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Robust and Adaptive Feedback
Noise Attenuation in Ducts

Ioan Doré Landau, Raúl Meléndez, Luc Dugard, and Gabriel Buche

Abstract—In this paper the attenuation of sound propagation
in an air-handling duct using robust and adaptive feedback ac-
tive noise control strategies is investigated. The case of multiple
narrow band disturbances located in distinct frequency regions
and the interference occurring in the presence of disturbances
with very close frequencies are considered. The active control
uses a loudspeaker as compensatory system. The objective is to
minimize the residual noise at the end of the duct segment
considered. The system does not use any additional sensor
for getting in real time information upon the disturbances. A
hierarchical feedback approach will be used for the control of
the system. At the first level a robust linear controller will be
designed taking advantage of the knowledge of the domains of
variation of the frequencies of the noise disturbances. To further
improve the performance, a direct adaptive control algorithm
will be added. Its design is based on the use of the internal model
principle combined with the Youla-Kučera parametrization of
the controller. Both robust and adaptive control require the
knowledge of the discrete-time model of the secondary path
(the transfer function between the control loudspeaker and the
residual noise measurement) which is obtained by identification
from experimental data. Experimental results on a relevant duct
active noise control test bench will illustrate the performance
of the proposed methodology.

Index Terms—Active noise control, System Identification, In-
ternal model principle, Youla-Kučera parametrization, Adaptive
control, Robust control.

I. INTRODUCTION

In most cases, feed-forward noise compensation is cur-
rently used for ANC when a disturbance’s image is available
(a correlated measurement with the disturbance). See [1],
[2], [3], [4]. However, these solutions, inspired by Widrow’s
technique for adaptive noise cancellation, see [5], ignore
the possibilities offered by feedback control systems and
have a number of disadvantages: 1) they require the use of
an additional transducer, 2) difficult choice for its location
and, 3) in most cases, presence of a "positive" coupling be-
tween the compensatory system and the disturbance image’s
measurement, which can cause instabilities [4]. To achieve
the attenuation of the disturbance without measuring it, a
feedback solution can be considered. This is particularly
suitable for attenuating multiple time-varying narrow band
noise.

Residual noise can be described as the result of acoustic
waves which pass trough the system, and the noise canceller’s
objective is to minimize it. In many cases, these waves can be
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characterized in the frequency domain either as tonal distur-
bances or as narrow band disturbances, both with unknown
and time-varying frequencies. The common framework is
the assumption that a narrow band disturbance is the result
of a white noise or a Dirac impulse passed through the
"disturbance’s model." More specifically, in discrete-time, the
model for a single narrow-band or tonal disturbance is a
notch filter with poles on the unit circle and zeros inside the
unit circle (for details see [6]). In the context of this paper,
robustness should be understood as performance robustness
with respect to the variations of the characteristics of the
disturbance noise. This will be achieved by using either a
linear robust controller or an adaptive controller.

In managing the noise attenuation by feedback, the shape
of the modulus of the output sensitivity function (the transfer
function between the disturbance and the residual noise) is
fundamental both from performance and robustness consid-
erations. The output sensitivity function should be appropri-
ately shaped, in order to avoid unwanted amplifications in the
neighborhood of the frequencies of the disturbances which
will be attenuated.

The problem of robust feedback noise attenuation in ducts
by shaping the output sensitivity function has been addressed
in [7]. The paper [8] considers the use of H∞ combined with
LMI for a robust control design of noise attenuation in ducts.
The paper [9] considers an H∞ approach to noise attenuation
in headphones. If the frequency of the tonal or narrow
band disturbances is known, the "internal model principle"
can be used to achieve a very strong attenuation. However,
since the frequencies of these noise disturbances vary, an
adaptive approach has to be considered. The combination of
the "internal model principle" (IMP) with the Youla-Kučera
(YK) parametrization has allowed the development of a direct
adaptive regulation scheme for active vibration control [6]
and this approach will be used in this paper for active noise
attenuation in ducts. This approach is different from the
approaches considered in [10], [11], [12] which ignore IMP
and YK parametrization and require a very large number of
parameters to be adapted. One should mention the pioneering
work of [13] in using IMP and YK parametrization. However
the present paper uses different adaptation algorithms, a
different design for the central controller and goes beyond
the case of a single tonal disturbance.

Several problems have been considered in the field of
active noise control. In this paper, one considers multiple
unknown and time- varying tonal disturbances located within
two distinct relatively small frequency ranges. To be specific,
two cases will be considered: (i) the case of two time-varying



tonal disturbances located in two distinct frequency regions
and (ii) the case of four simultaneous tonal disturbances, two
located in one limited frequency range and the other two in
another frequency range. In this context, a very important
problem is to be able to counteract the very low frequency
oscillations (interference) which are generated when the two
frequencies are very close. Since these disturbances are
located within two relatively small frequency ranges, it is
possible to consider a robust linear control design. The first
case, in the context of active noise control in ducts was
considered in [7] and the shaping of the output sensitivity
function was achieved using the convex optimization proce-
dure introduced in [14]. It will be shown in this paper that an
elementary procedure for shaping appropriately the modulus
of the sensitivity functions can be implemented by using stop
band filters as shaping tools. For a basic reference on this
approach, see [6].

To further improve the performance, an algorithm for
direct adaptive rejection of the disturbances will be added
[6]. This algorithm takes into account the IMP and uses the
Youla-Kučera (YK) parametrization of the controller.

The real time performance of the noise cancellers depends
upon the quality of the secondary path dynamic model used
for designing the feedback control law. Despite long years of
effort(See [15]. [16]), physical modeling is not relevant for
obtaining good models for control design. What is needed
in practice is a finite dimension discrete-time model which
reproduces the system’s dynamical behaviour. Once such
a model is available, one can use digital control design
techniques readily implementable on a real time computer.
These models can be obtained directly from data using
system identification techniques, see [17], [6], [7].

The paper is organized as follows. Section II describes the
experimental setup. Section III presents briefly the equations
describing the system model and the controller. Section IV
summarizes the identification procedure and provides the
model of the secondary path used in the controller design.
Section V gives the specifications and the design of the
robust controller. Section VI provides the algorithm used for
adaptive disturbance rejection using the internal model prin-
ciple. Section VII presents the experimental results obtained.
Conclusions are given in Section VIII.

II. EXPERIMENTAL SETUP

The view of the test bench used for experiments is shown
in Fig. 1 and its detailed scheme is given in Fig. 2.

The speaker used as the source of disturbances is labeled
as 1, the control speaker is 2 and finally, at pipe’s open end,
the microphone that measures the system’s output (residual
noise) is denoted as 3. The transfer function between the
disturbance’s speaker and the microphone (1→3) is denomi-
nated Primary Path, while the transfer function between the
control speaker and the microphone (2→3) is denominated
Secondary Path. Both speakers are connected to a xPC
Target computer with Simulink Real Time R© environment
through a pair of high definition power amplifiers and a
data acquisition card. y(t) is the system’s output (residual

noise measurement), u(t) is the control signal and p(t) is the
disturbance. Both primary and secondary paths have a double
differentiator behaviour, since as input we have the voice
coil displacement, and as output the air acoustic pressure.
A second computer is used for development, design and
operation with Matlab R©.

Fig. 1. Duct active noise control test bench (Photo).

Fig. 2. Duct active noise control test bench diagram.

III. SYSTEM DESCRIPTION

The linear time invariant (LTI) discrete-time model of the
secondary path, or plant, used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−dB′(z−1)DF(z−1)

A(z−1)
, (1)

where DF(z−1) = (1− z−1)2 is a double differentiator filter
and

A(z−1) = 1+a1z−1 + · · ·+anA z−nA , (2)

B′(z−1) = b1z−1 + · · ·+bnB′ z
−nB′ , (3)

with d as the plant pure time delay in number of sampling
periods1. The system’s order (without the double differentia-
tor) is:

n = max(nA,nB′ +d) (4)

1The complex variable z−1 is used to characterize the system’s behavior
in the frequency domain and the delay operator q−1 for the time domain
analysis.



Fig. 3. Feedback regulation scheme.

Fig. 3 shows the closed loop feedback regulation scheme,
where the controller K is described by

K(z−1) =
R
S
=

r0 + r1z−1 + · · ·+ rnR z−nR

1+ s1z−1 + · · ·+ snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written
as (see Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (6)

S(q−1) ·u(t) =−R(q−1) · y(t). (7)

In Eq. (6), p(t) is the disturbances’ effect on the measured
output2 and R(z−1), S(z−1) are polynomials in z−1 having
the following expressions:

R = HR ·R′ = HR · (r′0 + r′1z−1 + . . .+ r′nR′
z−nR′ ), (8)

S = HS ·S′ = HS · (1+ s′1z−1 + . . .+ s′nS′
z−nS′ ), (9)

where HS(z−1) and HR(z−1) represent prespecified parts of
the controller (used for example to incorporate the internal
model of a disturbance, or to open the loop at some frequen-
cies) and S′(z−1) and R′(z−1) are, in the present context,
solutions of the Bezout equation:

P = (A ·HS) ·S′+
(

z−dB ·HR

)
·R′. (10)

In Eq. (10), P(z−1) represents the characteristic polynomial,
which specifies the desired closed loop poles of the system.

The transfer functions between the disturbance p(t) and
the system’s output y(t) and the control input u(t), denoted
respectively output sensitivity and input sensitivity functions,
are given by

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(11)

and

Sup(z−1) =−A(z−1)R(z−1)

P(z−1)
, (12)

IV. SYSTEM IDENTIFICATION

The design of the active noise control requires the knowl-
edge of the dynamic model of the compensator system (the
secondary path). This model will be obtained by system
identification from experimental data (see [6], [17]).

2The disturbance passes through the primary path, and p(t) is its output.

For design and application reasons (the objective is to re-
ject tonal disturbances up to 400 Hz), the sampling frequency
was selected as fs = 2500Hz (Ts = 0.0004s) i.e. approxi-
matively 6 times the maximum frequency to attenuate, in
accordance with recommendation given in [6].

The characteristics of the Pseudo Random Binary Se-
quences (PRBS) used as excitation signal are: magnitude =
0.15V, register length= 17, frequency divider of 1, sequence
length: 217− 1 = 131,071 samples, guaranteeing a uniform
power spectrum from about 70 Hz to 1250 Hz. Since the
transfer functions have a double differentiator behavior (in-
put: speaker’s coil position, output: acoustic pressure), this
is considered as a system’s known part and the objective
is to identify the unknown part only. To do this, the input
sequence is filtered by a double discrete-time differentiator
DF = (1− q−1)2 such that u′(t) = DF · u(t). The double
differentiator will be concatenated with the identified model
of the unknown part in the final models.

The next step in the identification procedure is the esti-
mation of the order n of the model from the experimental
data. The method of Duong ([6], [18]) has been used. Once
an estimated order n̂ is selected, one can apply a similar
procedure to estimate n̂A, n̂− d̂, and n̂B′ + d̂, from which
n̂A, n̂B′ and d̂ are obtained. The estimated order n is selected
as the value which minimizes a certain criterion. The value
of n̂ = 36 has been obtained but since the minimum was
relatively flat, nearby values have also been considered. The
final selection has been done by checking what order allows
1) to capture all the oscillatory modes in the model 2) to
lead to the best statistical validation once the parameters are
identified. Finally a model with an estimated order n = 40
which led to nA = 38,n′B = 30 and d = 8 has been chosen.

Comparative parameter estimation considering various
plant+noise models and estimation algorithms led to the
conclusion that an ARMAX model representation is the most
appropriate for this system and the best results in terms
of statistical validation (whiteness test on he residual eror)
have been obtained using the Output error with extended
prediction model (termed OEEPM or XOLOE). See [6] for
the detail of the methodology. Therefore the OEEPM model
nA = 38,n′B = 30 and d = 8 has been chosen. It has 18
oscillatory modes with damping comprised between 0.0097
and 0.3129. It has also 13 pairs of stable and unstable
oscillatory zeros with damping comprised between −0.0159
and 0.5438. The very low damped complex zeros and the
unstable zeros are located in the frequency domain over
500 Hz. The presence of these low damped zeros make the
control system’s design difficult. Fig. 4 gives the frequency
characteristics of the identified complete models for the
primary and secondary paths3.

V. ROBUST CONTROL DESIGN

Control specifications

The controller is designed to attenuate frequencies around
170Hz and 285Hz, with a ±5Hz tolerance. Attenuation must

3Primary path model has been identified using the same procedure. This
model is used for simulations only
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Fig. 4. Frequency characteristics of the identified primary and secondary
paths models

be at least of −18dB in these regions and any undesired
amplification should be less that 6dB. Also since the gain
of the model is low over 600Hz, and very low damped
complex zeros are present in high frequencies, the magnitude
of the input sensitivity function should be below −20dB
at frequencies over 600Hz (in order to improve robustness
with respect to additive uncertainties and avoid unnecessary
control effort)

In addition, the controller’s gain should be zero at 0Hz
since the plant does not have gain at zero frequency and the
controller’s gain should be zero also at the Nyquist frequency
(0.5 fs), for robustness reasons (the unstable zeros are close to
0.5 fS). These control specifications will be achieved through
the sensitivity functions’ shaping.

Design procedure

To achieve the constraints at 0 Hz and at 0.5 fs a fixed part
(HR)

4 is introduced in the controller:

HR(q−1) = (1−q−1)(1+q−1) = 1−q−2, (13)

The use of auxiliary poles is done such that the character-
istic polynomial takes the form

P(z−1) = PD(z−1) ·PF(z−1), (14)

where PD are the dominant poles corresponding to the poles
of the identified dynamic model, and PF are the auxiliary
poles determined by the design requirements.

It is shown in [6] that a very accurate shaping of the output
or the input sensitivity functions can be obtained by the use

of 2nd order band-stop filters (BSF) of the form:
HSi (z

−1)

PFSi (z
−1)

and respectively
HRi (z

−1)

PFRi (z
−1)

. Depending on whether the filter
is designed for shaping the output or the input sensitivity
function, the numerator of the discretized filter is included in
the fixed part of the controller denominator HS0 or numerator
HR0 , respectively. The filter denominator is always included

4HRi ,HSi ,PFRi ,PFSi will denote any given controller’s fixed part.
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Fig. 6. Robust controller’s output sensitivity function evolution, zoom.

in the closed loop characteristic polynomial. As such, the
filter denominator influences the design of the controller
indirectly in the computation of S′ and R′ as solutions of
the Bezout equation (10).

The steps for the linear controller’s design are:
1) include all (stable) secondary path poles in the closed

loop characteristic polynomial.
2) open the loop at 0 Hz and at 1250 Hz by setting the

fixed part of the controller numerator as in Eq. (13).
3) 9 BSF on Syp have been used around each of the

frequencies where attenuation is desired in order to
assure the desired attenuation within ±5 Hz.

4) 8 BSF have been used on Sup to reduce its magnitude
above 600 Hz.

5) to improve robustness 17 auxiliary real poles located at
0.17 have been added to the characteristic polynomial.

Figure 5 shows the characteristics of the output sensitivity
function. The effect of auxiliary poles is illustrated. A zoom
of the final characteristics is shown in Figure 6 5.

VI. ADAPTIVE CONTROL DESIGN

The adaptive approach uses the Youla-Kučera parametriza-
tion of the controller combined with the Internal Model
Principle. The basic reference for this approach used in active
vibration control is [6].

5The models and the robust controller can be downloaded from: http:
//www.gipsa-lab.fr/~raul.melendez/



A key aspect of this methodology is the use of the
Internal Model Principle (IMP). It is supposed that p(t) is a
deterministic disturbance given by

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (15)

where δ (t) is a Dirac impulse and Np, Dp are coprime
polynomials of degrees nNp and nDp , respectively. In the case
of stationary narrow-band disturbances, the roots of Dp(z−1)
are on the unit circle.

Internal Model Principle [19]: The effect of the distur-
bance (15) upon the output

y(t) =
A(q−1)S(q−1)

P(q−1)
· Np(q−1)

Dp(q−1)
·δ (t), (16)

where Dp(z−1) is a polynomial with roots on the unit circle
and P(z−1) is an asymptotically stable polynomial, converges
asymptotically towards zero iff the polynomial S(z−1) in the
RS controller has the form (based on Eq. (9))

S(z−1) = Dp(z−1)HS0(z
−1)S′(z−1). (17)

Thus, the pre-specified part of S(z−1) should be chosen as
HS(z−1) = Dp(z−1)HS0(z

−1) and the controller is computed
solving

P = ADpHS0S′+ z−dBHR0R′, (18)

where P, Dp, A, B, HR0 , HS0 and d are given6.
To build a direct adaptive controller, the Youla-Kučera
parametrization of the controller is used. In the context of
this paper, one considers a finite impulse response (FIR) filter
of the form:

Q(z−1) = q0 +q1z−1 + · · ·+qnQz−nQ , (19)

to which is associated the vector of parameters:

θ = [q0 q1 . . .qnQ ]
T . (20)

Under Youla-Kučera parametrization or Q-parametrization,
the equivalent polynomials R(z−1) and S(z−1) of the con-
troller K(q−1) take the form

R(q−1) = R0 +A ·Q ·HS0 ·HR0 (21)

S(q−1) = S0−q−dB ·Q ·HS0 ·HR0 , (22)

with

R0(z−1) = r0
0 + r0

1z−1 + . . .+ r0
nR

z−nR0 = R′0 ·HR0 (23)

S0(z−1) = 1+ s0
1z−1 + . . .+ s0

nS
z−nS0 = S′0 ·HS0 , (24)

where A, B and d correspond to the identified model of the
secondary path, R0(z−1), S0(z−1) are the central controller’s
polynomials, and HS0 , HR0 are the controller’s fixed parts7.

Using the output sensitivity function, the expression of the
output can be written as:

6Of course, it is assumed that Dp and B do not have common factors.
7Under YK parametrization using a FIR structure for the Q filter, the

closed loop poles defined by the central controller remain unchanged.

y(t) =
S0

P
·w(t)−Q · q

−dBHS0HR0

P
·w(t), (25)

with
w(t) = A · y(t)−q−dB ·u(t) = A · p(t) (26)

as a disturbance’s observer. The objective is to find a value
of Q such that y(t) is driven to zero.

A block diagram of the adaptive scheme is given in Fig.
7.

Fig. 7. Adaptive Youla-Kučera parametrization scheme.

The estimation of the polynomial Q at time t is denoted:

Q̂(t,q−1) = q̂0(t)+ q̂1(t)q−1 + · · ·+ q̂nQ(t)q
−nQ (27)

and is characterized by the parameter vector 8

θ̂
T (t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)], (28)

Since this is a regulation problem, y(t) is expected to go
towards zero and as such, it is an a priori adaptation error
denoted ε0(t+1) for a given estimated polynomial Q̂(t,q−1):

ε
0(t +1) =

S0

P
·w(t +1)− Q̂(t)

q−dB∗HS0HR0

P
·w(t), (29)

with B(q−1)= q−1 ·B∗(q−1) . In a similar way, one can define
an a posteriori error as:

ε(t +1) =
S0

P
·w(t +1)− Q̂(t +1)

q−dB∗HS0HR0

P
·w(t), (30)

which can be further expressed as

ε(t +1) = [Q− Q̂(t +1)] · q
−dB∗HS0HR0

P
·w(t)+η(t +1)

(31)
where Q is the unknown optimal filter, and η(t) tends
asymptotically towards zero (see [20] for details).

Denoting filtered versions of the observer output w(t) as

w1(t) =
S0(q−1)

P(q−1)
·w(t) (32)

w2(t) =
q−dB∗HR0HS0

P
·w(t) (33)

8The order of the polynomial Q̂ is related to the order of the denominator
of the model of the disturbance nDp as nQ̂ = nDp −1.



and
ϕ

T (t) = [w2(t) w2(t−1) . . .w2(t−nQ)], (34)

Eq. (31) can be rewritten as:

ε(t +1) = [θ T − θ̂
T (t +1)] ·ϕ(t)+η(t +1). (35)

where η goes to zero. This type of equation allows immedi-
ately to develop an adaptation algorithm (see [20]):

θ̂(t +1) = θ̂(t)+F(t)ϕ(t)ε(t +1) (36)

ε(t +1) =
ε0(t +1)

1+ϕT (t)F(t)ϕ(t)
(37)

ε
0(t +1) = w1(t +1)− θ̂

T (t)ϕ(t). (38)

F(t +1) =
1

λ1(t)

F(t)− F(t)ϕ(t)ϕT (t)F(t)
λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)

 (39)

0 < λ1(t)≤ 1 ; 0≤ λ2(t)< 2 ; F(0)> 0 (40)

where λ1 and λ2 allow to obtain different profiles for the
evolution of the adaptation gain F(t). Finally the control to
be applied is given by

S0 ·u(t+1)=−R0 ·y(t+1)−HR0HS0Q̂(t+1) ·w(t+1). (41)

For the stability analysis of this algorithm, see [20].
In adaptive regulation applications, one uses in general

the constant trace algorithm. In this case, λ1(t) and λ2(t)
are automatically chosen at each step in order to ensure
a constant trace of the gain matrix (constant sum of the
diagonal terms):

trF(t +1) = trF(t) = trF(0) = nGI (42)

in which n is the number of parameters and GI the initial
adaptation gain. The matrix F(0) has the form:

F(0) =

 GI 0
. . .

0 GI

 (43)

The values of λ1(t) and λ2(t) at each sampling instant are
determined from the equation:

trF(t +1) =
1

λ1(t)
tr
[

F(t)− F(t)φ(t)φ T (t)F(t)
α(t)+φ T (t)F(t)φ(t)

]
(44)

fixing the ratio α(t) = λ1(t)/λ2(t). This algorithm can be
combined with the decreasing adaptation gain algorithm or
with the variable forgetting factor algorithm for initialization
[6]. One switches to the constant trace algorithm when the
trace of the adaptation gain becomes equal or smaller than
the assigned constant trace. Algorithms with constant scalar
gain can be also implemented (F(t)=F(0)) but the results will
be less good.

This scheme is implemented on top of the central con-
troller which corresponds to the robust controller designed
in Section V from which the BSF filters on Syp have been
removed (preserving however the characteristics of Sup in
high frequencies over 600 Hz for robustness reasons).

VII. EXPERIMENTAL RESULTS

The robust controller and the adaptive controller have been
tested on the experimental set-up described in Section II
under several protocols.

A. Interference test

The protocol is as follows: for 1s, the system operates
in open loop and without any disturbance in order to get a
reference for the ambient noise. From 1s to 10s, the test
bench works in open loop, in the presence of two pairs of
sinusoidal noise disturbances located at 170Hz and 170.5Hz
and 285Hz and 285.5Hz respectively. At 10s, the loop is
closed and the controller begins to counteract the disturbance
effect. The frequencies of the four signals are then increased
at 21s by 10Hz. The corresponding new values are 180Hz
and 180.5Hz for the first pair and 295Hz and 295.5Hz for
the second pair (leaving the attenuation regions of the robust
controller).

Fig. 8 shows the robust controller’s performance for the
interference experiment. As long as the disturbance fre-
quencies are in the region of designed operation, a global
attenuation of 39.86dB is obtained (between 10s and 21s).
After 21s, since the frequencies of the disturbances are
outside the region of designed operation, the performance is
unsatisfactory achieving a global attenuation of only 7.94dB.
9.
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Fig. 8. Acoustic interference attenuation using a robust controller.
Noise frequencies: 170+170.5 Hz, 285+285.5 Hz then 180+180.5 Hz,
295+295.5 Hz. Loop closed at 10 s.

Fig. 9 presents the results for a similar test using the adap-
tive controller. The number of adjustable parameters in the Q-
filter is 4 (nQ = 3) and an adaptation algorithm with constant
trace adaptation gain is used. The trace of the adaptation
gain used was: trF = 0.03 · (nQ+1). It can be seen that after
a negligible transient, a much better attenuation is obtained
with respect to the robust controller between 10s and 21s.
The global attenuation obtained is 70.56dB. Excellent levels
of attenuation are also obtained once the disturbances fre-
quencies move away by 10Hz (global attenuation 67.65dB),
with a negligible adaptation transient10. Fig. 10 displays the

9Audio files available at http://www.gipsa-lab.fr/~raul.melendez/.
10Using nQ = 7 (8 adjustable parameters) does not improve the perfor-

mance



evolution of each Q-parameter with respect to time. From 0s
to 10s, all the parameters have values equal to zero since
the controller is not working yet. Once the loop is closed,
the Q-parameters take almost instantly stable mean values.
At 21s, the change in frequencies leads to a quick adaptation
towards the new values.
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Fig. 9. Acoustic interference attenuation using an adaptive controller.
Noise frequencies:170+170.5 Hz, 285+285.5 Hz then 180+180.5 Hz,
295+295.5 Hz. Loop closed at 10 s.
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Fig. 10. Parameters evolution for acoustic interference test using an adaptive
controller.

B. Sinusoidal disturbances with continuously time- varying
frequency

In this experiment, a couple of tonal noise disturbances
located at 160 Hz and 275 Hz are first applied to the system
from 1 s to 6 s. Then, their frequencies linearly increase till
they reach the values of 180 Hz and 295 Hz correspondingly
at 27 s, after which their frequencies remain constant.

Fig. 11 displays a comparison between the system’s resid-
ual noise when it is operated in open loop and in closed loop
using the robust controller. As the frequencies move within
the designed attenuation regions, a significant attenuation is
obtained. However outside this zone, the performance is not
satisfactory. Correspondingly, Fig. 12 displays the residual
noise in open loop operation and with the adaptive controller.
The levels of attenuation achieved are globally much better.
The residual noise is comparable with the ambient noise
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Fig. 11. Residual noise in open loop (green) and closed loop (blue) using
a robust controller under the effect of tonal disturbances with variable
frequencies.

measured between 0s and 1s. The evolution of the parameters
is shown in Fig. 13.
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Fig. 12. Residual noise in open loop (green) and closed loop (blue) using
an adaptive controller under the effect of tonal disturbances with variable
frequencies.
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Fig. 13. Evolution of the controller parameters under the effect of tonal
disturbances with variable frequency

C. Step changes in frequencies

In this experiment, step changes in the frequencies of a
pair of tonal noise disturbances are considered, starting from
their nominal values of 170Hz and 285Hz. The steps are of
±10Hz and applied every 6.2s. The system is operated in
open loop from 0s to 1s. Fig. 14 displays the robust controller



performance. When the disturbances’ frequencies are inside
the attenuation region of the controller, the attenuation is
satisfactory. However for −10Hz and +10Hz steps, since
one operates outside the designed regions of attenuation,
the performance is unsatisfactory. The performance of the
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Fig. 14. Step changes in frequencies using the robust controller. Residual
noise in open loop (green) and in closed loop (blue).

adaptive controller is illustrated in Fig. 15. The performance
is almost the same for all frequencies values and the residual
noise is close to the ambient noise. The adaptation transients
are visible but very short. The same number of adjustable
parameters and same adaptation gain as in the previous ex-
periments have been used. The evolution of the Q-parameters
is shown in Fig. 16
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Fig. 15. Step changes in frequencies using the adaptive controller. Residual
noise in open loop (green) and in closed loop (blue)..

VIII. CONCLUSION

The paper has shown that if the regions of frequency
variations of multiple tonal noise disturbances are known
and limited, an efficient robust feedback controller can be
designed. Adding an adaptation feedback loop drastically
enhances the performance of the robust controller in terms
of achieved attenuation and expansion of the regions of
attenuation in the frequency domain.
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