
HAL Id: hal-01590191
https://hal.science/hal-01590191

Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Offline Trusted Device and Proxy Architecture based on
a new TLS Switching technique

Denis Migdal, Christian Johansen, Audun Jøsang

To cite this version:
Denis Migdal, Christian Johansen, Audun Jøsang. Offline Trusted Device and Proxy Architecture
based on a new TLS Switching technique. International Workshop on Secure Internet of Things SIOT
2017, Sep 2017, Oslo, Norway. �hal-01590191�

https://hal.science/hal-01590191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Offline Trusted Device and Proxy Architecture

based on a new TLS Switching technique

Denis Migdal∗

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC 14000 Caen, France
denis.migdal@ensicaen.fr

Christian Johansen†Institute for Technology Systems
University of Oslo

Oslo, Norway
cristi@ifi.uio.no

Audun Jøsang‡Department of Informatics
University of Oslo

Oslo, Norway
josang@ifi.uio.no

September 19, 2017

Abstract

Infection of client devices poses a significant threat to secure user au-
thentication. Combining vulnerable client devices with special security
devices, as often the case in e-banking, can increase significantly the secu-
rity. However, these often incur usability hurdles. This paper describes a
new architecture where an untrusted proxy on the client device communi-
cates both with server applications, and a trusted application running on
a trusted device. The proxy switches between two TLS channels, one from
the client application, and another from the trusted device. The result is
a highly usable and flexible architecture with strong security assurances
which, moreover, is transparent to the client or server applications, thus
allowing it to be deployed in existing systems. We have implemented a
PoC (available open source) and demonstrated it using the OffPAD de-
vice. Various applications of our architecture can be imagined, some of
which we present in the end of the paper, applicable to web services and
IoT systems.

∗The first author was partially supported by the project OffPAD with number E!8324 part
of the Eurostars program funded by the EUREKA.
†The second author was partially supported by the project DiversIoT funded by the Nor-

wegian Research Council.
‡The third author was partially supported by the project Oslo Analytics funded by the

IKTPLUSS program of the Norwegian Research Council.

1

https://www.offpad.org/
http://www.eurekanetwork.org/activities/eurostars
http://www.eurekanetwork.org
http://its-wiki.no/wiki/DiversIoT:Home
http://www.forskningsradet.no
http://www.forskningsradet.no
http://www.mn.uio.no/ifi/english/research/projects/oslo-analytics/
http://www.forskningsradet.no/prognett-iktpluss/Forside/1254002053531
http://www.forskningsradet.no

1 Introduction

Server applications (server apps) typically require user authentication based
on user credentials, i.e., only registered, authorized and authenticated users
are granted access to services. However, client devices are often infected with
malware,1 e.g., false certificate installation could facilitate phishing attacks [29]
or a keylogger [41] could be installed to intercept user input s.a. user credentials,
and allow false authentication to server apps. Existing solutions for protecting
online transactions with strong security typically involve an external trusted
device, e.g., for the generation of OTPs (One-Time Password) in e-banking.

A common architecture is to put a secure intermediary between the client
applications (client apps) and the server apps, e.g., the SSL proxy concept [21]
or the Bitdefender BOX2 in Internet of Things. We call this a trusted proxy.
Such a trusted proxy is transparent to both the client apps and the server apps,
and is assumed secure. All data passes through the trusted proxy, allowing it
to read, log, modify, or suppress transmitted data.

Note that the trusted proxy technically can perform actions without the
user’s approval or knowledge, but it is assumed (trusted) not to do so. Usually
the trusted proxy is deployed on a trusted device as a black box, and therefore,
the users cannot ensure the real behaviour of the trusted proxy. Thus users have
to trust the provider of the trusted device. There is also no absolute guarantee
that a trusted device will not fall pray to MitM (Man-in-the-Middle) attacks on
the communication from the client device. Moreover, trusted proxies are unable
to perform exhaustive verifications due to the usually limited capabilities (s.a.
speed of network interfaces) of the trusted device on which they are deployed.
Thus the use of trusted devices should be limited in practice.

An architecture that would limit the use of trusted devices is to let client
apps communicate directly with server apps, and only query a trusted appli-
cation (trusted app) for sensitive information. The communications are offline
as defined in [37], “follow[ing] controlled formats, during short and restricted
time periods, not involving wireless broadband capabilities”. We call such a
trusted device an offline trusted device (OTD). Since communications from the
trusted app to server apps goes through the (possibly infected) client device, any
sensitive information would need to be protected. This concept of using a sep-
arate trusted device for sensitive computations is used by HTTP XDAA [25],
an extension of the standard HTTP DAA [20] where the credentials and the
challenge-response computations are handled by a separate trusted device.

However, in such an architecture, the trusted app does not remain transpar-
ent to neither the client apps nor the server apps. This requires adaptations
of existing client apps, or server apps, in order to use the trusted app. Such
adaptations (writing, installing, and maintaining specific code), are costly and
are detrimental to the adoption of the architecture.

0This paper is accompanied by the online technical report [38].
1According to PandaLabs’ 2015 estimates, a third (32.13%) of the world’s PCs are infected

with some sort of malware, of which the majority (60.30%) are Trojans.
2http://www.bitdefender.com/box/

2

http://www.bitdefender.com/box/

The trusted device may be transparent to server apps, meaning that the
trusted device handles, in place of client apps, sensitive security computations
that must not be exposed to a possibly infected client device. However, client
apps, must be especially programmed to use the trusted device, usually in form
of plugins. The trusted device is then just an extra security feature, e.g., MP-
Auth [32] encrypts a password with the public key of the server app, for which
it uses a trusted device, but does not require one, i.e., client apps knowing the
password are able to respond to the server app without interacting with the
trusted device.

Alternatively, the trusted app may be known to the server app and used in
a protocol designed to require a trusted device. Banking applications are such
examples [1], where the trusted device holds a secret, for example a private key
specific to the user and the trusted device. In this case the server app needs to
be configured when provisioning trusted devices to users.

The idea of obtaining usable authentication using an offline and private
trusted device has been described and motivated in [24], which argued for man-
aging user credentials on such a device. Here we present an architecture and a
prototype implementation that combines the above described traditional archi-
tectures, i.e., using a proxy on the client device and a peripheral OTD.

1.1 Contributions

• We present a new architecture called Offline Trusted Device and Proxy
(OTDP) architecture in Section 2.

• The OTDP architecture is based on a novel use of TLS, which we call TLS
Switching and describe in Section 3, involving two interchangeable chan-
nels for communication between the server app respectively the trusted
app and the Proxy. We compare in Section 3.3 our TLS Switching tech-
nique with related works, i.e., with TLS handshake proxying [44], TLS
splitting [31], and TruWalletM [11].

• The OTDP architecture can be applied for various authentication scenar-
ios, some given in Section 4, for the Web domain in Section 4.1 and for
the IoT domain in Section 4.2.

• We also discuss in Section 5 security aspects of our proposal, as well as
usability aspects in Section 6.

Our work focuses on user-side security, usability, ergonomics, and transparency
of the used software and hardware for both the client apps and the server apps.

2 The Offline Trusted Device and Proxy archi-
tecture

We consider a traditional client-server architecture where it is assumed that
the client device is infected with malware. Server apps on the other hand are
assumed to be secure.

3

Existing protocols, as well as existing trusted devices, can be used on top
of the OTDP architecture, enabling the use of a trusted device without the
previously discussed drawbacks of existing architectures. For applications with
high security requirements, such as e-banking, eHospitals, or various IoT appli-
cations in Smart Infrastructures, it is possible to use special hardware-enabled
security solutions [28]. This can be a transportable device pluggable into the
client device, like the OffPAD [37], or a secure part of the client device s.a., a se-
cure element, a TPM (Trusted Platform Module) [5,12], or a Trusted Execution
Environment3 like Intel’s SGX [2,35,43].

2.1 The OTDP architecture

We propose the Offline Trusted Device and Proxy (OTDP) architecture which
combines a Proxy that is sitting on the untrusted client device, and communi-
cates with a trusted app running on an offline trusted device, holding sensitive
information like user credentials. This can be seen as a combination of the pos-
itive aspects from the two classical architectures mentioned in the introduction.

Proxy
Server

App

Client

App

Trusted

App

Client device

Trusted

device

Internet

Figure 1: Offline Trusted Device and Proxy (OTDP) Architecture.

Client apps communicate with server apps through the Proxy. The imple-
mentation of the Proxy, based on our TLS Switching, makes sure our OTDP
architecture is transparent to both the client apps and the server apps, while still
allowing to read, log, modify, and suppress exchanged data. The trusted device
is able to communicate with the server app only through the proxy which con-
trols the communication format and the time when the trusted device is used.
Thus the trusted device is assumed to be an OTD. The Proxy is also assumed to
be open-source, so the user can read and modify the sources. Hence the Proxy
is a white box. Thus spying on the user or doing actions without the user’s
approval is harder for the provider of the trusted device. More important, there
is no false feeling of security since the Proxy is also considered untrusted as it
runs on the client device.

Sensitive information is retrieved, computed, stored, or processed by the
trusted app upon its initiative, or upon requests from the Proxy which, without
the knowledge of the sensitive information, cannot correctly answer queries from
the server apps.

3http://www.globalplatform.org/specificationsdevice.asp

4

http://www.globalplatform.org/specificationsdevice.asp

To protect the sensitive information stored and maintained by the OTD,
we develop the concept of TLS Switching, presented in Sec. 3, which does not
require specific algorithms or protocols on neither client apps nor server apps.
We only need the Proxy installed on the client device.

2.2 Design decisions and implementation of the Proxy

The Proxy was designed to be extensible through the use of filters and com-
mands, making it easier, for example, to add support for a new communication
protocol.

COMMAND[ARGUMENTS]
MASTER

SOCKS

Client's

interface
Server's

interface

HTTP
...

SLAVE
IP Bluetooth ...

RESPONSE[ARGUMENTS]

COMMANDS

PROXY

TRUSTED APP

Outgoing data

IP Bluetooth ...

FILTERS

FILTERS

Incomming data

Figure 2: OTDP Proxy software architecture

The following design requirements on the Proxy were followed in the imple-
mentation (link to source code is provided in footnote on page 9).

• The communication interface towards client apps (called Client’s interface
in Figure 2) offers several proxy protocols such as SOCKS [30] or HTTP
Proxy [19]. SOCKS v5 supports TCP and UDP streams. HTTP Proxy
only supports HTTP streams. For client apps non-compliant with proxy
protocols, tools can be used to ”socksify” them.4 Static redirections can
easily be offered as well.

• The client interface allows trivial insertion, substitution and deletion of
proxy protocols, making the proxy architecture easy to extend.

• The communication interface towards server apps (Server’s interface in
Figure 2) is configurable to use a network proxy if the client device sits
behind one.

4http://linux.die.net/man/1/socksify

5

http://linux.die.net/man/1/socksify

• The communication interface towards the trusted app has two-layers. The
first layer encapsulates the communication medium, and the second ab-
stracts the format of the messages.

– The first layer allows trivial insertions, deletions and substitutions of
communication mediums such as USB, WiFi, Bluetooth, or NFC.

– The second layer uses a slave/master communication: the master is
the Proxy who sends a command and the slave (the trusted app)
must immediately respond. The slave/master communication makes
our OTDP architecture compliant with slave/master mediums, such
as ISO7816-compliant smartcards, like MasterCard’s Display Card5.

• Incoming data from client apps or server apps are processed by a set of
Filters in Figure 2. Thus, by adding or removing a filter, features can
be added or removed from the Proxy. If needed during the processing
of messages, a filter can request information or services from the trusted
app via a command, such as asking the trusted app to send sensitive
information to the server app.

• The trusted app listens to a set of Commands. Similarly, by adding or
removing a command, features can be added or removed from the imple-
mentation of the trusted app or adapt to specific hardware.

• The implementation of the Commands follows a command design-pattern,
whereas Filters follow the chain of responsibility design-pattern [22, Chap.
5].

• Commands and responses are human-readable to facilitate debugging op-
erations. In consequence, a human may monitor and understand the com-
munication between the Proxy and the trusted app with tools such as
Wireshark6, or to simulate the Proxy (or the trusted app) to test the
trusted app (respectively the Proxy) with tools such as netcat or openssl.7

Messages start with an ASCII command-name (or response-status) fol-
lowed by optional arguments. Response-status uses the HTTP status-
codes [19].

• Theses communications are configurable via an XML configuration file.

Ideally, the trusted device should be integrated into an object already carried
by the user, e.g., as the OffPAD [37] which is a phone back-cover OTD connected
through microUSB to a smart phone. In case multiple users are using the same
device, or the same user uses it in different contexts, the secure external device
also provides specific user profile management.

5http://newsroom.mastercard.com/press-releases/mastercard-introduces-next-
generation-display-card-technology-a-first-for-singapore/

6https://www.wireshark.org/
7nc(1) / s client(1) – Linux man page, http://linux.die.net/man/1

6

http://newsroom.mastercard.com/press-releases/mastercard-introduces-next-generation-display-card-technology-a-first-for-singapore/
https://www.wireshark.org/
http://linux.die.net/man/1

Proxy Server

App
Client

App

Trusted

App

Handshake

Handshake

Give keys

Proxy
Server

App

Client

App

Trusted

App

Channel T

State T

Channel P

State P

Figure 3: TLS Switching visualization: Proxy changing between two TLS chan-
nels T and P.

3 TLS Switching

3.1 Motivation

OTDP requires two TLS channels of communication with the server app: one
from the Proxy (channel P) and one from the trusted app through the Proxy
(channel T). Since the Proxy resides on the untrusted client device it must be
unable to read or write on channel T. Since we want OTDP to be compliant
with traditional client-server architectures, the channels should be seen as one
on the server app (see Figure 3). To the authors’ knowledge, no existing protocol
enables to do so, and as we explain in Section 3.3, close related technologies fail
to meet our goals.

3.2 Description

Our use of TLS (called TLS Switching) works in two modes (or states of op-
eration): state T (trusted app) and state P (Proxy). In both states the TLS
handshake and record protocols are used [15].

In state T the channel T is used to exchange sensitive information with the
server app. State T is reached when the trusted app performs a renegotiation
[16] to renew the TLS session keys and initialization vectors (IVs). Due to TLS’s
forward and backward secrecy [26], the Proxy cannot deduce keys and IVs from
the ones it knows. Thus the Proxy is not able to read nor write records on the
channel T during the state T.

In state P the channel P is used to transmit, in a more efficient way, infor-
mation between the server app and the client app. State P is reached when the
trusted app renegotiates the TLS session keys and IVs, and passes them to the
Proxy, enabling it to read and write records though a standard TLS connection.

Transparency: TLS Switching operates as follows (shown in Figure 4).
A secure connection pre-exists between the trusted app and the Proxy (0),
e.g., through microUSB in the case of the OffPAD. The client app tries to
establish a TLS connection with the server app, but is connected to the Proxy
(1). Optionally, the Proxy might send information to the trusted app (s.a. the
server’s domain name, or the TLS extensions used by the client app) (2a). The
Proxy then establishes a TCP connection with the server app (2b) over which
the trusted app establishes a TLS connection (3). The TLS connection is then

7

Trusted

App

(0)

(1) (2b)

Server Client (3)

(4)

(2a)

(5)

What is seen by client

and server applications

What really happens

Proxy
Seen as

Client

App

Server

App

TLS Connection

TCP Connection

Secure connection

Data stream

(1) (2b) + (3)

(5)

Trusted App

S
e
rv

e
r A

p
pC

lie
n
t
A
p
p

Proxy

(1)

(2a)

(2b)

(4)
(3)

(5)

Figure 4: Establishment of TLS Switching connections.

in state T, ready to exchange messages between the trusted app and the server
app, or to go into state P (4) to allow the client app to communicate with the
server app (5).

TLS Switching requires:

• the server app to accept TLS renegotiations [16], which is rather common;

• the Proxy to support the cipher suite and TLS extensions [8] used in state
P (by our implementation);

• the trusted app to verify TLS certificates (by design);

• the trusted app and the Proxy must be able to exchange the current
cipher suite, symmetric keys and IVs in a secure way (we assume this by
construction).

3.3 Related work

TLS Handshake Proxying [44] is a technique used with edge servers that
cache content to reduce the connection latency between a client and a server,
i.e., the client establishes a TLS connection to a local edge instead of the distant
server. However, the edge is not trusted to share the server’s private key. In con-
sequence, during the local TLS handshake the edge will forward to the server the
message involving the private key, i.e., only one long-distance communication.

This TLS Handshake proxying technique may be used in our architecture,
but only when in state P, as our proxy cannot generate TLS records during
state T. Nevertheless, this requires to modify parts of TLS libraries, and makes
the trusted app and the Proxy interdependent.

SSL Splitting [31] uses a proxy to split a non-encrypted SSL connection
into two streams, one for the content and one for the content’s integrity. The

8

client establishes a non-encrypted SSL connection with the server through the
proxy which forwards all messages. The server answers with the Message Au-
thentication Code (MAC) of the content and a content identifier which the proxy
replaces with the cached content before sending the SSL record to the client.
For encrypted connections [31] proposes a work-around by sending the symmet-
ric encryptions keys and IVs to the proxy so that it can read SSL records, and
write records knowing the MAC. Thus, the proxy is trusted for confidentiality,
but not for integrity.

In our case, the Proxy needs to be able to build complete TLS records when
in state P, but is not trusted to read or write when in state T, i.e., when the
channel T is used.

TruWalletM [11] presents a similar approach to OTDP and TLS Switch-
ing. Instead of TLS renegotiation, TLS resumption is used implying, roughly
speaking, to close and open TCP connections at each state change. This is well
suited for communications using TCP connections lasting only the time the
server app responds to a client app query, s.a. in HTTP1.0, AJAX. However,
this is less suited when the TCP connection aims to gather many queries and
responses, s.a. in HTTP2.0, or when the communication is a stream, s.a. in
WebSockets, often closed when the underlying TCP connection is closed.

Moreover, the trusted device is required to establish each connection, which
might lead to privacy concerns as the trusted device would be then able to log
user’s browsing history. This breaks one of our main motivations for OTDP.
Also, TruWalletM does not consider the possibility to receive sensitive infor-
mation from the server app, or to propose additional trusted device-specific
features to compliant server apps, s.a. authentication of the trusted device by
the server app, which we do.

TruWalletM also requires a Trusted Execution Environment (TEE) whereas
our proposed architecture is compliant not only with TEE but also with generic
trusted devices, even those having limited UI allowing non-confidential sensitive
information inputs and notifications on the client device. Moreover our Proxy
enables easy implementation of additional features, not necessarily requiring a
Proxy and TLS Switching, s.a. OTPs or password auto-typing for local authen-
tications on the client device.

3.4 TLS Switching implementation

TLS is implemented by various libraries such as GnuTLS8 or OpenSSL9 in C,
and JSSE10 in Java. We implemented a proof of concept of the TLS Switching
and OTDP architecture in Java v1.7 with OpenJDK’s TLS engine (see source
code11).

The Proxy and the trusted app exchange messages through TLS records over
TCP. In state T, the Proxy simply forwards messages from the trusted app to

8http://www.gnutls.org/
9https://www.openssl.org/

10http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
11https://github.com/denis-migdal/OTDP-and-TLS-Switching

9

http://www.gnutls.org/
https://www.openssl.org/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
https://github.com/denis-migdal/OTDP-and-TLS-Switching

the server app, and from the server app to the trusted app. In state P, the
Proxy should only process application data messages, and forward the rest to
the trusted app.

We use two new types of clear messages, enabling the Proxy and the trusted
app to exchange information when changing state:

• ’t’ messages sent by the Proxy to the trusted app in order to go into
state T. Theses messages are followed by a renegotiation performed by the
trusted app.

• ’p’ messages sent by the trusted app to the Proxy in order to go into
state P. Theses messages are preceded by a renegotiation performed by the
trusted app.

The p messages contain the current TLS parameters required to partially
build a TLS engine on the Proxy: the cipher suite identifier, the TLS protocol
version, and the symmetric keys. This allows the Proxy to build and read TLS
records without exposing the trusted app private keys.

To return into state T, as the internal state of the Proxy TLS engine is
modified after reading and writing records, the trusted app’s TLS engine has
to be updated through t messages before performing a renegotiation. This only
requires two sequence numbers, incremented for each record sent or received
under the current keys.

The p messages do not have to contain sequence numbers as they can be
deduced by the Proxy. Moreover, p and t messages do not have to contain
initialization vectors. Indeed, RC4 cipher suites are prohibited in TLS 1.2 [40]
thus cipher suites only offer block ciphers (AES with CBC or 3DES with CBC)
or NULL cipher. Yet, in block ciphered messages, initialization vectors are
randomly chosen for each record and are included in the record’s message.

3.4.1 Implementation discussions

Our implementation allows the Proxy and the trusted app to use different
TLS libraries, thus making them more independent. In particular, we modify
classes on the fly to extract symmetric keys when renegotiating.

With our implementation we tried to avoid modifying and rebuilding TLS
libraries, as this would need to be repeated at each library update. Also, we
avoid re-implementing a whole TLS layer, which could lead to several security
threats due to implementation errors or slow reactivity.

To avoid performing TLS renegotiations when not required, the Proxy per-
forms the initial handshake in place of the trusted app. Thus, TLS connections
start in state P and do not require TLS Switching as long as no sensitive infor-
mation are exchanged, or expected to be exchanged. Then, to go into state T
for the first time, the Proxy sends a p (with additional content) instead of a t
message to the trusted app.

10

As an alternative, instead of exchanging ciphers information, the Proxy and
the trusted app could cooperate to perform a renegotiation. One could generate
and read clear renegotiation messages and the other encrypt and decrypt them
with the current keys. Such a feature would cost at least one renegotiation to go
into state T, and two (asking to encrypt/decrypt a renegotiation message and
receiving the result) to go into state P. We tested such an alternative imple-
mentation which proved to be more costly than our current implementation.

4 Applications of the OTDP and TLS Switching

Two applications of OTDP have been demonstrated at [37] using the OffPAD
device [46], namely: cognitive (i.e., by the human user) server authentication
based on the petname system [18], and user authentication based on the ex-
tended challenge-response protocol XDAA [25] involving the trusted device.
Other possible applications of the OTDP architecture and the TLS Switching
are described below (and detailed in the technical report [38]).

4.1 Application in web systems

4.1.1 Server app authentication

OTDP strengthens server apps’ authentication by verifying their certificates
on the trusted device, thus preventing attacks by dubious certificates injected
in client apps. Moreover, using a petname system and protocol (e.g., as imple-
mented on the OffPAD) we can achieve cognitive server app authentication, i.e.,
where the user is actively aware of the identity of the server apps. Whitelists and
blacklists on the trusted device, and similarity checks are used as an attempt to
counter phishing attacks.

4.1.2 User authentication

The trusted device OffPAD allows user authentication through fingerprint bio-
metrics. This can be used to unlock user credentials in various situations. We
have demonstrated the use of user credentials stored on the trusted device for
the XDAA authentication protocol.

4.1.3 Identifying messages

The Proxy is used to identify messages from client or server app matching a
specific template. The Proxy, ignorant of the sensitive information, is unable
to process such messages, and thus forwards them to the trusted app. The
trusted app, might then force the connection into state T and send, after user
confirmation, a reply to the server app. Such a reply is built from sensitive
information stored (or inputed by the user) on the trusted device. Instead of
asking them from the user, sensitive information can also be generated by the
trusted app, s.a. strong passwords during registrations.

11

Identifying client apps’ messages before sending them to the server apps
could be coupled with whitelists and blacklists stored in the trusted device
to block unwanted messages. Examples include blocking HTTP requests to
phishing websites, or even HTTP requests to advertising servers.

We use the identification of server apps’ messages in the HTTP XDAA.
However, some client apps might block until users provide the sensitive infor-
mation directly in a form inside the client app. In such cases, users have to fill
the required fields with false sensitive information to submit the form without
exposing sensitive information on the client device. The usage of client apps’
messages identification would then be more appropriate.

4.1.4 Trusted app authentications

The standard TLS handshake protocol offers client and server authentications.
Server apps may authenticate the trusted app using a handshake with client
authentication. In this case the trusted device stores a private key or computes
one from user information, such as passwords or biometric data. The public
key may be certified by the trusted device’s provider, given during registration
on the server app, or trusted on the first usage. The trusted app may propose
other authentication methods through TLS extensions [8].

The trusted app must ensure the origin and destination of sensitive infor-
mation by, e.g., authenticating server apps. For this, the trusted app checks the
server apps’ certificate and searches the requested IP and/or domain name in
its blacklist and its whitelist. In order to prevent phishing attacks, the user can
be warned by the trusted app when requesting for a domain-name syntactically
too close to one from the whitelist. DNSSEC [3, 7] may also be used by the
trusted app to prevent attacks against the DNS protocol [4].

4.1.5 Modifying web pages

The Proxy is used to improve ergonomics by adding warnings or information
about the OTDP usage and features, and to enforce desired user behaviour,
e.g., see Figure 5. We can prevent the user from filling in password fields on the
untrusted client device. When the form is submitted, the Proxy uses message
identification (as previously described) then asks the trusted app to complete
the answer on the user’s behalf.

4.2 Applications in IoT systems

4.2.1 Privacy watchdog in Smart Grid metering

Smart Meters are plagued by privacy considerations [17, 33], because the high
frequency of real-time energy consumption that they report to the energy
provider results in big data that can reveal information like behaviour patterns
in the home, what devices are used (coffee machine vs. tea cooker) and when,
or even what brand of devices (thus life style and wealth). Solutions often in-
volve putting an intermediary between the meter and the energy provider. The

12

login

CONNECT

proxy
login

CONNECT

Click here

right-click

Trusted

App

information
left-click

Read the

documentation
Connection with

the trusted app.
Connection without

the trusted app.

Figure 5: Modifying a login form to inform and enforce user behaviour.

OTDP can be used, with the smart meter as the client app behind the proxy
implemented by Smart Meter manufacturers with the functionality of enforcing
various privacy policies that a user can configure. Security critical functionali-
ties can be done on a specific trusted device of the user, e.g., provided by some
trusted entity like a governmental body that oversees data protection issues.
The trusted device can be in the form of a javacard or secure element inserted
in the smart meter.

4.2.2 Secure authentication in eHospitals

In hospitals equipped various IT infrastructure (like NFC door openers, smart
medicine storage, RFID tagged medical devices, indoor positioning located per-
sonnel, smart operation rooms, smart UIs, etc) it is important to have usable
authentication that does not interfere with medical duties [6]. The OffPAD
phone jacket device [37] can be used by hospital personnel (also given to pa-
tients) to put around their personal mobile phones. The OTDP enables to
transform the personal phone into a highly versatile authentication device, by
having on the mobile phone installed the proxy as a phone app, communicating
with various client apps each doing different forms of medical IT functionality,
e.g., alarms, search medical devices, open doors, continuous authentication, etc.

4.2.3 Secure applications in Smart Transportation

The trusted device can be implemented by a secure hardware like a TPM chip or
a processor with functionalities like Intel SGX. These have limited connectivity,
i.e., only with the computing unit, therefore can be regarded as offline. In Smart
Car/Truck the Proxy and client can be part of the car’s software, whereas the
OTD can be part of the owner’s key or a similar pluggable device. Communica-
tion and authentication protocols can be imagined based on OTDP for securing
various sensitive communications. Examples include: communication with the
smart road infrastructure could be secured with OTDP, or authentication and
access to in-car services like road congestion alarm and guidance, or access to
car’s on-board information while in service.

13

5 Security considerations

We assume that the client device, and by extension the Proxy, are compromised,
allowing attackers to arbitrarily listen and modify I/O interfaces (s.a. network,
screen, keyboard). The trusted device, trusted app, server app, and the TLS
protocol are assumed to be secure and trustworthy.

Sensitive information might originate from user inputs (s.a. passwords or
fingerprints), be stored, or generated, on the trusted device. They must never
be exposed on the untrusted client device. However, non-confidential sensitive
information might originate from untrusted sources (s.a. the client device) but
must be confirmed by the user through the trusted device and not be exposed
afterward.

Thus sensitive information must be exchanged exclusively between the
trusted app and the server app, i.e., only during state T. Indeed in state P,
the Proxy being able to read, modify, and write records, exchanged informa-
tion would be exposed. In state T, the client device ignores the current session
keys, protected by the forward and backward secrecy of the TLS handshake.
Moreover, a Proxy cannot enforce state P as it cannot read nor write records in
order to perform a renegotiation. In order to avoid phishing attacks, handshake
server authentication is asked by, and performed by, the trusted app with TLS
certificate verification (see Sec 4.1.1) guaranteeing the origin (or destination) of
sensitive information during state T.

Although the client device is unable to read exchanged data between the
trusted app and the server app, the client device is able to know when sensitive
information are exchanged, as well as their length, more or less the cipher block
size (or padding length) used.

However, the client device is still able to arbitrarily modify received, and
sent, information during state P. Thus the integrity and origin (or destina-
tion) of the information printed, or inputed, on the client device cannot be
trusted. Although message verifications and general computations are possible,
the trusted device is not intended to replace the client device [28].

More problematic, the client device might send unwanted messages during
state P, s.a. asking the server app to execute actions once the user is connected,
or connecting the user on a different account to make her perform actions on the
attacker account (e.g. crediting money on the attacker account). We argue that
in such case, the server app is vulnerable to lunchtime attacks [13]. To prevent
such attacks, server apps should require user authentication and confirmation
for any sensitive action.

OTDP being transparent to server apps, standard server apps have no con-
cept of state T, or state P, thus send sensitive information independently of the
current state, and would trust information received both during state T as well
as during state P. In a transparent architecture, the trusted app thus has to
predict and anticipate when sensitive information might be sent by the server
app. Such predictions are not possible in a generic way, and must be performed
during state T, as the client device is untrusted.

For an improved security, server apps could be programmed to take into

14

account the current state of the connection while remaining compliant with
standard client apps. During a renegotiation initiated by either the trusted app
or the server app, the trusted app might offer “State T” and “State P” in the
Client Hello’s TLS extensions list, and go into the state requested by the
server app’s answer (a missing TLS extension meaning that the server app does
not support the concept of state T and state P). If the trusted app wants to
force the state T, it can offer the “State T” TLS extension alone.

Server apps might as well ask for client authentication during handshake
to authenticate the trusted app (Sec. 4.1.4). The trusted app might respond
with different certificates depending on the requested state, or send an empty
certificate for state P. However this could lead to incompatibilities depending on
the server app’s implementation of TLS. Instead, we recommend the usage of an
unique TLS certificate independently of the requested state with an indication of
the requested state in the Client Hello’s TLS extensions list. The certificate
may be certified by the trusted device’s provider, trusted at first use, or given
during registration on the server app.

Since we assume the communication between the Proxy and the trusted app
to be secure from a network attacker, (e.g., through microUSB or NFC), and the
client device is considered untrusted, OTDP architecture does not add attack
vectors compared to the traditional architectures. Moreover, the communica-
tions from server apps, and from client apps, are as in traditional architectures
because of the transparency that the Proxy provides. However, new attacks
can come from poor design of new protocols that OTDP enables. Therefore,
we would encourage the use of formal verification tools and methods when de-
signing security protocols, s.a. ProVerif [10], CryptoVerif [9], Tamarin [42], or
Murphi [39] (each being based on different theoretical foundations).

6 Usability considerations

A strong method of authentication is not always enough if users are not encour-
aged to use it. Moreover, when interacting with client apps running on a client
device which can be corrupted, users should be prevented from revealing their
credentials on the client apps. However, if the system lacks ergonomics and is
too constraining, users might reject, and bypass, it [14].

The Proxy being located on the client device, which the user controls, and
the trusted app mainly responding to queries from the Proxy, the users are more
aware of the normal behaviour of the Proxy and, to a certain extent, of that of
the trusted app. Actions, s.a. connecting the user to a server app, should not be
performed without user’s knowledge, for consent as well as for security reasons.
Users should thus be able to give consent in full knowledge of the cause, thus
limiting required user trust toward the provider of the trusted device.

15

6.1 User authentication to the trusted device

The trusted device must verify the user’s identity before granting access to its
services and allowing the Proxy to interact with the trusted app. This prevents
an attacker from using the trusted app if the trusted device is stolen or lost. In
our case, the OffPAD device uses biometric fingerprint for user authentication.

Still, if the user is authenticated and the trusted device is lost, then the user
should be disconnected from it. This is done automatically by the trusted app
when it detects that it cannot communicate with the Proxy, which is possible
when the client device on which the Proxy resides is a different physical system
than the trusted device. It is less probable that the attacker can obtain both
devices, except when they are joined, e.g. like in the case of the OffPAD where
the trusted device is a phone-jacket, and the client device is the phone. Alter-
natively, we could have the user’s identity verified regularly through continuous
authentication techniques based on biometrics [27,45].

6.2 User interaction

Users are warned when the trusted app waits for user inputs or when messages
are blocked, by generating notifications. To prevent users from disabling them,
notifications must be used with care. At the same time, the Proxy displays
explanations or security messages on the client device. This improves the er-
gonomics, but as the client device might be corrupted, these explanations must
be used with care. For a web browser, a notification page is shown to the user,
requesting her to check the trusted device. When the user has performed the
requested actions on the trusted app, the page is automatically refreshed (using
AJAX).

The Proxy also modifies the responses from the server apps to insert fields or
informative messages. As shown in Figure 5, the Proxy inserts scripts in HTML
pages to disable password inputs. In this way the user is prevented from filling,
out of habit, the password input [47]. Alternatively, the user has the option
to disable such interferences so to use the input field normally when needed.
The Proxy could also be used to let the user input information (or commands)
for the trusted app on the client device, which, is more ergonomic, especially
if the trusted device has limited user inputs (e.g. no keyboard). The provided
information must not be confidential, and must be verified and confirmed by
the user on the trusted device.

6.3 User behaviour

Credentials, s.a. passwords, should not be exposed to users as they might write
them on a post-it, or share them with colleagues or with social engineering
attackers [36]. Credentials could be generated by the trusted app at registration,
and never shown to users. Since these do not need to be remembered, credentials
can be safer, with more entropy, while being unique for each server app [23].

16

Users typically do not change their credentials at reasonable intervals as
they should do. Stored credentials and other sensitive information could have
an expiration date which when reached would warn the user. With the user’s
approval, the trusted app could replace outdated information and update them
on the server apps. Furthermore, this is not a generic way of doing this since
each server app uses its own protocol to update credentials [34].

The user should be warned when the trusted app logs her into a server app;
the trusted app should at least ask for user confirmation. Since several identities
can be suitable for a given authentication request, the trusted app can ask the
user to choose the identity to use among the suitable identities and consider this
choice as a confirmation.

7 Conclusion and Future Work

We have presented a novel architecture that combines the benefits of both having
an OTD for helping with secure computations, thus providing stronger security,
as well as an untrusted Proxy running on a client device to provide more usabil-
ity, communicating with the trusted app when needed. This new OTDP archi-
tecture is enabled by a novel use of TLS channels, which we call TLS Switching
because the Proxy and the trusted app collaborate to make two secure chan-
nels which they switch between, depending on whether information needs to be
transmitted from the client app or from the trusted app. This architecture and
the TLS Switching have been implemented in an extensible and open-source
PoC. The architecture has also been demonstrated using the OffPAD as the
trusted device, connected through microUSB to a Android phone [37]. We have
considered (though not formally) the security aspects specific to this new archi-
tecture, as well as the usability that we aimed for. Another goal of the OTDP
architecture was to be transparent to both client apps and server apps, which
is not respected by the related work that we surveyed.

Future work could conduct more detailed user experiments about the us-
ability of the OTDP architecture, whereas the security could be verified using
formal methods. More widely used authentication methods than HTTP DAA
(s.a. OAuth) may be implemented and tested, although we see no evident ob-
stacle to their usage with OTDP and TLS Switching. Fully transparent client’s
interface (i.e. not requiring proxy configuration on client apps) may be im-
plemented using TUN/TAP and iptables. OTDP architecture may as well be
generalized for the specific needs of a company architecture and a centralized
credentials management.

Acknowledgment

We thank reviewers from CCS’16 and IFIP-SEC’17 for helping improve this
draft, and OffPAD project members (esp. Léonard Dallot) for their help during
the developments.

17

References

[1] Manal Adham, Amir Azodi, Yvo Desmedt, and Ioannis Karaolis. How to
attack two-factor authentication Internet banking. In Financial Cryptog-
raphy and Data Security, volume 7859 of LNCS, pages 322–328. Springer,
2013.

[2] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative
technology for CPU based attestation and sealing. In 2nd Int. Workshop on
Hardware and Architectural Support for Security and Privacy. ACM, 2013.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security
Introduction and Requirements. RFC 4033, RFC Editor, March 2005.

[4] Suranjith Ariyapperuma and Chris J Mitchell. Security vulnerabilities in
DNS and DNSSEC. In 2nd International Conference on Availability, Reli-
ability and Security (ARES), pages 335–342. IEEE, 2007.

[5] Will Arthur and David Challener. A Practical Guide to TPM 2.0: Using
the Trusted Platform Module in the New Age of Security. Apress, 2015.

[6] Jakob E. Bardram, Alex Mihailidis, and Dadong Wan, editors. Pervasive
Computing in Healthcare. CRC Press, 2007.

[7] Jason Bau and John C. Mitchell. A security evaluation of DNSSEC with
NSEC3. In Network and Distributed System Security Symposium (NDSS).
The Internet Society, 2010.

[8] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright.
Transport Layer Security (TLS) Extensions. RFC 4366, RFC Editor, April
2006.

[9] Bruno Blanchet. A computationally sound mechanized prover for security
protocols. IEEE Trans. Dependable Sec. Comput., 5(4):193–207, 2008.

[10] Bruno Blanchet. Automatic verification of correspondences for security
protocols. Journal of Computer Security, 17(4):363–434, 2009.

[11] Sven Bugiel, Alexandra Dmitrienko, Kari Kostiainen, Ahmad-Reza
Sadeghi, and Marcel Winandy. TruWalletM: Secure web authentication
on mobile platforms. In Int. Conf. on Trusted Systems, pages 219–236.
Springer, 2010.

[12] Sergiu Bursuc, Christian Johansen, and Shiwei Xu. Automated Verification
of Dynamic Root of Trust Protocols. In 6th Int. Conf. on Principles of
Security and Trust (POST 2017), volume 10204 of LNCS, pages 95–116.
Springer, 2017.

18

[13] Mauro Conti, Giulio Lovisotto, Ivan Martinovic, and Gene Tsudik.
FADEWICH: Fast Deauthentication over the Wireless Channel. In 37th

IEEE International Conference on Distributed Computing (ICDCS 2017),
pages 1–13. IEEE, 2017.

[14] Fred D. Davis. User acceptance of information technology: System char-
acteristics, user perceptions and behavioral impacts. International Journal
of Man-Machine Studies, 38(3):475–487, March 1993.

[15] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246, RFC Editor, 2008.

[16] S. Dispensa E. Rescorla, M. Ray and N. Oskov. Trasnport Layer Secu-
rity (TLS) Renegotiation Indication Extension. RFC 5746, RFC Editor,
February 2010.

[17] Günther Eibl and Dominik Engel. Influence of data granularity on smart
meter privacy. IEEE Transactions on Smart Grid, 6(2):930–939, 2015.

[18] Md. Sadek Ferdous and Audun Jøsang. Entity Authentication & Trust
Validation in PKI using Petname Systems. In Theory and Practice of
Cryptography Solutions for Secure Information Systems, pages 302–334.
IGI Global, 2013.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2068, RFC Editor, January 1997.

[20] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink,
and L. Stewart. An Extension to HTTP : Digest Access Authentication.
RFC 2069, January 1997.

[21] Michael Freed and Elango Gannesan. Secure sockets layer proxy architec-
ture, December 12 2006. US Patent 7,149,892.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[23] Shirley Gaw and Edward W Felten. Password management strategies for
online accounts. In 2nd Symposium on Usable Privacy and Security, pages
44–55. ACM, 2006.

[24] Audun Jøsang, Christophe Rosenberger, Laurent Miralabé, Henning Klev-
jer, Kent A. Varmedal, Jérôme Daveau, Knut Eilif Husa, and Petter
Taugbøl. Local user-centric identity management. Journal of Trust Man-
agement, 2(1):1–28, 2015.

[25] Henning Klevjer, Kent Are Varmedal, and Audun Jøsang. Extended HTTP
Digest Access Authentication. In Policies and Research in Identity Man-
agement (IDMAN), volume 396 of IFIP AICT, pages 83–96. Springer, 2013.

19

[26] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the secu-
rity of the tls protocol: A systematic analysis. In 33rd Annual Advances
in Cryptology (CRYPTO 2013), volume 8042 of LNCS, pages 429–448.
Springer, 2013.

[27] Geraldine Kwang, Roland H. C. Yap, Terence Sim, and Rajiv Ramnath.
An usability study of continuous biometrics authentication. In 3rd Inter-
national Conference on Advances in Biometrics, pages 828–837. Springer,
2009.

[28] Ben Laurie and Abe Singer. Choose the red pill and the blue pill: a position
paper. In Workshop on New Security Paradigms, pages 127–133. ACM,
2009.

[29] Neal Leavitt. Internet security under attack: Undermining of digital cer-
tificates. Computer, 44(12):17–20, 2011.

[30] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS
Protocol Version 5. RFC 1928, 1996.

[31] Chris Lesniewski-Laas and M Frans Kaashoek. SSL splitting: Securely
serving data from untrusted caches. Computer Networks, 48(5):763–779,
2005.

[32] Mohammad Mannan and Paul van Oorschot. Using a personal device to
strengthen password authentication from an untrusted computer. In Finan-
cial Cryptography and Data Security, volume 4886 of LNCS, pages 88–103.
Springer, 2007.

[33] Félix Gómez Mármol, Christoph Sorge, Osman Ugus, and Grego-
rio Mart́ınez Pérez. Do not snoop my habits: preserving privacy in the
smart grid. IEEE Communications Magazine, 50(5):166–172, 2012.

[34] Peter Mayer, Hermann Berket, and Melanie Volkamer. Enabling automatic
password change in password managers through crowdsourcing. 11th Int.
Conf. on Passwords.

[35] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innova-
tive instructions and software model for isolated execution. In 2nd Int.
Workshop on Hardware and Architectural Support for Security and Pri-
vacy. ACM, 2013.

[36] B Dawn Medlin, Joseph A Cazier, and Daniel P Foulk. Analyzing the
vulnerability of us hospitals to social engineering attacks: how many of
your employees would share their password? International Journal of
Information Security and Privacy (IJISP), 2(3):71–83, 2008.

20

[37] Denis Migdal, Christian Johansen, and Audun Jøsang. DEMO: OffPAD –
Offline Personal Authenticating Device with Applications in Hospitals and
e-Banking. In 23rd ACM Conference on Computer and Communication
Security, pages 1847–1849. ACM, 2016.

[38] Denis Migdal, Christian Johansen, and Audun Jøsang. Usable authen-
tication with an offline trusted device proxy architecture (long version).
Technical Report 453, University of Oslo (IFI), August 2016.

[39] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis
of cryptographic protocols using Murphi. In IEEE Symposium on Security
and Privacy, pages 141–151. IEEE Computer Society, 1997.

[40] A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465, RFC Editor, Febru-
ary 2015.

[41] Seref Sagiroglu and Gurol Canbek. Keyloggers. IEEE Technology and
Society Magazine, 28(3):10–17, 2009.

[42] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin.
Automated analysis of diffie-hellman protocols and advanced security prop-
erties. In IEEE Computer Security Foundations Symposium, pages 78–94.
IEEE, 2012.

[43] Kristoffer Severinsen, Christian Johansen, and Sergiu Bursuc. Secur-
ing the End-points of the Signal Protocol using Intel SGX based Con-
tainers. In 5th Workshop on Hot Issues in Security Principles and
Trust, pages 40–47. Stuttgart Univ. Technical Report, 2017. Avail-
able at https://sec.uni-stuttgart.de/_media/events/hotspot2017/

proceedings.pdf#page=40.

[44] Douglas Stebila and Nick Sullivan. An analysis of TLS Handshake proxying.
In Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1 of
TRUSTCOM ’15, pages 279–286. IEEE Computer Society, 2015.

[45] Issa Traore and Ahmed Awad E. Ahmed. Continuous Authentication Using
Biometrics: Data, Models, and Metrics. IGI Global, 1st edition, 2011.

[46] Kent Are Varmedal, Henning Klevjer, Joakim Hovlandsv̊ag, Audun Jøsang,
Johann Vincent, and Laurent Miralabé. The OffPAD: Requirements and
usage. In Network and System Security, volume 7873 of LNCS, pages 80–93.
Springer, 2013.

[47] Bas Verplanken and Wendy Wood. Interventions to break and create con-
sumer habits. Journal of Public Policy & Marketing, 25(1):90–103, 2006.

21

https://sec.uni-stuttgart.de/_media/events/hotspot2017/proceedings.pdf#page=40
https://sec.uni-stuttgart.de/_media/events/hotspot2017/proceedings.pdf#page=40

	Introduction
	Contributions

	The otdp architecture
	The otdp architecture
	Design decisions and implementation of the proxy

	TLS Switching
	Motivation
	Description
	Related work
	tls-switch implementation
	Implementation discussions

	Applications of the otdp and tls-switch
	Application in web systems
	server-app authentication
	User authentication
	Identifying messages
	trusted-app authentications
	Modifying web pages

	Applications in IoT systems
	Privacy watchdog in Smart Grid metering
	Secure authentication in eHospitals
	Secure applications in Smart Transportation

	Security considerations
	Usability considerations
	User authentication to the trusted device
	User interaction
	User behaviour

	Conclusion and Future Work

