshot POD: Define consistent sets of sampling columns J χ k (See Section 8.1). And compute from the DAEs the submatrices:

Ãχ k = A χ k :, J χ k for χ = 1, . . . , N
Apply the truncated SVD [START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF] on each Ãχ k with the truncation tolerance k to get the rank-r χ k matrices:

V χ k ∈ R (s k-1 n k)×r χ k for χ = 1, . . . , N (46)
Row Sampling:

From each χ, select a set of rows I χ k applying the Q-DEIM algorithm [START_REF] Drmac | A new selection operator for the discrete empirical interpolation method-improved a priori error bound and extensions[END_REF] (See Algorithm 3 in Appendix E) to the basis V χ k . Define the union of all selected rows and the corresponding row selection matrix:

I k = N χ=1 I χ k (47
)
and

P k = I s k-1 n k (:, I k) ∈ R (s k-1 n k)×s k where s k = Card(I k) (48
)
Output definitions:

Compute the matrices H χ k ∈ R (s k-1 n k)×s k such that:

H χ k = V χ k (P k) T V χ k † Tensorization: Define the tensors A χ,(k+1) ∈ R s k ×n k+1 ו••×n d-1 ×n χ d such that:
A χ,(k+1)

1 = P T k A χ k ∈ R s k ×(n k+1 ...n d-1 n χ d) (49
)
Matricization: Define the matrix A χ k+1 ∈ R (s k n k+1)×(n k+2 ...n d-1 n χ d)
as the second matricization of the tensor A χ,(k+1) :

A χ k+1 = A χ,(k+1)

(50)

Finalization:

For each χ = 1, . . . , N, define the matrix H χ d ∈ R (sd-1n χ d)×sd with s d = 1 such that:

H χ d = A χ d (51)

Row sampling

In the row sampling step, specific sets of rows I χ k are first determined independently for each output χ but a common, aggregated set I k (47) is then used to sample the entries of all outputs via P k (48). Indeed, according to Remark 8, computing the elements of all submatrices A χ k (I k , :) requires no more calls to the DAE system solver than evaluating the entries of all (smaller) submatrices A χ k I χ k , : . Furthermore, the Gappy POD naturally accommodates a number of rows larger than the rank r χ k for each approximation of A χ k , and considering a larger sample size for each individual χ is expected to provide an approximation with a better precision.

Remark 9. The idea of aggregating sample points generated for various outputs of a simulation has already been used in the context of projection-based model order reduction, for instance in the hyper-reduction approach [START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF] or in the GNAT method [START_REF] Carlberg | The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows[END_REF].

Tensorization and matricization

The tensorization and matricization steps define the matrices to be approximated at the next iteration. The recursive definition of the matrix A χ k implies that the latter is equal to the k th matricization of a subtensor extracted from A χ . Equivalently, the matrix A χ k corresponds to a submatrix of the k th matricization of A χ , as illustrated in Figure 3.

Application to elasto-viscoplastic constitutive equations

Physical model

The application case consists of a nonlinear constitutive law in elasto-viscoplasticity [START_REF] Lemaitre | Mechanics of solid materials[END_REF][START_REF] Besson | Non-linear mechanics of materials[END_REF] linking the following time-dependent mechanical variables:

• The strain tensor: ε ∼ = ε ∼ e + ε ∼ vp [Dimensionless]
(sum of an elastic part and a viscoplastic part);

• The stress tensor: σ ∼ [MPa];

• An internal hardening variable: X ∼ [MPa];

• The cumulative viscoplastic deformation: p [Dimensionless].

where ε ∼ , ε ∼ e , ε ∼ vp , σ ∼ and X ∼ are second order tensors in R 3×3 . The hypotheses of the infinitesimal strain theory are assumed to hold. The model involves eight material coefficients: E, ν, n, K, R 0 , Q, b and C. The Young and Poisson coefficients are set to E = 200 000 MPa and ν = 0.3. Table 2 presents the range of variation of the other material coefficients considered as inputs parameters of the model.

n K [MPa.s -n] R 0 [MPa] Q [MPa] b C [

System of equations

The elastic behavior is governed by:

σ ∼ = E 1 + ν ε ∼ e + ν 1 -2ν T r ε ∼ e I ∼ (52)
The viscoplastic behavior is described by the Norton flow rule (53) formulated with the von Mises criterion (56). The yield function and the normal to the yield function are given by (54) and (55). (57) gives the definition of the deviatoric stress tensor involved in (56).

d dt ε ∼ vp = N ∼ f K n + (53)
f = J σ ∼ D -X ∼ -R (54)
N ∼ = 3 2 σ ∼ D -X ∼ J σ ∼ D -X ∼ (55) J σ ∼ D -X ∼ = 3 2 σ ∼ D -X ∼ : σ ∼ D -X ∼ (56)
σ ∼ D = σ ∼ - 1 3 T r σ ∼ I ∼ (57)
where (.) + denotes the positive part function.

The operator : denotes the contracted product defined as:

Z ∼ 1 :Z ∼ 2 = 3 i=1 3 j=1 Z i j 1 Z i j 2 for Z ∼ 1 , Z ∼ 2 ∈ R 3×3
The nonlinear isotropic hardening is modeled by (58) where (59) gives the viscoplastic cumulative rate.

R = R 0 + Q 1 -e -bp (58)
d p dt = 2 3 d dt ε ∼ vp : d dt ε ∼ vp (59)
Finally the linear kinematic hardening is given by:

X ∼ = 2 3 Cε ∼ vp (60)
0 200 400 600 800 1000 1200 1400 1600

t[s] -1 % -0.50 % 0 % 0.50 % 1 %
11

Figure 4: The applied strain component ε 11 (t) consists of a triangular pattern of period 400s with a peak-to-peak amplitude of 2% centered in 0.

Applied deformation and initial conditions

The case of a uniaxial cyclic tensile testing driven by deformation is considered. The loading is applied by imposing ε 11 (t) with the pattern shown in Figure 4 and

σ 12 (t) = σ 13 (t) = σ 23 (t) = σ 22 (t) = σ 33 (t) = 0.
The initial conditions for the internal variables are:

p(t = 0) = 0 and X ∼ (t = 0) = 0 ∼
The model is highly nonlinear. First the isotropic hardening law introduces an exponential nonlinearity. The most significant nonlinearity arises from the Norton law (53) featuring the positive part function. Capturing the resulting threshold effect is particularly challenging for surrogate models.

Tensor abstraction

Algorithm 2 is applied to build tensor-train representations for the following mechanical variables involved in the model:

ε ∼ , ε ∼ vp , σ ∼ [MPa], p
Surrogate modeling aims at representing the relations between the parameters (inputs of the model) and the timedependent mechanical variables (outputs of the model):

(n, K, R 0 , Q, b, C) → ε ∼ (t), ε ∼ vp (t), σ ∼ (t), p (t)
For each parameter, the interval of definition is discretized as in (8) by a regular grid with 30 points:

n 1 = n 2 = n 3 = n 4 = n 5 = n 6 = 30
The time interval used for the numerical solution is discretized as in (42) by a regular grid with n t = 537 points. To be consistent with the notations of the framework (41), define:

(µ 1 , µ 2 , . . . , µ 6) = (n, K, R 0 , Q, b, C)
Following Voigt's notations, the outputs are grouped as follows: The discretizations allow to define 4 physics-based tensors:

Y 1 = ε 11 , ε 22 , ε 33 , ε 12 , ε 13 , ε 23 T Y 3 = ε 11 vp , ε
A χ ∈ R n 1 ו••×n 6 ×n χ 7 for χ = 1, 2, 3, 4 (61)
where the time index and component index have been paired in the last multi-index as described in Equation (44) such that:

n 1 7 = n 2 7 = n 3 7 = 6n t and n 4 7 = n t
The Snapshot POD sample sizes (defined in Section 8.1) are: ñ1 = ñ2 = ñ3 = ñ4 = ñ5 = 100 and ñ6 = 30

In the following applications, a common value denoted by svd is used for all truncation tolerances k associated with the POD basis at iterations k ∈ [1 : d -1].

Performance indicators

The truncation tolerance is chosen here to be svd = 10 -3 . The construction of the tensor-train decompositions requires to solve the system of DAEs d-1 k=1 s k n k ñk times with as many sets of parameter values. In the proposed numerical example, it amounts to 514 050 solutions. 15 hours are necessary on a 16-core workstation to carry out the computations. 98% of the effort is devoted to the solution of the physical model and the remaining 2% to the decomposition operations.

For a single simulation on a personal laptop computer, the solution of the physical model takes 0.7 s, whereas the surrogate model is evaluated in only 1 ms, corresponding to a speed-up of 700.

Storing the Multiple TT approximations requires 2 709 405 double-precision floating-point values. For comparison purposes, storing a single solution (constituted of the multiple time-dependent outputs) of the DAE system involves 10 203 values. Therefore, the storage of the tensor-train decompositions is commensurate with the storage of 265 solutions while it can express the approximation of 30 6 solutions.

For χ = 1, . . . , 4, the rank r χ k is bounded from above by the theoretical maximum rank r χ max,k of the matrix A χ k . More specifically, r χ max,k corresponds to the case where A χ k has full rank and is the k th matricizations of the tensors A χ . Given the choice of truncation tolerance svd = 10 -3 , the TT-ranks listed in Table 3 show that the resulting tensor trains are small enough to be stored. Table 4 emphasizes that in practice r χ k r χ max,k except for k = 1 where r χ max,k is already "small".

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Approximation error

The accuracy of the surrogate model is estimated a posteriori by measuring the discrepancy between its own outputs and the outputs of the original physical model. The estimation is conducted by comparing solutions associated with 20 000 samples of parameter set values randomly selected according to a uniform law on each discretized parameter intervals. Hence, no interpolation error is introduced in the comparison. The difference between the surrogate and the physical models is measured based on the following norms: Table 4: Ratio between the theoretical maximum ranks and the TT-ranks of the outputs of interest.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 r 1 max,k /r
x 2 T = T 0 x 2 dt et x ∼ 2 T = T 0 x ∼ : x ∼ dt
where x and x ∼ are respectively scalar and tensor time-dependent function. For the mechanical variable (where can stand for any one of ε ∼ , ε ∼ vp , σ ∼ and p), PM and T T denote the output corresponding respectively to the solution of the DAEs and the surrogate model. A relative error is associated with each mechanical variable, namely:

• Total strain tensor:

e ε = ε ∼ PM -ε ∼ T T T ε ∼ PM T ;
• Viscoplastic strain tensor: Depending on the parameter values, the viscoplastic part of the behavior may or may not be negligible as measured by the magnitudes of p and ε ∼ vp relative to ε ∼ . Hence, in the proposed application, the focus is on comparing the norm of the approximation error for ε ∼ , ε ∼ vp and p with respect to the norm of ε ∼ . The histograms featured on Figures 5a,5b, 5c and 5d present, for each mechanical variables, the empirical distribution of the relative error for all simulation results. The surrogate model given by the tensor-train decompositions features a level of error that is sufficiently low to carry out parametric studies such as calibration of constitutive laws where errors lower than 2% are typically tolerable.

e ε vp = ε ∼ PM vp -ε ∼ T T vp T

Convergence with respect to the truncation tolerance

A first surrogate model is constructed from the physical model with the prescribed truncation tolerance svd = 10 -3 . Then, this first surrogate model is used as an input for Algorithm 2. Running the algorithm several times with different truncation tolerances: svd ∈ 1 × 10 -3 ; 2 × 10 -3 ; 4.6 × 10 -3 ; 1 × 10 -2 ; 2 × 10 -2 ; 4.6 × 10 -2 ; 1 × 10 -1 generates as many new surrogate models.

Figures 7a,7b, 7c and 7d present the evolution of the relative error distribution (for the different mechanical variables) with respect to the truncation tolerance based on a random sample of 20 000 parameter set values chosen as in Section 9.4. Figure 6 details the graphical notations. The results empirically show for each mechanical output, the relative error decreases together with svd . It is consistent with the expected behavior of the algorithm.

Plots in Figure 8a and 8b show the dependence of the number of stored elements and the number of calls to the physical model on svd .

Online coherence estimators

Based on the physical model, the surrogate model gives an approximation of each output of interest. However, the approximate outputs may be inconsistent with the physics in the sense that they may lead to non-zero residuals when introduced into (the discrete version of) the system (41).

A coherence estimator is an indicator that measures how closely the physical equations are verified by the outputs of the surrogate model. It is reasonable to expect the accuracy of the metamodel to be correlated with the coherence estimator.

Using Equation (52) let:

σ ∼ eq,T T = E 1 + ν ε ∼ T T e + ν 1 -2ν T r ε ∼ T T e I ∼
and define the associated coherence estimator as follows:

η σ = σ ∼ T T -σ ∼ eq,T T T σ ∼ T T T (62)
Figure 9 displays the relation between the relative error for σ ∼ and the effectivity of the estimator η σ /e σ for 20 000 simulation results drawn randomly. The error increases with the final cumulative deformation, that is when the material exhibits a more intense viscoplastic behavior.

Furthermore, the plot shows a correlation between the coherence estimator and the relative error. In particular, the effectivity tends to be larger than 1 which indicates that the coherence estimator behaves like an upper bound of the relative error. Excluding a few outliers, the coherence estimator does not overestimate the relative error by more than a factor 7. Finally, the effectivity of the coherence estimator empirically converges to 1 (that is, the estimator becomes sharper) as the magnitude of the relative error increases.

Q 1 Q 3 IQR Q 1 -1.5 x IQR Q 3 + 1.5 x IQR
This coherence estimator is very cheap to compute and only relies on outputs of the surrogate model. The results suggest that the coherence estimator could be used as an online error indicator that increases the reliability of the surrogate model at the current point when exploring in real-time the parameter domain.

Conclusions and perspectives

The present work assesses the performance of tensor-train representations for the approximation of numerical solutions of nonlinear DAE systems. The proposed method enables to incorporate a large number of simulation results (500 000 scalar values) to produce a metamodel that is accurate over the entire parameter domain. More specifically, numerical results show that the Multiple TT decomposition gives promising results when used as a surrogate model for an elasto-viscoplastic constitutive law. For this particular application, the surrogate model exhibits a satisfying accuracy given the moderate computational effort spent for its construction and the data storage requirements. Moreover, the observed behavior of the proposed empirical coherence estimator indicates that the latter could be exploited to assess the approximation error in real time.

The application to more complex material constitutive laws involving a larger number of parameters is under way. In addition, ongoing work concerns the actual calibration of constitutive laws with the help of the Multiple TT approach. Surrogate models have the potential to transform the way of carrying out parametric studies in material science. In particular, they may enable the design of efficient methods for sensibility estimation or uncertainty quantification of numerical models. Future work will investigate the combination of the proposed method with "usual" model order reduction techniques such as hyper-reduction [START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF] in order to take into account the space dimension.

Appendix A. Preliminaries Lemma 1. Let A ∈ R n 1 ו••×n p ×r and B ∈ R r×m 1 ו••×m q , then:

A • B 2 ≤ A p 2 2 B 2
Proof. From the definition of matricization (See Section 2) it comes: Proof. Following the notation of Algorithm 1, define A (1) ∈ R s 0 ×n 1 ו••×n d with s 0 = 1 such that:

A • B p = A p B 1 Hence A • B 2 = A • B p 2 = A p B 1 2 ≤ A p
w η k : [μ-1 k , μ+1 k] → R µ k → η k μη k k -µ k μ+1 k -μ-
A (1) = A (C.1)
. Equation (17) can be written:

A 1 = A (1) 2 (C.2)
Hence, Equations (C.2), (18), (19), [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. part 1: Coherent structures[END_REF] and the definition of the error (22) yield: Based on the definitions (16) and (23), Equation (C.4) can be written:

A (k)
A (k) (α k-1 , i k , . . . , i d) = s k α k =1
H k (α k-1 , i k , α k)A (k+1) (α k , i k+1 , . . . , i d) + E k (α k-1 , i k , . . . , i d) (C.5)

and can be shortened with the tensor dot product as follows:

A (k) = H k • A (k+1) + E k for k = 1, . . . , d -1 (C.6)
Define:

H (k) = H 1 • • • • • H k for k =
A (1) = H 1 • A (2) + E 1 = H (1)
• A (2) + H (0) • E 1 according to (C.7) (C.9)

Hence P 1 holds. Inductive step Let k ≤ d -2 such that P k is true. Then: Following the notations of Algorithm 1 and using the assumption (38), it comes:

A (1) = H (k) • A (k+1) + k-1 k =0 H (k) • E k +1 = H (k) • H k+1 • A (k+2) + E k+1 + k-1 k =0 H (k) • E k +1 according to (C.6) since k + 1 ≤ d -1 = H (k) • H k+1 • A (k+2) + H (k) • E k+1 + k-1 k =0 H (k) • E k +1 = H (k+1) • A (k+2) + k k =0 H (k) • E k +1
E k ≤ (I -V k V T k)A k σ min P T k V k ≤ ν k σ min P T k V k A k
and based on the definition of A k :

A k = A (k) ≤ A therefore E k ≤ ν k σ min P T k V k A
Finally, according to (25):

A -T 2 ≤ d-1 k=1 ν 2 k σ min P T 1 V 1 σ min P T 2 V 2 . . . σ min P T k V k

Proposition 4 .

 4 Consider A ∈ R n 1 ו••×n d and its tensor-train approximation T constructed by the TT-Gappy. Assuming that for all k ∈ [1 : d -1]

7. 1 .•

 1 Differential algebraic equations Consider a system of parameterized Differential Algebraic Equations (DAEs): R Y 1 , . . . , Y N , Ẏ1 , . . . , ẎN , µ, t = 0 (41) where • R is a nonlinear operator; The parameters are denoted by µ = (µ 1 , . . . , µ d-1) ∈ D = D 1 × • • • × D d-1 with d > 0;

Figure 2 :

 2 Figure 2: Definition of the submatrix Ãχ k used to construct the POD reduced basis. In the illustration, the Snapshot POD sample size is ñk = 3

Figure 3 :

 3 Figure 3: Definition of A χ k based on A χ . In the illustration, the number of rows selected at the previous iteration k -1 is s k-1 = 3.

 (a) Empirical distribution for e ε . The size of the histogram bucket is 0.009%. (b) Empirical distribution for e εvp . The size of the histogram bucket is 0.008%. (c) Empirical distribution for e σ . The size of the histogram bucket is 0.024%. (d) Empirical distribution for e p . The size of the histogram bucket is 0.066%.

Figure 5 :

 5 Figure 5: Empirical distribution of the errors for every mechanical variables.

Figure 6 :Figure 7 :

 67 Figure 6: The left and right sides are the first and third quartiles (respectively Q 1 and Q 3). The line inside the box represents the median. The reach of the whiskers past the first and third quartiles is 1.5 times the interquartile range (IQR). The crosses represent the outliers lying beyond the whiskers.

 (a) Dependence of the number of calls to physical model on svd (b) Dependence of the number of stored elements on svd

Figure 8 :

 8 Figure 8: Dependence of computational cost and memory storage indicators on svd

Figure 9 :

 9 Figure 9: Effectivity of the coherence estimator η σ (62) associated with σ. The color scale indicates the final cumulative deformation.

2

 2 Appendix B. Proof of Proposition 1Proof. The generalization in arbitrary dimension d of the classical linear, bilinear and trilinear interpolation yields:F(µ 1 , . . . , µ d) = η 1 ,...,η d =±1whereF ∆ μ-η 1 1 , . . . , μ-η d d ∈ R and

1 k 2)

 12 is an affine function of µ k with η k = ±1.It can be shown that the function F defined at Equation (B.1) is piecewise multilinear (that is, piecewise affine with respect to each of the variables µ k) and coincides with F ∆ (defined by Equation (7)) on D ∆ .According to the definition of µ -1 l and µ +1 l (14), (B.1) can be rewritten:F(µ 1 , . . . , µ d) = η 1 ,...,η d =±1Based on the definition of T (Equation (10)), (B.2) becomes:F(µ 1 , . . . , µ d) = η 1 ,...,η d =±1 T i -η 1 1 , . . . , i -η d d d k=1 w η k (µ k)Since T is given in TT format (Equation (11)):F(µ 1 , . . . , µ d) = η 1 ,...,η d =±1

2 = H k A (k+1) 1 +A (k) 2 (1 (

 2121 E k for k = 1, . . . , d -1 (C.3) With the indicial notation (C.3) reads: (α k-1 , i k), (i k+1 , . . . , i d)) = s k α k =1 H k ((α k-1 , i k), α k) A (k+1) α k , (i k+1 , . . . , i d)) +E k ((α k-1 , i k), (i k+1 , . . . , i d)) (C.4)

1 ,H

 1 . . . , d -1 and H (0) = I (C.7) Given k ∈ [1 : d -1], let P k denote the propertyA (1) = H (k) • A (k+1) + (k) • E k +1 (C.8)P k is proved hereafter by induction on the index k.Base case Equation (C.6) for k = 1 implies:

E

 ThereforeE = A -PA = (A -P r A) -(PA -P r A) = (A -P r A) -(PA -PP r A) = (I -P) (A -P r A) = (I -P) (I -P r) Awhere I ∈ R n×n denotes the identity matrix. Moreover:I -P 2 = P 2assuming that P is neither 0 nor I (See[START_REF] Szyld | The many proofs of an identity on the norm of oblique projections[END_REF]) = (I -P) (I -P r) A ≤ I -P 2 (I -P r) A ≤ 1 σ min P T V (I -P r) A according to (F.3) (F.4)

 ••×n d whose elements are given by a blackbox procedure. Output: A set of matrices {H 1 , . . . , H d }

Table 2 :

 2 Parameter range of variations considered in the model. When applicable, the unit is indicated between brackets.

	MPa]

 = σ 11 , σ 22 , σ 33 , σ 12 , σ 13 , σ23 T

	22 vp , ε 33 vp , ε 12 vp , ε 13 vp , ε 23 vp	T
	Y 2	

Y 4 = (p)

Table 3 :

 3 TT-ranks of the outputs of interest and theoretical maximum ranks.

	r 1 k r 2 k r 3 k r 4 k max,k = r 2 r 1 max,k = r 3 max,k r 4 max,k	7 13 11 9 30 30	9 23 17 12 30 2 30 2	10 29 20 14 30 3 30 3	24 123 67 24 30 4 30 2 n t	27 143 90 20 6 × 30n t 6 × n t 30 134 100 21 30n t n t

A 2 (F.5)

Acknowledgements Funding: This work was supported by the Association Nationale de la Recherche et de la Technologie (ANRT) [grant number CIFRE 2014/0923].

The authors gratefully acknowledge fruitful discussions with Safran Helicopter Engines (Safran Group).

Hence P k+1 holds and by induction, the property (C.8) is true for all k ∈ [1 : d -1]. Equation (C.8) for k = d -1 implies:

Equation [START_REF] Golub | Matrix computations[END_REF] defines A (d) such that Equations (16) and (21) yield:

Equations (C.10) and (C.11) give:

Given the definition of T (15):

Finally, (C.1), (C.12) and (C.13) yield:

which ends the proof of Proposition 2.

Appendix D. Proof of Proposition 3

Proof. The triangle inequality for the Frobenius norm applied to (C.14) and the invariance of the Frobenius norm under reshaping yield:

Hence, according to the definition of H k (16):

Finally (D.1) becomes:

where Π is a permutation matrix, Q is orthogonal and R is an upper trapezoidal matrix. Define the list of columns I Π such that:

Define I as the set of r first indices of the list I Π : [START_REF] Golub | Matrix computations[END_REF] is meant to be applied to matrices with more rows than columns. Nevertheless, the strategy of column pivoting is the same as in the Q-DEIM algorithm.

Appendix F. Proof of Proposition 4

Proof. Recall the Gappy POD approximation of a matrix A ∈ R n×m (See Equation (36)):

where P ∈ R n×n is the gappy projection:

From the definition of H:

where σ min refers to the smallest singular value. Following the notations of Algorithm 1, Equation (F.1) yields for k = 1, . . . , d -1:

Define the projection matrix P r = VV T ∈ R n×n then:

PP r = P r (F.2)