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Thibault Julliand, Vincent Nozick, Isao Echizen and Hugues Talbot *
September 14, 2017

Abstract

In digital image forensics, the detection of exogenous elements in an
image is a difficult open problem, and several ways to solve it have already
been proposed. In this paper, we use differences in the intrinsic noise in
digital images to highlight this type of forgery. Our method analyses an
histogram based on the noise density function at the local level in order to
reveal suspicious areas, by using a new tool exploiting the uniform prop-
erty of the Gaussian noise contained in JPEG images. Although the use
of noise discrepancies to detect splicing has already been done multiple
times, most existing methods tend to perform poorly on the current gen-
eration of high quality images, with high resolution and low noise. The
improvements of our method over other state of the art approaches is
demonstrated on a large set of randomly spliced natural images.

Index terms— Image forgery, noise, digital image forensics.

1 Introduction

Over the last two decades, the number of digital images have greatly increased,
due to the popularization of digital cameras and the introduction of smart-
phones. As such, they form the vast majority of the pictures one can encounter
nowadays. This increase has been accompanied by a rise in the number of image-
altering tools such as Photoshop or GIMP, and consequently in the quantity of
altered or outright falsified images. Digital image forensics was then developed
with the goal to determine the authenticity of digital images [9, 31]. Several
families of falsification exist, the two more common being the copy-rotate-move
(or endogenous insertion) [7], which consists in duplicating areas of an image to
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add or conceal elements, and the splicing (or exogenous insertion) [27], in which
part of an image is inserted in a second, different image.

In this paper, we present a new method to detect splicing in digital images.
While a considerable number of algorithms exploiting various elements of the
information conveyed in the image already exists, only a small fraction uses the
noise in the image. Our method exploits the statistical properties of the noise
density function and is based on the assumption that the inherent noise in im-
ages is different enough from one image to the other that their density functions
differ. We also presume that at least one of the images is otherwise unaltered.
This paper first presents a brief overview of the various approaches used to de-
tect alterations in digital images. We then address the subject of noise density
histogram, and its transformation to a noise contribution histogram. The next
part introduces the concept of noise contribution down-projection, which is the
core of our method. The following section shows how to use this new tool to
detect splicing, accompanied by several pre- and post-processing steps. The
tests are performed on a large database of real-world images, randomly spliced
into each other. Finally, we expose our results and compare them to other
state-of-the-art methods.

2 Digital Image Splicing Detection

2.1 General splicing detection

Many ways of detecting image splicing have already been proposed, which can be
classified into a few broad categories. The first one is format-dependent, mainly
exploiting the particularities of the JPEG format: the JPEG ghost detection
developed by Farid [10] is based on detecting traces of the original compres-
sion quality, while the JPEG quantization analysis by Popescu et al. [29], He et
al. [15], and Lin et al [23] tries to detect different rates of compression through-
out the image. Double JPEG compression, such as proposed by Huang et al. [17]
doesn’t specifically target splicing, but can still be used in this optic. A second
category is based on the use of the Color Filter Array (CFA), such as presented
by Popescu and Farid [30], Gallagher and Chen [12], or Ferrara et al. [11]. These
three methods use irregularities in the expected CFA interpolation pattern to
highlight suspicious areas in the image. A third approach is based on machine
learning and statistical analysis, such as presented by Bayram et al. [1], Fu et
al. [4], or Han et al.[14]. The fourth category exploits geometrical and light-
ing informations, as shown by Johnson and Farid [18, 19] or Chennamma and
Rangarajan [5], sometimes associating it with machine learning by Wang et
al. [33], or using context clues in the image like Brogan et al. [2]. Finally, a set
of methods uses noise image analysis.



2.2 Noise-based approaches

Noise is inherent to the image acquisition process, and is subjected to many
alterations and transformations from the moment the light is captured on the
sensors up to the point where a JPEG file is recorded on storage media [21].
However, it can be safely assumed that the overall noise will be consistent inside
of a single image, and is dependent on the camera model, the lighting conditions,
shutter speed, etc. It can be induced that the noise in two different images will
tend to differ somewhat, and as such a variation of noise parameters in a spe-
cific zone of a single image is a strong indicator of alteration or splicing. Several
approaches have started to exploit this. Lukds et al. [24] and Chierchia et al. [6]
use the Photo-Response Non Uniformity (PRNU), a type of fingerprint noise
which is unique to each camera. However, it requires the possession of either
several pictures taken by the camera, or the camera itself for identification pur-
poses. Moreover, this type of noise is increasingly corrected for by the camera
manufacturer. Mahdian and Saic [25] use a local analysis of wavelet decompo-
sition to estimate the noise variance and highlight inconsistencies. He et al. [16]
use a L1-norm error function followed by a clustering to detect splicings. Zeng
et al. [34] perform a PCA-based block noise estimation to separate the image
in two regions according to their level of noise. Julliand et al. [20] use block-
based differentiation on the noise probability density function. However, their
approach only works on RAW images. In this paper, we present an adaptation
of the latter method to JPEG images.

2.3 Denoising

The first step of our method is to denoise the image. Authors in [20], following
a similar approach, use the denoising algorithm proposed by Dabov et al. [8].
Although extremely effective on RAW images, this denoiser is designed for 16-
bit images and relies on a Poisson-Gaussian model for the noise. As our method
is to be applied on 8-bit JPEG images, and since in other works [21] we have
shown that the noise of those images can be considered as a zero-mean Additive
White Gaussian Noise (AWGN), we consider two state-of-the art denoisers:
the non-local means method implemented by Buades et al. [3], and the BM3D
implementation by Lebrun [22]. Although both methods give comparatively
similar results, the approach by Buades et al. is faster, so we use that one in
our experiments.

3 Noise Density Function Models

As explained in Sec. 2.2, the noise in a single image can be assumed to follow
a single noise probability density function. As such, it is expected that noise in
a spliced image can be divided in two parts: the noise from the original image,
and the noise from the spliced element, as shown in Fig. 1. Although the overall
noise probability density function should not be altered much if the size of the



spliced element is small compared to that of the image, a local analysis of this
function may allow a differentiation between the two parts.

t
N

Figure 1: The noise density function in a spliced image remains Gaussian-like,
and is the sum of two Gaussian functions.

3.1 Noise density histogram

The noise density histogram of a discrete signal is a representation of the prob-
ability density function of the noise contained in the signal. In our method, we
build the noise density histogram based on the original image Ip and its denoised
version Ip. As such, each pixel location p of the image is assigned a pair of val-
ues, v,(p) and vg(p), corresponding to its original noised value and denoised
value respectively. Then, the value of the noise density histogram H at any
point (Z, j) is the number of pixels respecting the condition (v, (p), va(p)) = (4, 7)
or, more formally:

H(i,j) = card P ;, P ; = {p | vn(p) = i and vq(p) :j}

However, for the histogram to be representative of a probability density function,
each column j (denoised value) needs to be be normalized with a normalizing
constant Cj, where C; = cardp | va(p) = j.

If we assume an image with an equipartition of values, i.e. each possible
intensity is represented by an equal number of pixels, and add a perfect AWGN
of standard deviation o, then the noise density histogram can be modeled as the
basic Gaussian probability density shown in Fig.2. In this situation, we expect
the value of the normalized histogram to be roughly equal to the equivalent
Gaussian probability density:




Fig. 3 depicts the noise density histogram computed on a real JPEG image,
from Algo. 1. It can be seen that the comportment of the extremities of the
histogram differs from the rest, which is due to the saturation of the noise. In
our experiments, we ignore those two extremes.

Algorithm 1: Global density histogram generation

Input: original image: Ip
denoised image: Ip
Output: global density histogram: H

=

// init the histogram
H il1(0)

3 // £ill the histogram
4 for p € Ip do
5 L Increment(H (Io(p), Ip(p)))

6 // normalize the histogram
7 foreach column c of H do
8 L normalize(c) such ), H(c,i) =1

N

3.2 Noise contribution histogram

A noise contribution histogram represents the contribution of a subimage to
the noise density histogram of the whole image. A value at any point in the
histogram can be interpreted as the number of pixels fulfilling the values con-
dition of this point contained in the subimage, divided by the number of pixels
fulfilling this same condition contained in the full image. As such, it is an
element-wise division of the noise density histogram of the subimage by the
global noise density histogram, both non-normalized. More formally:

Hyp (Uda Un)

Him(vd7 Un) ’ V(Ud’ Un)

Csub (Uda Un) =

The contribution histogram values are upper-bounded by 1, indicating that all
the pixels couple values (vg, v, ) are contained in the subimage. The sum of the
contribution histograms of non-overlapping subimages covering the entire image
will be an histogram with a shape resembling that of the global noise density
histogram (i.e. a gaussian noise density function), with the values all equal to 1.
The advantage of the contribution histograms is that they allow to distinguish
noises variations, even when they are small. Assuming the noise is always cen-
tered, a small change in standard deviation (<1) will not alter the width of the
distribution, but will change its overall shape, allowing differentiation as shown
in Fig. 4. An example of the noise contribution histogram of a subimage is
shown in Fig. 5.
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Figure 2: Ideal Gaussian noise density histogram. The dark line is a cross-
section along a single denoised value, and represents a 1D Gaussian distribution.

4 Noise Contribution Down-Projection

One of the main issues with the noise contribution histograms is that their in-
tensity distribution corresponds to the one of the subimage, e.g. a subimage
with a majority of dark pixels will have an histogram with values concentrated
in the lower rows and columns of the histogram. Consequently, it is hard to
compare two subimages with highly different intensity ranges, since their con-
tribution histograms will have little or no intersection. In [20], there is no real
way around that, since the noise follows a Poisson-Gaussian law and as such is
inherently spatially variant. However, when dealing with pure AWGN, we know
that the noise distribution is independent of the base intensity. As such, if we
first deskew the histogram as shown in Fig.6, so that it is centered around a
single line instead of around the diagonal identity, then histogram rows may be
interchanged freely.

The concept of noise contribution down-projection derives from this inde-
pendance. If rows can be interchanged, then it is also possible to exchange single
histogram bins between rows, if they have the same signed difference between
their noised and denoised values, e.g. exchanging the point of coordinates (51,
2) with the one in (57, 2).

The construction of a noise contribution down-projection from a noise con-
tribution histogram is as follows: first, the histogram is deskewed so that the
identity axis is along a single value O, by default the 0 axis, using this equation:

Hp(t).x = H(t).x
vie {HR(t).y — H(t)x — H(t)y

[=p}
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Figure 3: Gaussian noise density histogram obtained on a natural image with
our algorithm.

where Hpg, is the skewed histogram and .z and .y respectively represent the first
and second coordinates of a point in the histogram. Then, for each column, we
remove all bins with a content of 0 and move down the upper elements of one
histogram cell. The length of a column is then only the number of non-zero bins
originally in it, as can be seen in Fig. 7 and applied to real data in Fig. 8.

The main justification of this data manipulation is that all of the separate
contribution down-projections will have roughly the same appearance: the first
row will be the largest, and they will get progressively smaller as we progress
through. As a consequence, we will always compare the largest possible rows of a
contribution down-projection to its average contribution equivalent, as depicted
in Fig. 9.

5 Application to Splicing Detection

5.1 Tiling

In order to analyze the noise in an image Io, we first denoise it, obtaining the
denoised image Ip. As suggested in Section 4, these images are then divided
into non-overlapping square subimages of identical sizes, referred to hereafter as
tiles. The size of the tiles is an important consideration: we need enough pixels
in a tile so that their contribution down-projections are statistically significant,
but we also know that smaller tiles will yield a better resolution to pinpoint
the location of the falsification. According to our tests, a size of 64x64 pixels
provides enough statistical data, while giving a reasonable accuracy on medium
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Figure 4: Ideal shapes of various contribution histograms. Top: spliced part
with a higher standard deviation noise. Bottom: spliced part with a lower
standard deviation noise.

to wide sized images.

5.2 Average Contribution down-projection

We then build the overall noise histogram, and the noise down-projection of
each tile, using the method presented in Sec. 3. These down-projections are
what will allow us to classify our subimages. In addition, we also construct an
overall average contribution histogram (and its corresponding down-projection),
by averaging all the non-zero contributions for each point of the histogram:

>i " DPi(va, v,)

DFalvasvn) = G TDP) | DPy (o vn) £ 0)

where Ng is the number of subimages. Using all the contribution for this his-
togram (including the zero ones) would result in an flat histogram where each
point has a value of 1/Ng.

5.3 Classification of Sub-Images

For each tile, we compute the location of the maximal differences its contribu-
tion down-projection has compared to the average. Here, we consider only the
lowest row of each down-projected histogram. It is expected that the tiles from
the original image will have their maximal differences spread equitably around
the central axis, while the tiles from the spliced element will have maximal dif-
ferences either close to the axis or as far away from it as possible, depending on
whether it has more or less noise than the original image, as seen on Fig.9. The
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Figure 5: The noise contribution histogram of a subimage. The higher con-
tributions on higher noises is normal, and is useful for identifying the spliced
area.

score of a tile is then calculated based on those distances, and is obtained by
taking the average distance between its highest computed differences and the
axis.

5.4 Results Visualization Enhancements

The result given by the first process of classification, although readily usable,
can be improved with several post-processing methods. The first thing that can
be done is to apply a scaling on the results, while removing the current extreme
values. This allows the classification to extend on a wider range, while avoiding
to be misled by potential aberrant, outlier results. This normalized image is
then submitted to a double threshold, whose values were found experimentally
to give the best average results on our database, in order to improve its read-
ability by a human observer, as shown in Fig. 10. This results in an easier way
to highlight possible discrepancies on the input image by comparing it to the
threshold image. Finally, the whole method (pre-processing, main algorithm,
scaling, and thresholding) is applied on each color channel, and on the lumi-
nance channel for additional information.

5.5 Formal Algorithm

The overall pipeline is outlined in algorithm 3.



Algorithm 2: Image Classification

Input: set of contribution down-projections of each subimage: DP;
average contribution down-projection: DP,,
Output: score of each tile: score

1 foreach DP; do

2 score; =0

3 // n: number of locations used

4 for k=0ton—1do

5 (maxzDif f,maxLoc) = max(DP;(t) — DPy(t), Vt €

DP;, DP(t) #0)
DP;(maxLoc) =0
score+ = abs(maxDif f.x)

8 score; = score;/n

Algorithm 3: Method Formal Algorithm

Input: original image: Ip
Output: result image: Ir

// cf. Sec. 3

Ip = denoise(Ip)

// cf. Algo. 1

H = densityHistogramGeneration(Io, Ip)
// cf. Sec. 5.1

T = createTiles({p,Ip)

// compute the contribution for each map
foreach tile T' do

// cf. Sec 4
L DP; = contributionDPGeneration(To, Tp)

S A W N -
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// cf. Sec 5.2

DP,, = averageContributionGeneration(D P;)

// cf. Algo. 2
classifyTiles(DP;, DP,,)

10
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Figure 6: Deskewing the histogram. This is the first step before applying the

down-projection.

!
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Figure 7: The process of down-projection.

6 Preprocessing

Due to the imperfect nature of the denoiser used, several steps are undertaken
to decrease the impact of the denoising process on the final classification.

The first step is to remove the traces of JPEG blocking in both the original and
the denoised image after denoising. Indeed, the denoiser used tends to consider
the borders of the JPEG blocks as slightly more noised than the rest of the
image, and as such denoise them more strongly. Although the suppression of
the borders decreases the resolution of the image by around 43%, the removal
of this added “artificial” noise increases the precision of the classification.

The second step consists in working around the contours in the original im-
age. The denoising process has a tendancy to perform poorly around contours,
and as such a replacement/elimination process is undertaken, in function of the
amount of contour contained in a tile. We detect the contours in the image
by applying a Laplacian filter, and then dilate them to ensure they contain all
of the poorly denoised areas. Then, we check the percentage of pixels belong-

11
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Figure 8: The skewed histogram and its down-projection side by side. We see
that the down-projection is dense compared to the initial histogram.
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Figure 9: The difference in contribution down-projections between a tile in the
original image and one in the spliced element. We can see that the contributions
of the spliced elementare much farther from the central axis on average.

(a) Spliced image (b) Scaled result ) Thresholded result

Figure 10: An exemple of splicing detection.

ing to a dilated contour in each tile. If the percentage is lower than a defined
threshold, set to 60% in our experimentations, we replace the contour pixels in
the tile by random non-contour pixels also belonging to the tile. However, if
the percentage is too high, we simply flag the tile so that it is removed from
consideration for all subsequent computations. A similar process is applied to
saturated tiles, depending on their number of pixels with either too high (>250)

12



or too low (<5) intensity.

Finally, in some cases the denoiser causes noise discrepancies that can ap-
pear even in non-spliced areas of the original image. This can be corrected by
applying a linear amplification to the noise according to the image pixel inten-

sity, with a minimal impact on the spliced element. This method is detailed in
Algo. 4.

Algorithm 4: Noise preprocessing

Input: original image: Ip
noise image: Iy
Output: result noise image: Irn

=

// global scale coefficient
Zitj 10(7”])|IN(25.7)|

5. (ol ) I Gg))

2 k=

3 // new noise image using [p intensity
foreach pixel (i,7) do

[S N

7 Tests and Results

The method was tested on a set of 400 spliced images generated from 200 nat-
ural images from the Dresden dataset [13], with sizes between 2592x1944 and
3648x2736. This dataset was selected instead of the usual Columbia dataset [28]
that has become outmoded, notably in term of image size and quality. The
images used cover interior and exterior scenes, and were taken using different
brands and models of cameras. The noise standard deviation range from 0.36 to
1.4. The algorithm runs in around 1 minute for the biggest images on consumer-
grade hardware. The general results are are shown in Table 1.

Table 1: Average results in normal image condition
F1 Score | MCC

Mahdian and Saic [25] 0.133 0.110
Zeng et al. [34] 0.078 0.098
He et al. [16] 0.139 0.120
Our Method 0.203 0.178

The results are computed using the F1 score [32] and the Matthews Corre-
lation Coefficient (MCC) [26]. Indeed, although the F1 score is more frequently
employed, in our database the spliced element tends to be small compared to
the overall size of the image, usually around 1/16th of the image. As such, the

13



Table 2: Results with increased JPEG compression (using MCC)

JPEG 95 | JPEG 90 | JPEG 85 | JPEG 80
Mahdian and Saic [25] | 0.110 0.068 0.068 0.073
Zeng et al. [34] 0.098 0.099 0.105 0.116
He et al. [16] 0.120 0.124 0.134 0.119
Our Method 0.178 0.177 0.161 0.137

MCC seems to be more adapted than the F1 score which gives the same weight
to both areas, regardless of their respective sizes. This scoring method ranges
between -1 and 1, with zero being a random guess on each pixel. Addition-
ally, we ran our algorithm on a dataset of 300 artificial images, with a perfect
denoising. The noise conditions were set to replicate those of natural images
(ie, a noise standard deviation between 0.36 and 1.4, and the spliced element
having randomly more or less noise than the base image). The average MCC
on this dataset was 0.41. This shows a significant impact of imperfect denoising
on the overall efficiency of our method. As such, it is reasonable to expect an
improvement on detection capabilities as denoising methods will improve.

The difference in detection results can be seen in Fig. 11. We can note that
on the previous methods’ result images, the spliced element intensity tends to
be roughly in the middle of the image intensity range, and not in an extreme.
Consequently, an automated discrimination technique such as thresholding or
clustering would not be able to separate it from the rest of the image. In com-
parison, our approach has the spliced element in an intensity extreme (either
light or dark), and as such identifying it automatically is much easier.

Table 2 also shows that our approach is more impacted by a reduction in image
quality than other state-of-the art methods, although our results still remain
better than the alternatives. Finally, Table 3 shows that our method is also
more resistant to strong downsampling.

The two most important factors to explain the robustness of our approach
against compression and downsampling are the comparison to the global his-
togram and the post-processing enhancements. As compression and downsam-
pling are applied equally across the whole image, the differentiation between
the original pixels and the spliced is still possible, though the difference is at-
tenuated. Using the global histogram down-projection allows us to reduce the
impact that strong effects would have on small patches of the image. Although
the final difference in scores is reduced in the result images, the normaliza-
tion and thresholding applied afterwards enhances even the small variations in
score, facilitating the final discrimination. This robustness can be seen as a con-
sequence of the ability of our method to discriminate even on low-noise images.

14



Table 3: Results with downsampling (using MCC)

Normal Downsample | Downsample
conditions 75% 50%
Mahdian and Saic [25] 0.110 0.093 0.010
Zeng et al. [34] 0.098 0.099 0.102
He et al. [16] 0.120 0.095 0.072
Our Method 0.178 0.157 0.140

8 Conclusion

In this paper, we present a new approach to detect splicing in JPEG images,
based on the analysis of the noise density throughout the image. This approach
uses a new tool titled down-projection contribution histogram to compare the
contribution of a local area to the overall image noise with the average contri-
bution throughout the image, with several pre- and post-processing operations.
We have shown that our method performs better than other state of the art
approaches on a dataset extracted from the Dresden image database, using two
different metrics (the F1 score and the Matthews Correlation Coefficient). In
addition, our method has been shown to be more robust to added alterations
such as high compression or downsampling.
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