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Microslip Induced Damping in the Contact 
of Nominally Flat Surfaces with Geometric 
Defects

Noussa Bouchaala, Jean-Luc Dion, and Nicolas Peyret

In this chapter, a rheological contact model (the EGM) is developed in order to
quantify the energy dissipated by microslip in a jointed interface. The proposed
rheological contact model is based upon a statistical description of contact between
asperities. The key assumption for this model is that the coefficient of friction
between the nominally flat surfaces is constant and that friction is the only source of
energy dissipation. Measurements of static normal load and dynamic tangential load
without any coupling between these two directions are used to inform and guide the
model development.

19.1 Historical Perspectives on Dissipation Due

to Microsliding

For many industrial applications in which the products are designed for dynamic
solicitation (shock and vibration excitation), the vibration amplitudes of mechanical
systems are not well predicted during the design phase. The source of inaccuracy in
prediction of the vibration amplitudes is due to the lack of understanding of how to
predict the amount of energy dissipated by an interface. Current approaches require
that models be calibrated from measurements of existing systems, which precludes
the prediction of the response of a system before it is fabricated for the first time.
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Thus, the ultimate goal of joints modeling is to predict the dynamic properties
(mode shapes, natural frequencies, and damping in particular) of a jointed system
accurately.

19.1.1 Sources of Energy Dissipation

The sources of damping in assembled structures are classified into two categories:
material damping (which is often low) and damping in joints (which is more
difficult to quantify due to its dependence on vibration level). Material damping,
while difficult to model in inelastic solids, is typically low and easily modeled
in engineering metals, which are the primary material of concern in this work.
Damping due to joints, however, is significantly more difficult to model due to the
complex interactions that occur at the interface surfaces (including wear, plasticity,
etc.). Consequently, the measurement and prediction of damping in joints is an
active research area (Le Loch 2003; Caignot et al. 2005).

In assembled structures, the damping is due to both macroslip (Berthillier et al.
1998; Poudou and Pierre 2003) (i.e., the bulk movement of the entire interface)
and microslip (Goodman and Klumpp 1956; Beards and Williams 1977) (i.e., the
relative motion of sub-elements of the interface). In order to study the damping due
to both microslip and macroslip, a number of different experimental setups have
been developed (see, for instance, Chap. 5). One experimental setup, in particular,
is a clamped beam with a longitudinal interface (see Goodman and Klumpp 1956
and Fig. 19.1).

19.1.2 Perspectives on Dissipation Due to Microslip

Contact between two bodies, either in motion or stationary, is a phenomenon that all
interacting parts of a mechanism are subjected to. Regardless of the condition of the
surface finish (whether cut, or polished to a mirror-like smoothness), contact at the
nano- and microscale is rough. Often, a relative movement between the elements in
contact occurs producing microslip at the interface of contact. Such slip should be
well studied to evaluate frictional forces induced on the surface. Thus, the relative
motion at the interface of a contact is a source of friction that is dependent upon
the area of contact engaged in microslip, which plays an important role in energy
dissipation.

As the adhesion area and microslip zone are not well known a priori, it should be
obtained from experiments. This kind of problem is referred to in the literature as
incipient sliding or quasi-static contact. The problem with partial slip was addressed
for the first time by Cattaneo (1938). Cattaneo considers the case of quasi-static
contact of two spheres with the same elastic properties, loaded normally and
tangentially. In the absence of microslip, Cattaneo shows that the tangential force
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Fig. 19.1 A press-fit joint subjected to a clamping pressure p and a vertical shear load F. (a) A
bolted structure—A free-free beam with a lap joint subjected to an axial load F. (b) A press-fit joint
subjected to a clamping pressure p and a vertical shear load F. (c) A lap-shear joint subjected to a
clamping pressure p and an axial load F

is expected to generate an infinite tangential traction along the contact, which is
physically inadmissible. So under the action of a tangential force, even very small,
microslip is inevitable at the contact edges. Cattaneo assumes that the tangential
force is equal to the normal force multiplied by the coefficient of friction, and the
elliptical contact area is divided into two parts:

• Elliptical central area in which there is no relative movement between surfaces
and where the tangential traction (tension) q.x/ satisfies the equation q.x/ <

�p.x/

• An annular-elliptical zone of microslip where q.x/ D �p.x/

This decomposition leads to a tangential traction q, shown in Fig. 19.2.
Building on the results of Cattaneo (1938), Mindlin investigated the compliance

of two perfectly smooth elastic spheres, loaded normally and tangentially (Mindlin
1949). Mindlin determined the distribution of tangential tractions (Fig. 19.3) assum-
ing that both bodies have the same geometry and elastic properties. The results from
both (Cattaneo 1938; Mindlin 1949) serve as a basis for modeling the contact of
asperities.
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Fig. 19.2 Partial slip
distribution of tangential
traction by Cattaneo (1938)
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19.1.3 Contact of Asperities

For contact between rough surfaces, Greenwood and Williamson (1966) proposed a
rough model, using several assumptions including:

• The asperities are spherical, with the same mean curvature � at the top.
• Asperities are sufficiently far apart to behave independently.
• The heights of asperities follow a probability distribution '.yi/.
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• Individual behavior of each asperity can be described by the Hertz theory (Hertz
1882; Johnson 1985).

This statistical representation for contact along an interface has been extensively
developed over the last 50 years (for instance, see the review presented in Chap. 18).
In what follows, this branch of contact modeling is further extended to study the
energy dissipation within a jointed interface.

Therefore, the aim of this chapter is to quantify the dissipated energy by
microsliding using both experimental and model based approaches. In Sect. 19.2,
the experimental procedure is presented and experimental results are discussed.
In Sect. 19.3, a mathematical model is developed considering the hypotheses of
Greenwood and Williamson (1966) for the contact between two nominally flat
surfaces. The energy dissipated and the damping ratio are determined in Sect. 19.4.
Numerical results are presented, discussed, and compared with those obtained
experimentally.

19.2 Tribometer and Measurements

19.2.1 Tribometer Set

In order to perform accurate measurements, a tribometer with a hydraulic actuator
is used. This kind of tribometer is described in Dion et al. (2009). The test fixture
allows uncoupling normal and tangential loads over a wide frequency bandwidth to
ensure good quality of measurements and test conditions (Fig. 19.4). This tribometer
allows obtaining at 200 Hz and 1–100 �m displacement range, inducing a 1.2–
120 mm/s velocity range.

Fig. 19.4 Global description of the tribometer
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Fig. 19.5 The sample in
allied aluminum Al 2017
machined by milling

The studied surface (approximately 2 cm2) is a small planar contact (Fig. 19.4).
The normal static load Fn varies between 100 and 5000 N while the tangential load
Ft is dynamic and varies between �5000 N and +5000 N. The studied samples
shown in Fig. 19.5 are in allied aluminum Al 2017 machined by milling. For this
sample, the roughness Ra is lower than 0.4 µm and the flatness error is lower
than 0.02 mm (see Fig. 19.6). The effective contact area (measured after the test)
is estimated to 10% of the apparent contact area with 2000 N normal load. For
all the tests, the hydraulic jack movements are displacement controlled with the
feedback signal of the internal displacement transducer (LVDT) (Fig. 19.4). Here, it
is assumed that there is no coupling between normal and tangential loads. When the
dynamic tangential load is applied, the static normal load keeps its nominal value
with a 2% maximum deviation that stems from the dynamic tangential load. The
displacement excitation is controlled and assumed to be sinusoidal. The harmonic
ratio (between the fundamental and the 3rd harmonic) is around 5% in the worst
case.

19.2.2 Experimental Result

The evolution of the normalized load T=N versus the tangential displacement is
depicted in Fig. 19.7. This type of representation is often used to show a contact’s
dissipative behavior. The area inside the curve is the dissipated energy during
microslip per cycle. The nature of the behavior (linear or not, dissipative or not) is
clearly shown through the shape of the curve. The quasi-horizontal parts of the curve
are indicative of macroslip and the oblique parts represent the tangential stiffness.
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19.3 Microcontact Model

Consider a contact between a plane and a nominally flat surface covered with a
large number of asperities. It is assumed that all asperity summits are spherical with
the same radius � and that their heights vary randomly '.yi/. Figure 19.8 shows
schematically the considered type of contact.

19.3.1 Normal Distribution of the Load on the Asperities

The contact model between an individual spherical asperity and a rigid plane is
shown in Fig. 19.9. It is assumed that the elastic proprieties of the contacting bodies
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are identical to an equivalent elastic material on a rigid plane (Greenwood and
Williamson 1966). The frictional load is parallel to the x-axis.

The behavior of an individual asperity can be derived from the Hertzian
equations. For the contact between a sphere of radius � and a rigid plane, the contact
radius ai, area Ai, and load Ni can be expressed in terms of the compliance ıni by
Greenwood and Williamson (1966), Johnson (1985)

ai D
p

�ıni (19.1)

Ai D ��ıni (19.2)

Ni D 4

3

p
�E�ı

3=2
ni : (19.3)

Here, E� is a composite modulus of elasticity given by

1

E�
D 1 � �2

1

E1

C 1 � �2
2

E2

; (19.4)

where � and E are Poisson’s ratio and Young’s modulus, with the subscripts referring
to the two bodies in contact. For a distance ın between the rigid plane and the mean
plane of the rough surface (Fig. 19.8), there will be contact at any asperity whose
height is greater than ın. Thus, the probability of contact at any given asperity of
height yi is

Prob.yi > ın/ D
Z

1

ın

'.yi/dyi: (19.5)

The total number of asperities is Na D �aSa, where �a is the density of asperities
distributed over the apparent area of contact Sa. The number of asperities in contact
is given by Greenwood and Williamson (1966)

na D Na

Z

1

ın

'.yi/dyi: (19.6)

The total contact area is expressed by

S D �Na�

Z

1

ın

.yi � ın/'.yi/dyi: (19.7)

For the compliance ıni D yi � ın (the distance over which points outside the
deforming zone move together during the deformation), the total load supported
by asperities is expressed as (Greenwood and Williamson 1966)

N D 4

3
NaE�

p
�

Z

1

ın

.yi � ın/3=2'.yi/dyi: (19.8)
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Fig. 19.10 Contact area

19.3.2 Distribution of Tangential Load on the Asperities

Consider an asperity in contact with the plane submitted first to a constant
normal force Ni then to a tangential displacement ıti. Two slip conditions can be
distinguished as partial slip and total slip in what follows.

19.3.2.1 The Partial Slip Condition

The contact area is split into a stick zone and slip zone (Fig. 19.10). The maximum
tangential force Ti max does not exceed in absolute value the product of the normal
force by the coefficient of friction Ti max < �Ni.

The stick region is the circle of radius c whose value can be found from the
magnitude of the tangential force

c

ai

D
�

1 � Ti

�Ni

�1=3

: (19.9)

The force displacement relationship for an individual asperity is given by Gallégo
(2007)

Ti D �Ni

 

1 �
�

1 � 16aiıti

3�NiG�

�3=2
!

; (19.10)

where G� is a composite shear modulus

1

G�
D 2 � �1

G1

C 2 � �2

G2

: (19.11)
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The tangential force has maximum Ti D �Ni for total slip. Correspondingly, from
Eq. (19.10), the maximum tangential deflection before the inception of sliding is

ıLi D 3

16

G��Ni

ai

: (19.12)

19.3.2.2 The Total Slip Condition

In this state, there is no area that is permanently adhered. During the cycle, the
maximum tangential force reaches the absolute product of the normal force by the
coefficient of friction Ti max D �Ni. From Johnson (1985), the solutions of a circular
contact initially charged by constant normal force P and subjected to a tangential
load Qx (Qx < �P0) oscillating between the values ˙Q� are given (see Fig. 19.11).

During unloading (between A and C), the distribution of tangential load on the
asperities is (Gallégo 2007)

Tid D 2�Ni

0

@

0

@

1

2

16aiıti

3�NiG�
C
�

1 � Ti max

�Ni

�2=3

C 1

!3=2
1

A � 1

1

A � Ti max:

(19.13)

The situation at Qx D �Q� is identical with that at Qx D Q�, except for the
reversal of sign. Hence, between (C and A) the distribution of tangential load on
the asperities then becomes (Gallégo 2007)
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Fig. 19.11 Load–displacement cycle (Johnson 1985)
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Tic D �Tid.�ı/

D �2�Ni

0

@

0

@�1

2

16a1ıti

3�NiG�
�
�

1 � Ti max

�Ni

�2=3

� 1

!3=2
1

A � 1

1

A � Ti max:

(19.14)

In Greenwood and Williamson (1966), a model based on a statistical distribution of
asperities in contact in the state of partial sliding is proposed. In order to generalize
the Greenwood model for damping in an assembly, stick, partial slip, and total
sliding have to be modeled with independent initial conditions and a standalone
set of equations for each asperity Eqs. (19.15)–(19.17).

If ıti max > ıLi (total slip), the maximum tangential force reaches the absolute
product of the normal force by the coefficient of friction Ti max D �Ni and the
asperity moves by an amount ı0 D ıti max � ıLi. Thus, Eqs. (19.10), (19.13),
and (19.14) are recast as

Ti D

8

<

:

�Ni

�

1 �
�

1 � 16aiıti

3�NiGeq

�3=2
�

; ıti < ıLi

�Ni; ıti � ıLi

(19.15)

Tid D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2�Ni
1
2

�

16ai.ıti�ı0/

3�NiGeq
C
�

1 � Ti max
�Ni

�2=3

C 1

�3=2
!

� 1

!

C Ti max;

ıti > ı0 � ıLi

��Ni; ıti � ı0 � ıLi

(19.16)

Tic D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�2�Ni � 1
2

�

16ai.ıtiCı0/

3�NiGeq
�
�

1 � Ti max
�Ni

�2=3

� 1

�3=2
!

� 1

!

� Ti max;

ıti < ıLi � ı0

��Ni; ıti � ıLi � ı0

(19.17)

Notice that this EGM allows partial slip and total sliding for two asperities in the
same interface.

19.4 Model Properties

It is assumed that the coefficient of sliding friction � between the surfaces is
constant and that dry friction is modeled by Coulomb’s law. In accordance with
experimental results, numerical simulations will be performed with the following
material data: � D 0:55 and E1 D E2 D 69 GPa.
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19.4.1 Changing Phases for a Single Asperity

In this section, an asperity in contact with the rigid plane is compressed by a constant
normal force Ni parallel to the y-axis (Fig. 19.9), to which a tangential displacement
ıti oscillating is subsequently applied.

19.4.1.1 Oscillating Tangential Displacement with a Constant Amplitude

First, an oscillating tangential displacement with a constant amplitude ˙ıti max is
considered. The contact radius and the contact area due to Ni are held constant and
as given by Hertz. Figure 19.12 shows the evolution of the tangential displacement
versus time.

The first application of ıti in a positive direction Pıti > 0 causes microslip in the
annulus c � r � ai. The tangential force is given by Eq. (19.10), and shown by the
curve OA in Fig. 19.13. Keeping the normal force constant, the tangential force is
increased from zero and the stick region decreases in size according to Eq. (19.9).

At point A in Fig. 19.12, the tangential displacement begins to decrease Pıti <

0, which is equivalent to the application of a negative increment in ıti. During
unloading, the tangential force is given by Eq. (19.13), and shown by the curve ABC
in Fig. 19.13. The slip region is then defined by Gallégo (2007)

�

c

ai

�3

D 1

2
1 C

�

c�

ai

�3
!

; (19.18)

where c� is the value of c in A.
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At point C, when the tangential displacement is completely reversed, substituting
ıti D �ıti max in Eq. (19.14) gives Tic D Ti max. Thus, original slip is covered by the
reversed slip and the state achieved is a complete reversal of that at ıti D ıti max.
Further loading leads to a series of states similar to unloading from ıti D ıti max, but
of opposite sign, as depicted by the curve CDA in Fig. 19.13.

In fact, it is shown in what follows that the effect of a tangential displacement
with a magnitude lower than the limit deflection ıLi does not give rise to a total
slip motion but, nevertheless, induces a partial slip referred to as slip or microslip.
Conversely, when ıti max > ıLi, the tangential force increases from zero to a limiting
value Ti max D �Ni, the asperity moves by an amount ı0 D ıti max � ıLi, and the
stick region dwindles to a single point at the origin resulting in the bodies being on
the verge of sliding. Taking into account Eqs. (19.15)–(19.17), the hysteretic force–
deflection relation for a contact is shown in Fig. 19.14.

Keeping Ni constant and increasing the amplitude of the tangential displacement
per iteration (Fig. 19.15a), the hysteretic force–deflection relations for a contact are
shown in Fig. 19.15b.

19.4.1.2 Oscillating Tangential Displacement with Variable Amplitude

The second case considered is the case where the tangential displacement oscillates
with variable amplitude acting along the x-direction, as shown in Fig. 19.16.

In this case, the force–deflection relationship between the relative tangential
displacement ıti of the contact surface and the corresponding tangential load in the
case of constant normal load are given by
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• During the loading between O and A ( Pıti > 0)

Ti D �Ni

 

1 �
�

1 � 16aiıti

3�NiG�

�3=2
!

: (19.19)

• During the unloading between A and B ( Pıti < 0)

Tid D 2�Ni

0

@

0

@

1

2

16aiıti

3�NiG�
C
�

1 � Ti max

�Ni

�2=3

C 1

!3=2
1

A � 1

1

AC Ti max:

(19.20)
• During the reloading between B and C ( Pıti > 0)

Tic D �2�Ni

0

@

0

@�1

2

 

16ai .ıti � ı0/

3�NiG�
�
�

1 � max jTidj
�Ni

�2=3

� 1

!3=2
1

A � 1

1

A

� max jTidj ; (19.21)

where

ı0 D ıti.B/ � �ıLi C ıLi

�

1 � max jTidj
�Ni

�2=3
!

; (19.22)

and ıti.B/ is the value of ıti in B.
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• During the unloading between C and D ( Pıti < 0)

Tid D 2�Ni

0

@

0

@

1

2

 

16ai .ıti C ı0/

3�NiG�
C
�

1 � Tic max

�Ni

�2=3

C 1

!3=2
1

A � 1

1

A

CTic max; (19.23)

with

ı0 D ıLi � ıLi

�

1 � max.Tic/

�Ni

�2=3
!

� ıti.C/; (19.24)

and ıti.C/ is the value of ıti in C.

If the limit tangential deflection ıLt (total slip) is reached, the force–
deflection relationships during unloading Tid and reloading Tic for an individual
asperity are given by Eqs. (19.16) and (19.17). According to Eqs. (19.19)–
(19.21), (19.23), (19.16), and (19.17), the corresponding hysteretic force–deflection
relations for a contact are shown in Fig. 19.17.

19.4.2 Case of N Asperities

In this section, a Gaussian (or normal) distribution of asperity heights '.yi/ is used.
Several experimental results (Greenwood and Williamson 1966) show that for many
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Fig. 19.18 (a) Normal
distribution of asperity
heights, and (b) cumulative
distribution function
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surfaces the height distribution is Gaussian to a very good approximation. The
probability density function of a Gaussian distribution (see Fig. 19.18) is given by

'.yi/ D 1

�
p

2�
e�.yi�m/2=2�2

; (19.25)

where parameter m (location of the peak) is the mean and �2 is the variance (the
measure of the width of the distribution). The cumulative distribution function
(Fig. 19.18b) is

'.yi/ D 1

2
erf

�

1p
2

yi � m

�

�

: (19.26)

The total normal load N applied to the contact between a plane and a nominally
flat surface (Fig. 19.8) can be expressed as the sum of each elementary normal load
on each asperity Ni

N D
X

Ni: (19.27)
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Fig. 19.19 Slipping behavior under tangential force T versus tangential displacement ıt

Keeping N constant, the loading cycle for the tangential displacement ıt oscillates
between ıt max and �ıt max. The total tangential force T that can be supported by Na

asperities is

T D
X

Ti: (19.28)

The evolution of total tangential force T versus tangential displacement ıt is shown
in Fig. 19.19. The shape of this curve is very similar to that obtained experimentally
(see Fig. 19.7).

19.4.3 Relations Between the Iwan, Coulomb, and Extended

Greenwood Models

In this section, N is kept constant and the total number of asperities Na in contact
with the flat surface is varied. The hysteretic force–deflection relations for a contact
are depicted in Fig. 19.20. It is interesting to mention that the variation of the total
number of asperities influences significantly the load–deflection curve, although
with an increase of the parameter Na the stiffness characteristics of the model
increase. When the number of asperities in contact increases, the EGM tends to
the Coulomb friction model. Notice that this result is different from that obtained
by the Iwan model (Segalman 2005; Argatov and Butcher 2011). The Iwan model is
based on several cells composed of a stiffness and Coulomb friction model. When
the number of cells increases, the Iwan model is close to the EGM composed with
a single asperity (Fig. 19.21).
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Fig. 19.20 Evolution of Extended Greenwood Model (EGM) against the number of asperities
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Fig. 19.21 Likeness between the Coulomb model, Iwan model, and EGM

19.4.4 Extended Greenwood Model Identification

In Fig. 19.22, the theoretical model is compared with experimental results. It is
observed that the shape of the curve obtained by the theoretical model is very similar
to that obtained experimentally.

19.4.5 Damping Ratio

This section aims to define the dissipated energy in order to compute the damping
ratio. The area enclosed by the curves Tid [Eq. (19.16)] and Tic [Eq. (19.17)]
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Fig. 19.22 The theoretical model and measured result for the material aluminum allied Al 2017

gives the energy dissipation Ed during microslip per cycle by integration over
displacement limits:

Ed D
Z ıt max

�ıt max

Tic � Tiddıt: (19.29)

The curve in Fig. 19.23 shows the evolution of dissipated energy Ed as a function of
the tangential displacement ıt. The energy dissipated by the friction increases as the
magnitude of the tangential displacement increases. It can thus be concluded that
the dissipated energy depends strongly on the amplitude of the displacement. This
dependence induces nonlinear effects, which are shown clearly in Fig. 19.23 by the
fact that the curve is parabolic.

The damping ratio � can be defined by the ratio between the dissipated energy
Ed and the supplied energy Es

� D 4

�

Ed

Es

; (19.30)

where Es D 4ıt maxTmax. Figure 19.24 shows the evolution of � as a function of the
tangential displacement ıt.

It is noticed that the damping ratio increases as the tangential displacement
increases. Figure 19.24 also shows the nonlinear character of this evolution.
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Fig. 19.24 Damping ratio as a function of tangential displacement

19.5 Summary of the Extended Greenwood Model

In this chapter, an extension of the Greenwood model is proposed (the Extended
Greenwood Model, EGM) that is based on a statistical distribution of asperities
in contact between two assembled parts. These micro-contacts produce a damping
effect in both total sliding and partial sliding. This new model is studied and
identified with experimental results. The numerical results show that for a cyclic
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tangential displacement, the dissipated energy increases with the tangential dis-
placement. The shape of the hysteretic force–deflection for a contact is very similar
to that obtained experimentally.
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