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A PROGRAM TO TEST THE p-RATIONALITY

OF ANY NUMBER FIELD

GEORGES GRAS

Abstract. We give very short PARI programs (see §§ 4.1, 4.2) to test if
the number field K (defined by an irreducible polynomial) is p-rational
for a given prime p ≥ 2. For the convenience of any user, the programs
are written with “verbatim” characters, so that it is sufficient to “copy
and paste” them from the pdf file to the “Terminal Session–Math–gp” of
http://pari.math.u-bordeaux.fr/ or of “Sage” http://www.sagemath.org/fr/telecharger.html.

1. Definition and properties of p-rationality

Let K be a number field and let p ≥ 2 be a fixed prime number. We denote
by CℓK the p-class group of K in the ordinary sense and by EK the group
of p-principal global units ε ≡ 1 (mod

∏
v|p pv) of K, where pv is the prime

ideal corresponding to the place v | p.
We shall describe the diagram of the so called abelian p-ramification theory

(from [5, § III.2 (c), Fig. 2.2] and [6, Section 3]), in which K̃ is the com-
positum of the Zp-extensions of K, HK the p-Hilbert class field and Hpr

K

the maximal abelian p-ramified (i.e., unramified outside p) pro-p-extension
of K (see [1] and [10, Diagram 2] for a similar context with logarithmic class
groups):

≃WK

TK

≃CℓK

≃Cℓ∞K

≃UK/EK

AK

Hpr
KK̃HK Hreg

K≃RK

K̃

HKK̃∩HK

K

Since we intend to give numerical algorithms, we implicitely assume the
Leopoldt conjecture for p in K.

Let UK :=
⊕

v | p U
1
v be the Zp-module of p-principal local units of K where

each U1
v is the group of v-principal units of the completion Kv of K at v | p

(i.e., U1
v = {u ∈ K×

v , u ≡ 1 (mod pv)}, where pv is the maximal ideal of
the ring of integers of Kv).
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For any field k, denote by µk the p-group of roots of unity of k and let

WK := torZp

(
UK

)
=

⊕
v | p µKv

. Let EK be the closure in UK of the diagonal

image of the group EK of p-principal global units of K. Then put:

TK := torZp
(Gal(Hpr

K /K)).

We have the exact sequence definingWK andRK (from [5, Lemma III.4.2.4];
see also [6, Lemma 3.1] for a proof):

1 −→ WK/µK =: WK −−−→ torZp

(
UK

/
EK

)

log−−−→ torZp

(
log

(
UK

)/
log(EK)

)
=: RK −→ 0.

The group RK (or its order) is called the normalized p-adic regulator of K;
when K is totally real, one has the relation [6, Section 5, Proposition 5.2]:

#RK ∼ 1

2
·
(

Zp : log(NK/Q(UK))
)

#WK ·
∏

v|p Npv
· RK√

DK

,

from a formula of Coates [2], where ∼ means equality up to a p-adic unit
factor, RK is the usual p-adic regulator of K [16, § 5.5], DK the discriminant
of K, and N the absolute norm for ideals.

Definition 1.1. The field K is said to be p-rational if the torsion group TK
is trivial (under the Leopoldt conjecture).

See [4], [5], [10], [11], [12] for more information on p-rationality and [9] for
applications to Galois representations Gal(Q/Q) −→ GLn(Zp) with open
image. We have conjectured in [7] that K is p-rational for all p ≫ 0.

Then TK = 1 if and only if the three invariants WK , the normalized p-
adic regulator RK and the subgroup Cℓ∞K of CℓK, are trivial. Thus, in some
cases, it is more convenient to test each of these trivialities, depending on the
knowledge of the field K; for instance, when the p-class group is trivial and if
p is unramified in K/Q, the computation of the normalized p-adic regulator
RK may be given in a specific program and the computation of WK is in
general easy directly (e.g., quadratic or cubic fields, cyclotomic fields . . .).
But a field given by means of a polynomial P may be more mysterious and
we shall recal the PARI instructions to get all the necessary data about K.

2. Computation of basic invariants of K

The reader whishing to test only p-rationalities may go directly to Subsec-
tions 4.1, 4.2. The examples are given with the polynomial:

P = x3 − 5x+ 3

(recall that P must be in Z[x]), for which one gives the classical information
(test of irreducibility, Galois group of the Galois closure of K, discriminant
of K) which are the following, with the PARI responses (from [13]):
polisirreducible(x^3-5*x+3)

1

polgalois(x^3-5*x+3)

[6,-1,1,"S3"]

factor(nfdisc(x^3-5*x+3))

[257 1]

showing that P is irreducible, that the Galois closure of K is the diedral
group of order 6, and that the discriminant of K is the prime 257.

ThenK is defined by the following instructions in which we obtain the signa-
ture [r1, r2] of K, the structure of the whole class group and the fundamental
units:
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{P=x^3-5*x+3;p=2;K=bnfinit(P,1);

Sign=component(component(K,7),2);print("Signature of K: ",Sign);

print("Structure of the class group: ",component(component(K,8),1));

print("Fundamental system of units: ",component(component(K,8),5))}

[3,0]

[1,[]]

[x-1,x^2+2*x-2]

giving a totally real field, a trivial class group and the two fundamental
units. The next program gives, for information, the decomposition of the
primes p (up to 47):

{P=x^3-5*x+3;K=bnfinit(P,1);

forprime(p=2,50,print(p," ",idealfactor(K,p)))}

2 Mat([[2,[2,0,0]~,1,3,1],1])

3 [[3,[0,0,1]~,1,1,[1,1,-1]~],1;[3,[4,1,-1]~,1,2,[0,0,1]~],1]

5 [[5,[2,0,1]~,1,1,[2,1,2]~],1;[5,[2,1,-3]~,1,2,[2,0,1]~],1]

7 [[7,[1,0,1]~,1,1,[-1,1,-2]~],1;[7,[6,1,-2]~,1,2,[1,0,1]~],1]

11 Mat([[11,[11,0,0]~,1,3,1],1])

13 Mat([[13,[13,0,0]~,1,3,1],1])

showing that 2, 11, 13 are inert, that 3, 5, 7 split into two prime ideals with
residue degrees 1 and 2, respectively. Taking p = 257, one obtains as ex-
pected:

257 [[257,[-101,0,1]~,1,1,[-81,1,100]~],1;

[257,[-78,0,1]~,2,1,[-86,1,77]~],2]

which split into p1 · p22.
To obtain a polynomial from a compositum of known fields (e.g., quadratic
fields) one uses by induction the instructions:

Q=polcompositum(P1,P2);Q=component(Q,1)

(since Q is first given as a matrix [Q]); for instance:

{P1=x^2-2;P2=x^2+5;P3=x^2-7;

Q=polcompositum(P1,P2);Q=component(Q,1);

P=polcompositum(Q,P3);P=component(P,1);print(P)}

x^8 - 16*x^6 + 344*x^4 + 2240*x^2 + 19600

3. General theoretical test of p-rationality

In [14] and [15, Theorem 3.11], are given methods for the general compu-
tation of the structure of TK , but here we need only to characterize the
triviality (or not) of TK in the relation:

AK := Gal(Hpr
K /K) ≃ Zr

p × TK ,

where r = r2 + 1, 2 r2 being the number of complex embeddings of K.

As TK is a direct factor in AK , the structure of the whole Galois group AK

may be analized at a finite step by computing the Galois group of a suitable
ray class field K(pn) of modulus (pn). Since PARI gives the structure of ray
class groups of the form CℓK(pn) := Gal(K(pn)/K), the test of p-rationality
is obtained for n large enough as follows.

If CℓK(pn) has a p-rank such that:

rkp(CℓK(pn)) ≥ r + 1,

then K is not p-rational since Gal(K̃/K) has p-rank r. The minimal n0

for the test is given as a consequence of the following results (stated in the
ordinary sense):
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Theoreme 3.1. For any v | p and any j ≥ 1, let U j
v be the group of local

units 1 + p
j
v, where pv is the maximal ideal of the ring of integers of Kv.

For a modulus of the form (pn), n ≥ 0, let CℓK(pn) be the corresponding ray

class group. Then for m ≥ n ≥ 0, we have the inequalities:

0 ≤ rkp(CℓK(pm))− rkp(CℓK(pn)) ≤
∑
v|p

rkp
(
(U1

v )
p Unev

v /(U1
v )

p Umev
v

)
,

where ev is the ramification index of v in K/Q.

Proof. From [5, Theorem I.4.5 & Corollary I.4.5.4] taking for T the set of
p-places and for S the set of real infinite places (so that δ∞ = ∅). �

Corollary 3.2. We have rkp(CℓK(pm)) = rkp(CℓK(pn)) = rkp(AK) for all

m ≥ n ≥ n0, where n0 = 3 for p = 2 and n0 = 2 for p > 2.

Thus K is p-rational if and only if rkp(CℓK(pn0)) = r, where r = r2 + 1.

Proof. It is sufficient to get, for some fixed n ≥ 0:

(U1
v )

p Unev
v = (U1

v )
p for all v | p,

hence Un ev
v ⊆ (U1

v )
p for all v | p; indeed, we then have:

rkp(CℓK(pn)) = rkp(CℓK(pm)) = r + rkp(TK) as m → ∞,

giving rkp(CℓK(pn)) = r + rkp(TK) for such n.

The condition Un ev
v ⊆ (U1

v )
p is fulfilled as soon as n ev >

p · ev
p− 1

, hence

n >
p

p− 1
(see [3, Chap. I, § 5.8, Corollary 2] or [16, Proposition 5.7]),

whence the value of n0. �

The program giving the structure of CℓK(pn0) is the following (we compute
the structure of the ray class groups with modulus pn up to n = 5 to see the
stabilization of the p-ranks; this would give the invariants of TK , as in [15]):

{K=bnfinit(x^3-5*x+3,1);p=2;

for(n=0,5,Hpn= bnrinit(K,p^n);print(n," ",component(Hpn,5)))}

0 [1,[]]

1 [1,[]]

2 [2,[2]]

3 [4,[2,2]]

4 [8,[4,2]]

5 [16,[8,2]]

then for p = 3:

0 [1,[]]

1 [1,[]]

2 [3,[3]]

3 [9,[9]]

4 [27,[27]]

5 [81,[81]]

for the ramified prime p = 257 (where 32896 = 27 · 257, 8454272 = 27 · 2572,
2172747904 = 27 · 2573, and so on):

0 [1,[]]

1 [128,[128]]

2 [32896,[32896]]

3 [8454272,[8454272]]

4 [2172747904,[2172747904]]

5 [558396211328,[558396211328]]
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Thus K is p-rational for p = 3 and 257, but not for p = 2.

Now we give the case of the first irregular prime p = 37 for which we know
that the pth cyclotomic field is not p-rational (indeed, TK = 1 is equivalent
to CℓK = 1 for the pth cyclotomic fields [4]).

So we must see that the p-ranks are equal to 19 + 1, at least for n ≥ 2:

{p=37;K=bnfinit(polcyclo(p),1);

for(n=0,2,Hpn=bnrinit(K,p^n);print(n," ",component(Hpn,5)))}

0 [37,[37]]

1 [624931990990842127748277129373,[1369,37,37,37,37,37,37,37,37,37,

37,37,37,37,37,37,37,37]]

2 [390539993363777986320898213181845819006713655084697379373129,

[50653,1369,1369,1369,1369,1369,1369,1369,1369,1369,1369,1369,

1369,1369,1369,1369,1369,37,37,37]]

4. Full general PARI programs

We bring together some instructions given in the previous sections and recall
that, in the programs, n = 2 (resp. 3) if p 6= 2 (resp. p = 2).

4.1. General program: Main invariants – Test of p-rationality. The
reader has to introduce an irreducible polynomial P ∈ Z[x] and a prime

number p ≥ 2. For p = 2 the p-rationality is in the ordinary sense.

====================================================================

{P=x^3-5*x+3;p=2;K=bnfinit(P,1);

Sign=component(component(K,7),2);print("Signature of K: ",Sign);

print("Galois group of the Galois closure of K: ",polgalois(P));

print("Discriminant: ",factor(component (component(K,7), 3)));

print("Structure of the class group: ",component(component(K,8),1));

print("Fundamental system of units: ",component(component(K,8),5));

r=component(Sign,2)+1;n=2;if(p==2,n=3);

print(p,"-rank of the compositum of the Z_",p,"-extensions: ",r);

Hpn=component(component(bnrinit(K,p^n),5),2);L=listcreate;

d=component(matsize(Hpn),2);R=0;for(k=1,d,c=component(Hpn,k);

if(Mod(c,p)==0,R=R+1;listinsert(L,p^valuation(c,p),1)));delta=R-r;

print("Structure of the ray class group mod ",p,"^n: ",L);

if(delta>0,print("K is not ",p,"-rational"));

if(delta==0,print("K is ",p,"-rational"))}

====================================================================

(i) With the above data, K is not 2-rational nor 293-rational (up to p ≤ 105)
since the program writes, respectively:

Signature of K: [3,0]

Galois group of the Galois closure of K: [6,-1,1,"S3"]

Discriminant: Mat([257,1])

Structure of the class group: [1,[]]

Fundamental system of units: [x-1,x^2+2*x-2]

2-rank of the compositum of the Z_2-extensions: 1

Structure of the ray class group mod 2^n: List([2,2])

K is not 2-rational

Signature of K: [3,0]

Galois group of the Galois closure of K: [6,-1,1,"S3"]

Discriminant: Mat([257,1])

Structure of the class group: [1,[]]

Fundamental system of units: [x-1,x^2+2*x-2]

293-rank of the compositum of the Z_293-extensions: 1

Structure of the ray class group mod 293^n: List([293,293])

K is not 293-rational
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(ii) The field K = Q(
√
−161) is not 2-rational (the Hilbert class field is

linearly disjoint from K̃ [5, Example III.6.7]):

Signature of K: [0,1]

Galois group of the Galois closure of K: [2,-1,1,"S2"]

Discriminant: [-1,1;2,2;7,1;23,1]

Structure of the class group: [16,[8,2]]

Fundamental system of units: []

2-rank of the compositum of the Z_2-extensions: 2

Structure of the ray class group mod 2^n: List([2,2,4,16])

K is not 2-rational

(iii) The field K = Q(
√
−41) is not 2-rational (comes from WK 6= 1).

(iv) The field K = Q(
√
69) is not 3-rational (comes from RK 6= 1).

(v) The quartic cyclic fields K defined by P = x4 + 5x2 + 5 and by P =
x4 + 13x2 + 13 are 2-rational (see [5, Example IV.3.5.1], examples which
were given first in [8, § III]).

4.2. Simplified program – Test of p-rationality. Since some parts of
the first program are useless and some computations intricate (e.g., Galois
groups), one may use the following simplified program to test only the p-
rationality; we test the 3-rationality of

K = Q(
√
−1,

√
2,

√
5,
√
11,

√
97 )

given in [9] (P is computed from the instruction polcompositum; then we
give the p-structure of CℓK(pn0) up to p ≤ 100):

====================================================================

{P=x^16-872*x^14+313900*x^12-60356280*x^10+6720557526*x^8

-440456545944*x^6+16552772527564*x^4-327028989448904*x^2

+2685135903980209;p=3;n=2;if(p==2,n=3);

Kpn=bnrinit(bnfinit(P,1),p^n);S=component(component(Kpn,1),7);

r=component(component(S,2),2)+1;L=listcreate;

print(p,"-rank of the compositum of the Z_",p,"-extensions: ",r);

Hpn=component(component(Kpn,5),2);d=component(matsize(Hpn),2);

R=0;for(k=1,d,c=component(Hpn,k);if(Mod(c,p)==0,R=R+1;

listinsert(L,p^valuation(c,p),1)));delta=R-r;

print("Structure of the ",p,"-ray class group: ",L);

if(delta>0,print("K is not ",p,"-rational"));

if(delta==0,print("K is ",p,"-rational"))}

====================================================================

If one whises to test the p-rationality of K for p varying in an interval [a, b],
it is necessary to compute first the data bnfinit(P, 1) which is independent
of p and takes lots of time. Then the tests for p-rationality are very fast.

This gives the following writing:

====================================================================

{P=x^16-872*x^14+313900*x^12-60356280*x^10+6720557526*x^8

-440456545944*x^6+16552772527564*x^4-327028989448904*x^2

+2685135903980209;K=bnfinit(P,1);

r=component(component(component(K,7),2),2)+1;

print("p-rank of the compositum of the Z_p-extensions: ",r);

forprime(p=2,100,n=2;if(p==2,n=3);

Kpn=bnrinit(K,p^n);Hpn=component(component(Kpn,5),2);

d=component(matsize(Hpn),2);L=listcreate;

R=0;for(k=1,d,c=component(Hpn,k);if(Mod(c,p)==0,R=R+1;

listinsert(L,p^valuation(c,p),1)));delta=R-r;

print("Structure of the ",p,"-ray class group: ",L);

if(delta>0,print("K is not ",p,"-rational"));

if(delta==0,print("K is ",p,"-rational")))}

====================================================================
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p-rank of the compositum of the Z_p-extensions: 9

List([2, 2, 2, 4, 4, 4, 4, 4, 8, 8, 8, 8, 16, 64]) not 2-rational

List([3, 3, 3, 3, 3, 3, 3, 3, 9]) 3-rational

List([5, 5, 5, 5, 5, 5, 5, 5, 25]) 5-rational

List([7, 7, 7, 7, 7, 7, 7, 7, 7, 7]) not 7-rational

List([11, 11, 11, 11, 11, 11, 121, 121, 121, 121]) not 11-rational

List([13, 13, 13, 13, 13, 13, 13, 13, 13, 13]) not 13-rational

List([17, 17, 17, 17, 17, 17, 17, 17, 17, 17]) not 17-rational

List([19, 19, 19, 19, 19, 19, 19, 19, 19]) 19-rational

List([23, 23, 23, 23, 23, 23, 23, 23, 23]) 23-rational

List([29, 29, 29, 29, 29, 29, 29, 29, 29]) 29-rational

List([31, 31, 31, 31, 31, 31, 31, 31, 31, 31]) not 31-rational

List([37, 37, 37, 37, 37, 37, 37, 37, 37]) 37-rational

List([41, 41, 41, 41, 41, 41, 41, 41, 41]) 41-rational

List([43, 43, 43, 43, 43, 43, 43, 43, 43, 43]) not 43-rational

List([47, 47, 47, 47, 47, 47, 47, 47, 47]) 47-rational

List([53, 53, 53, 53, 53, 53, 53, 53, 53]) 53-rational

List([59, 59, 59, 59, 59, 59, 59, 59, 59]) 59-rational

List([61, 61, 61, 61, 61, 61, 61, 61, 61]) 61-rational

List([67, 67, 67, 67, 67, 67, 67, 67, 67]) 67-rational

List([71, 71, 71, 71, 71, 71, 71, 71, 71]) 71-rational

List([73, 73, 73, 73, 73, 73, 73, 73, 73, 73]) not 73-rational

List([79, 79, 79, 79, 79, 79, 79, 79, 79]) 79-rational

List([83, 83, 83, 83, 83, 83, 83, 83, 83]) 83-rational

List([89, 89, 89, 89, 89, 89, 89, 89, 89]) 89-rational

List([97, 97, 97, 97, 97, 9409, 9409, 9409, 9409]) 97-rational

We find that K is not p-rational (with p up to 106) for the primes:

p ∈ {2, 7, 11, 13, 17, 31, 43, 73, 163, 263, 409, 1049, 2671, 3331, 8941, 28477,
36899, 99149, 231901, 283979, 353711, 363719} (no solutions between 363719
and 106 !).

The cases of non p-rationality are essentially due to some units of K; for
instance, for the unit ε = 1 +

√
2 ∈ K and p = 31, we get:

ε30 = 152139002499 + 107578520350
√
2 ≡ 1 (mod 312),

which means RK = 1
31

log(ε) ≡ 0 (mod 31).

5. Conclusion

As we have seen, in this paper and in [7], number fields are in general p-
rational for “almost all” p, except perhaps for p = 2 for which the invariant
WK =

(⊕
v|2 µKv

)/
µK , depending on the splitting of 2 inK/Q, is often non-

trivial since its order is divisible by the order of
(⊕

v|2 µ2

)/
µ2; the case of

fieldsK containing µp also arises for the same reason. So we wonder whether
another definition of p-rationality would be interesting or not (“weak p-
rationality” when Cℓ∞K = RK = 1) ?

However, for p ≫ 0, one gets CℓK = WK = 1 and the most deep and
mysterious invariant about p-rationality is the normalized p-adic regulator:

RK = torZp

(
log

(
UK

)/
log(EK)

)
.

for which we have done, for p ≫ 0, extensive heuristics and conjectures
in [7].
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