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Abstract

The analysis of high-frequency wave propagation in arbitrarily shaped waveguides requires specific numerical methods. A widely

spread technique is the so-called semi-analytical finite element (SAFE) formulation. This formulation enables to account for

the translational invariance of waveguide problems and leads to a two-dimensional modal problem reduced on the cross-section.

Despite this, solving the problem can still be computationally demanding. In order to further reduce the size of the modal problem,

this paper presents a SAFE method for waveguides of rotationally symmetric cross-sections. Such structures are encountered

in many applications. Typical examples are bars of circular cross-section, regular polygons, and multiwire cables. Numerical

results show that the computational effort required for solving the SAFE modal problem is tremendously reduced by accounting

for rotational symmetry.
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1. Introduction

Elastic guided waves are of great interest for the inspection of elongated structures. Guided waves are yet multi-

modal and dispersive, which complicates the physical interpretation of measurement. In practice, modeling tools are

required to optimize inspection systems. The modeling of canonical geometries (plates, cylinders) can be done thanks

to analytical methods (see e.g. [1]).

The analysis of arbitrarily shaped waveguides yet requires numerical methods. A widely spread technique is the so-

called semi-analytical finite element (SAFE) formulation [2,3]. It consists in accounting for translational invariance by

applying a Fourier transform in the axial direction before finite element discretization. This leads to a two-dimensional

modal problem reduced on the cross-section. Despite this, solving the problem can still be computationally demanding

when the FE mesh has to be refined and/or the modal density increases (e.g. at high frequency) [4,5]. It is hence

desirable to further reduce the size of the modal problem.

This paper presents a SAFE method for rotational symmetric cross-sections, often encountered in practical appli-

cations (regular polygons for instance). With a modal approach, accounting for rotational symmetry has indeed two
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computational benefits: the reduction of the problem size in terms of degrees of freedom and the reduction of the

number of modes to compute.

Of particular interest in this work is the modeling of cables in view of nondestructive evaluation. Cables are usually

made of individual helical wires, which are coupled through contact conditions. The proper SAFE formulation must

be written in a nontrivial helical coordinate system allowing translational invariance along the axis [6]. Such structures

yield large size problems involving mesh refinements in the contact regions [5].

Section 2 briefly recalls the SAFE method. The rotational symmetric formulation is presented in Sec. 3. Section 4

is devoted to numerical results. The first test case will be a cylindrical waveguide to validate the approach. Then, a

seven-wire strand will be considered. Seven-wire strands are constituted by one central cylindrical wire surrounded

by six peripheral helical wires and are widely employed in civil engineering cables.

2. Background: SAFE formulation

The SAFE method is a finite element method dedicated to waveguides. This method aims to account for the

translational invariance of the geometry to reduce the size of the problem. The initial full 3D problem is reduced to a

2D modal problem so that one only needs to mesh the cross-section of the waveguide. This section recalls the SAFE

formulation. Details can be found in the literature (see e.g. [2,3]). Let us denote (x, y) the cross-section coordinates

and z the axis coordinate of the waveguide.

First, the strain-displacement relation is written as:

ǫ = (Lxy + Lz∂/∂z)u (1)

where Lxy is the operator containing all terms but derivatives with respect to the z-axis and Lz is the operator of

z-derivatives:

Lxy =
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. (2)

Then, the SAFE approach consists in applying a time Fourier transform as well as a spatial Fourier transform along

z before discretizing the cross-section (x, y) by a finite element method. Inside one finite element e, the displacement

field can thus be expressed as follows:

u(x, y, z, t) = Ne(x, y)Ueei(kz−ωt) (3)

where Ue is the nodal displacement vector and Ne is the matrix of nodal interpolating functions of the element e. k is

the axial wavenumber and ω is the angular frequency.

The variational formulation of three-dimensional elastodynamics yields, from Eqs. (1)–(3), the following matrix

equation:

{K1 − ω
2M + ik(K2 −KT

2 ) + k2K3}U = F (4)

with the elementary matrices:

Ke
1
=
�

S e NeTLT
xyCLxyNedS , Ke

2
=
�

S e NeTLT
xyCLzN

edS ,

Ke
3
=
�

S e NeTLT
z CLzN

edS , Me =
�

S e ρN
eTNedS

(5)

where dS = dxdy and C is the matrix of material properties. Setting F = 0 (no acoustic source), Eq. (4) is an

eigenvalue problem whose eigensolutions are the guided modes propagating in the translationally invariant structure.

To enforce rotational symmetry, periodic boundary conditions will be needed both on U and F as explained in the

next section.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.462&domain=pdf
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computational benefits: the reduction of the problem size in terms of degrees of freedom and the reduction of the
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Then, the SAFE approach consists in applying a time Fourier transform as well as a spatial Fourier transform along

z before discretizing the cross-section (x, y) by a finite element method. Inside one finite element e, the displacement

field can thus be expressed as follows:

u(x, y, z, t) = Ne(x, y)Ueei(kz−ωt) (3)

where Ue is the nodal displacement vector and Ne is the matrix of nodal interpolating functions of the element e. k is

the axial wavenumber and ω is the angular frequency.

The variational formulation of three-dimensional elastodynamics yields, from Eqs. (1)–(3), the following matrix

equation:

{K1 − ω
2M + ik(K2 −KT

2 ) + k2K3}U = F (4)

with the elementary matrices:
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where dS = dxdy and C is the matrix of material properties. Setting F = 0 (no acoustic source), Eq. (4) is an

eigenvalue problem whose eigensolutions are the guided modes propagating in the translationally invariant structure.

To enforce rotational symmetry, periodic boundary conditions will be needed both on U and F as explained in the

next section.
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3. Accounting for rotational symmetry

The displacement and force vectors are partitioned as follows: U = [UT
l UT

i UT
r ]T, F = [FT

l FT
i FT

r ]T, where the

subscripts l and r stand for the left and right degrees of freedom (dofs), associated with the left and right boundaries of

the rotationally periodic cell of the cross-section (see Fig. 1 for an example). The subscript i is left for the remaining

dofs (internal dofs). There are no forces acting on internal dofs because acoustic sources are discarded in the purpose

of computing eigenmodes (Fi = 0).

In general, the Bloch-Floquet boundary conditions for a given field φ and its dual variable ψ are φr = λφl and ψr =

−λψl [7,8], where λ = eiµ (iµ is often called the propagation constant). These conditions hold for a periodicity along

straight directions. However, the periodicity to be applied in this paper is of rotational type and concerns a nonscalar

field (the displacement vector). The Bloch-Floquet conditions must then be expressed along the circumferential

direction in an appropriate frame, namely the cylindrical coordinate system.

Since the displacement components Ul and Ur are initially expressed in the (x, y, z) Cartesian frame, they must be

transformed to the (r, θ, z) cylindrical frame. Cartesian and cylindrical coordinates are related by (x, y) = (ρ cos θ, ρ sin θ)

(ρ = 0 corresponding to the center of rotational symmetry). Let us denote Ql and Qr the transformation matrices of

Ul and Ur from the Cartesian to the cylindrical frames. The rotational periodic conditions for the displacement and

force vector fields are then:

QrUr = λQlUl (6a)

QrFr = −λQlFl (6b)

Note that the transformation matrices are block diagonal and comprise three-by-three sub-matrices (for the three com-

ponents of the displacement vector at every node). These sub-matrices are rotation matrices and are hence orthogonal.

Therefore, the following properties hold: Q−1
l,r = QT

l,r.

Let us denote N the order of the rotational symmetry of the problem. The structure is divided into N rotationally

periodic cells. The wave fields at the right boundary of cell N should be equal to the fields at the left boundary of

cell 1. This leads to the equation λN = 1 [9], or equivalently: µ = 2nπ/N, where n = 0, 1, ...N − 1. The propagation

constant can hence be replaced with a user-defined parameter n varying from 0 to N − 1.

From Eq. (6a), the displacement dofs are related by:

U = R̃Ũ, R̃ =





















I 0

0 I

λQ−1
r Ql 0





















, Ũ =

�

Ul

Ui

�

. (7)

Using the reduced displacement vector Ũ defined above, Eq. (4) can be rewritten as:

{K̃1 − ω
2M̃ + ik(K̃2 − K̃

′

2) + k2K̃3}Ũ = R̃
∗
F (8)

where K̃i = R̃
∗
KiR̃ (i = 1, 2, 3), M̃ = R̃

∗
MR̃, K̃

′

2 = R̃
∗
KT

2 R̃ and the superscript ∗ denotes complex transpose. These

matrices are dependent on the parameter n through the matrix R̃, which linearly depends on λ.

Accounting for the orthogonality of Ql,r, the expansion of the right hand side of Eq. (8) leads to:

R̃
∗
F =

�

Fl + λ
∗Q−1

l QrFr

0

�

(9)

From Eq. (6b), one has: Fl + λ
∗Q−1

l QrFr = (1 − |λ|2)Fl. This expression indeed vanishes because |λ| = |eiµ| = 1

(µ ∈ R), so that R̃
∗
F = 0. Therefore, Eq. (8) is the eigensystem to be solved, which accounts both for the translational

invariance along the axis (thanks to the SAFE approach) and for the rotational symmetry of the cross-section (thanks

to the application of Bloch-Floquet conditions).

As a side remark, left multiplying by the transpose of R̃, instead of the complex transpose, does not allow to cancel

the right hand side in Eq. (8): the product R̃
T
F leads to a factor (1 − λ2), not equal to zero (except if n = 0).
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Fig. 1. FE mesh of the cross-section of a cylindrical waveguide. Left: complete model, right: rotationally symmetric cell with N = 10.

Fig. 2. Energy velocity dispersion curves in a cylindrical waveguide computed with the complete model (grey points), with the reduced model for

n = 0 (×) and for n = 1 (+).

4. Results

Throughout this section, an isotropic material is considered with a Poisson coefficient of 0.3. Dispersion curves

will be presented for the dimensionless energy velocity ve/cs as function of the dimensionless frequencyωa/cs, where

cs denotes the shear velocity and a is a characteristic length. The energy velocity ve can be straightforwardly post-

processed from the eigensolutions of the SAFE eigensystems (4) and (8) (see Ref. [6] for instance). The finite element

discretization of rotationally periodic cells is generated so that left and right boundaries have a compatible mesh that

allows a direct connection between nodes. Six-node triangles are used.

4.1. Cylindrical waveguide

In order to validate the approach, a cylindrical waveguide is considered. The characteristic length a is chosen as

the radius of the cylinder.

Owing to the circular cross-section, the angular sector of the elementary cell can be arbitrarily thin. In this example,

the rotationally symmetric SAFE model is reduced to a sector of angle 2π/10 (see Fig. 1).

Results are compared with the full SAFE model of a complete circular cross-section, i.e. without accounting for

rotational symmetry. Figure 2 plots the dimensionless energy velocity dispersion curves for n = 0 and n = 1. For

n = 0, the rotationally symmetric SAFE model gives axisymmetric propagation modes (compressional and torsional

modes). The remaining modes, of flexural type, are not axisymmetric and can be obtained for n = 1, 2, ..., 9 (in Fig. 2,

only n = 1 modes are shown for conciseness). Modes computed with both models are in very good agreement.
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the right hand side in Eq. (8): the product R̃
T
F leads to a factor (1 − λ2), not equal to zero (except if n = 0).
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Fig. 1. FE mesh of the cross-section of a cylindrical waveguide. Left: complete model, right: rotationally symmetric cell with N = 10.

Fig. 2. Energy velocity dispersion curves in a cylindrical waveguide computed with the complete model (grey points), with the reduced model for

n = 0 (×) and for n = 1 (+).

4. Results

Throughout this section, an isotropic material is considered with a Poisson coefficient of 0.3. Dispersion curves

will be presented for the dimensionless energy velocity ve/cs as function of the dimensionless frequencyωa/cs, where

cs denotes the shear velocity and a is a characteristic length. The energy velocity ve can be straightforwardly post-

processed from the eigensolutions of the SAFE eigensystems (4) and (8) (see Ref. [6] for instance). The finite element

discretization of rotationally periodic cells is generated so that left and right boundaries have a compatible mesh that

allows a direct connection between nodes. Six-node triangles are used.

4.1. Cylindrical waveguide

In order to validate the approach, a cylindrical waveguide is considered. The characteristic length a is chosen as

the radius of the cylinder.

Owing to the circular cross-section, the angular sector of the elementary cell can be arbitrarily thin. In this example,

the rotationally symmetric SAFE model is reduced to a sector of angle 2π/10 (see Fig. 1).

Results are compared with the full SAFE model of a complete circular cross-section, i.e. without accounting for

rotational symmetry. Figure 2 plots the dimensionless energy velocity dispersion curves for n = 0 and n = 1. For

n = 0, the rotationally symmetric SAFE model gives axisymmetric propagation modes (compressional and torsional

modes). The remaining modes, of flexural type, are not axisymmetric and can be obtained for n = 1, 2, ..., 9 (in Fig. 2,

only n = 1 modes are shown for conciseness). Modes computed with both models are in very good agreement.
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Fig. 3. FE mesh of the cross-section of a seven-wire strand. Left: complete model, right: rotationally symmetric cell (N = 6).

Compared to the full SAFE mode, the computational time is reduced by a factor 16 for a given n. Note that in

addition to the reduction of the number of dofs (by a factor 10 here), the number of modes to compute for each value

of n is reduced to about 5 compared to 25 with the full model, which also contributes to reducing the computational

effort.

4.2. Seven-wire strand

A seven-wire strand is now considered. The characteristic length a is chosen as the radius of the central wire. The

strand is prestressed with a 0.6% elongation. Because peripheral wires are not straight but helical, the analysis of

guided waves requires a specific curvilinear coordinate system, called twisting coordinate system. A twisting system

is a particular case of helical system, with zero curvature and a torsion τ = 2π/L (with L denoting the helix pitch of

peripheral wires). In this twisting system, the cross-section of the whole structure remains translationally invariant

so that guided waves truly exist [6]. The operators of prestressed elastodynamics must be rewritten in the twisting

coordinate system yielding expressions for Lxy and Lz that depend on τ and are different from Eq. (1). The reader

may refer to [5,6] for the expressions of these operators and further details about the SAFE modeling of prestressed

seven-wire strands. Anyway, the SAFE approach leads to an eigensystem which keeps the same form as Eq. (4).

Now, the number of peripheral wires of the strand yields a rotational symmetry of order 6, which can be further

exploited thanks to the procedure described in Sec. 3. Figure 3 shows the complete and reduced FE meshes of the

cross-section, refined near interwire regions in order to accurately account for contact phenomena [5]. Note that no

contact occurs between peripheral wires so that periodic conditions are only applied to the central wire.

Figure 4 plots the dimensionless energy velocity dispersion curves obtained with the full model and the rotationally

symmetric model for n = 0 and n = 1. Results coincide with each other (the modes calculated for n = 2, ..., 5 are not

shown for conciseness).

The rotational symmetric model allows reducing the number of dofs by a factor 6 as well as the number of computed

modes to about 8 (compared to 40 with the full model). For a given n, this leads to a computational time reduced by a

factor 13.

As can be observed in Fig. 4, seven-wire strands are complex structures involving many dispersion curves owing

to the coupling between wires. Another advantage of the formulation is the intrinsic classification of modes in terms

of their symmetry order n. This can greatly helps the analysis of the dynamic behavior of such complex structures and

the interpetation of results.

5. Conclusion

In this paper, a SAFE method has been presented to account for the rotational symmetry of structural waveguides.

The method has been tested for cylinders and seven-wire strands. The approach enables to significantly reduce the

problem size in terms of degrees of freedom as well as the number of modes to compute. The rotationally symmet-

ric SAFE formulation opens new possibilities for the numerical analysis of complex waveguides in high-frequency
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Fig. 4. Energy velocity dispersion curves in a seven-wire strand. Same legend as in Fig. 2.

regime. Of particular interest will be the modeling of open waveguides (i.e. unbounded in the transverse directions)

and umbilical power cables used in offshore wind turbine applications. The former involve continua of radiation

modes, which leads to the computation of many unwanted modes when absorbing conditions are used. The latter have

a more complex architecture than seven-wire strands and involve rotational symmetry of high order. The proposed

rotationally symmetric SAFE formulation will enable to significantly reduce the computational effort in the analysis

of these types of problem.
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Fig. 3. FE mesh of the cross-section of a seven-wire strand. Left: complete model, right: rotationally symmetric cell (N = 6).
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shown for conciseness).

The rotational symmetric model allows reducing the number of dofs by a factor 6 as well as the number of computed
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to the coupling between wires. Another advantage of the formulation is the intrinsic classification of modes in terms

of their symmetry order n. This can greatly helps the analysis of the dynamic behavior of such complex structures and

the interpetation of results.
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Fig. 4. Energy velocity dispersion curves in a seven-wire strand. Same legend as in Fig. 2.

regime. Of particular interest will be the modeling of open waveguides (i.e. unbounded in the transverse directions)

and umbilical power cables used in offshore wind turbine applications. The former involve continua of radiation

modes, which leads to the computation of many unwanted modes when absorbing conditions are used. The latter have
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