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Abstract

Guided wave modes can provide precise physical analyses of scattering phenomena. When the structure is surrounded by an
infinite medium (open waveguide), the unboundedness of the transverse direction greatly complicates the numerical resolution of
the problem and its analysis. Theoretically, the wave field can be obtained through modal expansion on trapped modes and on two
continua of radiation modes. The latter are sometimes approximated by a discrete sum over leaky modes. However, leaky modes
grow at infinity in the transverse direction and hence can approximate the wave fields only in a spatially limited region. A perfectly
matched layer (PML) enables to reveal leaky modes in the modal basis and defines two continua of PML modes, discretized by
the truncation of the PML. In this paper, the scattering properties of the modes of an elastic axisymmetric open waveguide are
investigated with a hybrid method. The semi-analytical finite element (SAFE) method is combined with a PML and then coupled
to a FE-PML computation around the inhomogeneity. The hybrid method is validated against literature results for the scattering of
a guided wave at the junction between a closed and an open waveguide. Then, the diffraction of a high-frequency leaky mode by a
notch is presented.

© 2017 The Authors. Published by Elsevier Ltd.
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1. Introduction

Guided wave modes can propagate over a wide distance. They allow non-destructive evaluation (NDE) of elongated
structures. Moreover, these modes enable to precisely analyse scattering phenomena. But, when the structure is
embedded in an infinite medium (open waveguide), the waves may leak into the surrounding medium and suffer
from attenuation. The unboundedness of the transverse direction significantly complicates the numerical resolution
of the problem and its analysis with a modal approach. Theoretically, the wave field can be obtained through modes
superposition of trapped modes and of two continua of radiation modes [1]. The continua are yet difficult to handle
mathematically and physically. They are sometimes approximated by a discrete sum over the so-called leaky modes [2,
3]. Leaky modes are able to provide a useful physical information: the attenuation of the waves as they propagate [4].
However, leaky modes grow at infinity in the transverse direction, and thereby, can approximate the wave fields only
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in a spatially limited region not far from the core of the waveguide [3]. In a recent work [5], the authors have shown
that an infinite PML enables to naturally reveal the leaky modes such that the modal basis contains trapped modes
(if any), revealed leaky modes and two rotated continua of radiation modes. The latter are discretized by the PML
truncation [6,7], required for numerical purpose, and are called PML modes.

In this paper, the numerical computation of modal scattering properties in elastic open waveguides is investigated.
Hybrid numerical methods have been proposed in the literature for the scattering analysis of closed elastic waveg-
uides [8—11]. These methods couple a full computation in the near-field of the inhomogeneity with a modal solution,
which can be obtained on the section of the waveguide for instance with the so-called semi-analytical finite element
(SAFE) method [12]. Hybrid methods can handle arbitrary geometries while remaining computationally fast, contrary
to transient finite element models [13], and avoid modal post-processing steps.

Herein, a hybrid method is proposed for the scattering analysis of open waveguides. The SAFE-PML modal
solution is coupled to a FE-PML computation around the inhomogeneity. For simplicity, axisymmetric waveguides
are considered. First, the numerical method is validated against literature results for the scattering of a guided wave
at the junction between a closed and an open waveguide. Then, the diffraction of a leaky mode by a notch at high
frequencies is studied, which is of interest for the NDE of embedded tendons or rock bolts.

2. Numerical method
2.1. Elastodynamic variational formulation with a PML

Let us consider an open elastic waveguide in the cylindrical coordinate system (7, 6, z), where z is the axis of the
waveguide, and 7 is the radial direction (also called transverse direction in the following). The waveguide has a
core made of one or several layers, embedded in an infinite surrounding medium. The waveguide may be locally
inhomogeneous (defect), inside the core or at the interface with the surrounding medium. The waveguide and the
defects are axisymmetric such that the displacement field is & = [, (F,z, w) ii,(7,z, w)]T and 8(.)/30 = 0. The
superscript T denotes matrix transpose. A time-harmonic dependance e~/ is assumed. The elastodynamic variational
formulation is given by:

f o€’ aididz — w* f poul iurdidz = f i’ frdrdz, (D
Q Q Q

where f is the vector of volumic acoustic forces. The strain and stress vectors are respectively € = [&,,, &g, &, 2€rz]T
and & =[Gy, G e, Oz, 7127 . The stress-strain relation is & = Ce. C is the matrix of material properties, which can be
elastic or viscoelastic. The surrounding medium is truncated by a PML of thickness 4. The PML starts at a distance
r = d by an analytic continuation of Eq. (1) into the complex radial coordinate [14]:

i(r) = fo y(é)de, )

where y(r) is a complex-valued function inside the PML such that outgoing waves in the surrounding medium are
attenuated. Therefore, y(r) = 1 if r < d, and Im[y(r)] > 0if d < r < d + h. At the end of the PML, a Dirichlet
condition is arbitrarily applied. For any function g(7) in Eq. (1), the change of variable # — r is used to go back in
the real transverse direction, with the following relations:

dg dg 1

gr =g, dr=yrdr, —

d7 ~ dr y(r)' )

2.2. Hybrid FE-modal formulation

The hybrid formulation presented here follows the same steps than in closed waveguides [10,11]. Firstly, the
general domain Q is restricted to an arbitrary small area Q (see Fig. 1) around the inhomogeneity (junction, crack...).
The waveguide is assumed homogeneous and infinitely long outside Q. The finite element discretization of Eq. (1) on
Q yields the classical system:

SUT(K — w*M)U = 5U'F, 4)
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where K and M are the stiffness and mass matrices, F and U are the vectors of nodal forces and displacements. Note
that both K and M are complex because of the introduction of the PML. The system is partionned into degrees of
freedom belonging to the cross-sections £ = X; U X, (see Fig. 1) and those that remain as follows:

_(Us _(Fs
U_(Uz)’ F_(Fz)’ ®

where T = Q \ X. The fields Us and Fy are expanded on the modal basis of each cross-section:

Us =) auUp+ > ajUs, Fy= > a,F,+ > ajFh, (m=1...M). (6)

where U, is the vector of modal displacement for a given mode m and F,, is the vector of modal force computed with
SAFE-PML (see section 2.3). a,, are the modal coefficients. The superscript + stands for outgoing reflected modes
(unknown), and the superscript — denotes ingoing modes (known). The main fundamental difference between hybrid
methods in closed and in open waveguides lies in the modes involved in Eq. (6). Indeed, as far as open waveguides
with PML are concerned, the modal basis contains trapped modes, leaky modes and PML modes [5] instead of guided
modes, inhomogeneous modes and evanescent modes. The known and unknown variables are denoted as follows:

(o +_ [ef
v :(Fz)’ v _(Uz)' @

From Egs. (7) and (6), the fields U and F are rewritten as:

U=G,U +G.U*, F=G,U +GU", 8)
with the following matrices:
_ (B0 . (B0 __(B;0 . (B0
Gu‘(o 0)’ Gu‘(o 1)’ Gf‘(oz’ ¢r=\oo) ©)
B, = [Uy U5 ... Uyl and B} = [F{ F5 ... F3;] are respectively the matrices of modal displacements and modal

forces. Finally, Eq. (4) and Eq. (8) yield for any arbitrary field 6U” = [(5a+(5U§]T:
G;"(DG; - G)U* = G (G} - DG,)U", (10)
where D = (K — w*M). The system (10) is solved for each angular frequency w.

2.3. Modes of an open waveguide with the SAFE-PML method

The SAFE-PML method is used to obtain the modes involved in the modal expansion (6). It starts from the
source-free variational formulation written on X, assuming an ek dependence for u (e~* for su), where k is the
axial wavenumber. The transverse direction is discretized with one-dimensional finite elements such that u°(r, w) =
N¢(r)U’(w). N° is the matrix of interpolating functions and U is the vector of nodal displacements. The strain-
displacement relation is written € = B, U° + jkB,U’(resp. 6e = B, U® — jkB,U®), where:

10 00 00

1 0 1., e oo 1o oo
B,—[%L,E+Lo;}N, B.=LN' with L =| ol Li=|qol L= (11)

01 00 10

This yields the following quadratic eigenvalue problem [7,12]:

(K — *Ms + jk(Ky - K}) + K*K3) U = 0, (12)
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Fig. 1: Finite element domain Q for (a) validation case (junction of a closed and an open waveguide) and (b) high-frequency application (diffraction
by a notch in an open waveguide). Parameters and materials are given in the text.

where the elementary matrices are:

K¢ = f B'CB,7ydr, K= f BICB_iydr, K= f BICB.iydr, M = f pNTNewydr.  (13)
xe xe e e

Eq. (12) can be linearized into a generalized eigenvalue problem in order to be solved with standard eigensolvers [15].
K,, Mg and K3 are complex-valued symmetric matrices due to the PML. Then for a given angular frequency w, there
are two sets of eigensolutions [7], i.e. M symmetric pairs denoted (k},, U,}) and (k,,, U,,), (m = 1... M). From Eq. (12)
and eigenvectors, the modal forces are defined [11]:

F% = (K} + jKiK3)UZ. (14)

m

3. Numerical results
3.1. Validation test case

The scattering of a guided wave at the junction between a closed and an open waveguide [16] is considered as a
validation test case — see Fig. 1a. The core of the waveguide is a steel cylinder of radius @ = 1 mm (p = 7932 kg/m?,
¢; = 5960 m/s, c¢;=3260 m/s), partly embedded in epoxy (o = 1170 kg/m3, ¢; = 2610 m/s, c;= 1000 m/s). The L(0,1)
guided mode is incident from the closed waveguide, with a unit modal coefficient. Its reflection at the junction is
studied.

Figure 2 shows a good agreement between the hybrid FE-SAFE-PML method and the reference result. Accurate
comparisons have been made with other results of Ref. [16] as well, not shown here for conciseness.

In the closed part of the waveguide, the modal expansions are performed only on the L.(0,1) guided mode. As stated
in Ref. [16], it has been checked that evanescent and inhomogeneous modes modify the results only by a negligible
amount, even close to the junction. In the open part of the waveguide, the inclusion of PML modes slightly improves
the accuracy of the results. Hence, 10 modes (1 leaky mode and 9 PML modes) have been included in the modal

expansion in the open waveguide. Note that at low frequencies, the large wavelength implies that the parameter

Yh = dd+h y(€)dé has to be high enough for the PML to be accurate. A parabolic profile y(r) = 1+ 3 - 1)((r—d)/ h)?

has been used for the attenuation function in order to improve the accuracy of the computation [7].
3.2. Diffraction by a notch at high frequencies

Pavlakovic et al. [4] have studied open waveguides where all the modes propagate while leaking energy into the
surrounding medium. Therefore, the attenuation rates can be very high and then reduce the distance of propagation.
However, dispersion curves show that there is a set of longitudinal modes that present a series of local attenuation min-
ima in a limited range of high frequencies. These modes are quite interesting for NDE applications. For a viscoelastic
steel waveguide (17; = 0.003 Np/wavelength, 7, = 0.008 Np/wavelength), of radius ¢ = 10 mm and embedded in grout
(o = 1600 kg/m3, c; = 2810 m/s, ¢,=1700 m/s, ; = 0.043 Np/wavelength, n, = 0.1 Np/wavelength), Pavlakovic et
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Fig. 2: Amplitude of the modal coefficient of the reflected L(0,1) mode at the junction. Line: Ref. [16] ; cross: hybrid FE-SAFE-PML method.
Parameters: z; =z = 0.25a ;d = 1.05a ; ¥ =4 + 4i, h = 2a.
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Fig. 3: Amplitude of the modal coefficients of the reflected (solid line) and the transmitted (dashed line) L(0,12) leaky mode by a notch of various
depth h,. Parameters: z; = zo = 0.25a ; d = 1.05a ; ¥ = 1 + 2i, h = a. Frequencies: f; = 2.093 MHz, f, = 2.288 MHz and f3 = 2.484 MHz.

al. [4] have shown that the L(0,12) leaky mode has the lowest attenuation at f = 2.3 MHz. This is the first mode that
presents a series of attenuation minima.

The steel cylinder is damaged by a notch of varying depth h,,/a and of negligible width compared to the wavelength
— see Fig. 1b. The L(0,12) leaky mode is launched with a unit amplitude coefficient on the notch for the first three
minima, at frequencies f; = 2.093 MHz, f, = 2.288 MHz and f3 = 2.484 MHz. One is interested in the amplitude of
the modal coefficients of the reflected and of the transmitted 1.(0,12) leaky mode when the depth of the notch varies.
Owing to viscoelasticity and leakage losses, the value of the modal coefficients depends on the location along the
waveguide. The solution of Eq. (10) gives the modal coefficients at cross-sections X, and hence, they depend on the
arbitrary distances z; and z,. They can be retropropagated [17,18], in order to get reference modal coeflicients at the
notch, such that:

a';l|notch = a;:,lZe_jkai, i= (1, 2) (15)

The modal coefficients can then be obtained at any location in the waveguide.

For all frequencies the modal coefficient of the reflected mode increase with the notch depth — see Fig. 3. Con-
versely, the modal coefficient of the transmitted mode decreases with the notch depth. That is to say that the L(0,12)
leaky mode is sensitive to deep notch rather than surface defects. Indeed, the mode shape shows that when attenuation
minima occur, most of the energy is concentrated in the centre of the waveguide and not at the interface [4]. Despite
a large number of modes occurring at these frequencies, results (not presented here for conciseness) show that mode
conversion is low and limited to only a few modes such as the L(0,13) and the L.(0,14). These modes suffer from a
greater attenuation that the L.(0,12). Hence, the L(012) prevails for long range inspection.
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In order to reach convergence, 75 modes have been included in the modal expansion of each cross-section. Since
the frequencies are high, the wavelength is quite small. Therefore, the PML parameter ¥/ remains small and so does
the size of the matrices in practice.

4. Conclusion

A hybrid method has been presented for the scattering analysis in axisymmetric open waveguides. It combines
a modal decomposition based on a SAFE-PML method with a FE-PML computation around the inhomogeneity.
The method has been validated against literature results, considering the scattering of a guided mode at the junction
between a closed and an open waveguide. Then, the scattering of a high-frequency leaky mode on a notch in a fully
embedded waveguide has been considered. Though limited to axisymmetric open waveguides, the hybrid method
presented here could be generalised to arbitrary geometries and defects. Contrary to full transient finite element
model, it provides a computationally fast method without requiring modal post-processing.
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