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Abstract

Exploiting the natural experiment created by an unanticipated court injunction, we evaluate

driver responses to road pricing. We �nd evidence of intertemporal substitution toward

unpriced times and spatial substitution toward unpriced roads. The e�ect on tra�c volume

varies with public transit availability. Net of these responses, Milan's pricing policy reduces

air pollution substantially, generating large welfare gains. In addition, we use long-run policy

changes to estimate price elasticities.
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1. Introduction

Growing air pollution, congestion, and accident externalities from vehicle tra�c have

produced increasing interest in policy remedies. Beijing and Mexico City bar vehicles from

their roads on some days based on their license plate numbers (Davis, 2008; Viard and Fu,

2014; Wang et al., 2014). Many German cities have created Low Emissions Zones (Wol�,

2014), which prohibit dirtier vehicles within their borders. Stockholm, London, and Milan

charge fees to enter congested downtown areas. In the US, the Department of Transportation

is currently sponsoring a large number of road pricing experiments, including San Francisco's

Golden Gate Bridge, Interstate 95 near Miami, SR520 near Seattle, and Interstate 35W near

Minneapolis (DeCorla-Souza, 2004; Xie, 2013). Economists have raised concerns over non-

price policies because behavioral responses can be so large that net policy bene�ts may be

zero, or even negative (Davis, 2008; Gallego et al., 2013). Theory suggests that road pricing

might be more e�cient (Vickrey, 1963; Arnott et al., 1993), but this prediction depends on

driver responses. On which margins do drivers respond to road pricing, and how large are

such responses?
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1 INTRODUCTION

Confounding factors typically make tra�c policies di�cult to evaluate. Drivers know the

policy start date well in advance and may begin to adjust their behavior beforehand, which

attenuates estimated e�ects. Municipalities typically increase public transit service at the

same time they implement road pricing or a driving restriction. This makes it impossible

to estimate the e�ect of the policy in isolation. For example, Eliasson et al. (2009) point

out that Stockholm expanded bus service at the same time it implemented a congestion

charge. Because the buses used for the expansion were older and dirtier, the reduction in

emissions within the charge area was muted. Milan �rst implemented a congestion charge

concurrent with, �tra�c calming measures, new bus lanes, increased bus frequency, increases

in parking restrictions and fees, and medium-term policies such as park-and-ride facilities

and underground network extensions� (Rotaris et al., 2010).

To address these identi�cation challenges, we exploit a natural experiment: in late July

2012, an Italian court unexpectedly suspended Milan's road pricing policy, called �Area

C.� The city reinstated pricing eight weeks later. Using unique tra�c data at 15-minute

resolution, our study examines behavioral responses to Milan's policy, which requires drivers

entering the city center to pay ¿5 on weekdays 7:30AM-7:30PM. Drivers respond to pricing

in two ways: 1) shifting trips to the unpriced period, just before 7:30AM or after 7:30PM;

and 2) driving around the boundary of the priced area.

Net of these behavioral responses, we �nd the Area C policy reduces vehicle entries into

the priced area by 14.5 percent and air pollution by 6 to 17 percent. The latter e�ect is

large, particularly given that the priced region is just �ve percent of Milan's land area and the

city has an unusually clean vehicle �eet. Using a well-identi�ed US estimate of willingness

to pay from Bayer et al. (2009) and scaling for income in Milan, we calculate that this

pollution reduction increases welfare by approximately $3 billion annually. Routes without

public transit experience large tra�c changes from pricing, while those with public transit

experience much smaller changes. We provide evidence that this surprising result may arise

from residential sorting: residents who live near public transit may strongly prefer public

transit. In addition, we use changes in Milan's pricing policy across the 2008-2011 and 2012

periods to estimate elasticities: city-center entries by charged vehicles decrease .3 percent in

response to a one percent price increase.

This study contributes to the empirical literature on second-best road pricing policies

(Small et al., 2005; Small and Verhoef, 2007; Xie, 2013). Closely related to our analysis

are Olszewski and Xie (2005), which analyzes the cordon charge and expressway pricing in

Singapore, Santos and Fraser (2006) and Santos (2008) on the London cordon charge, and

Eliasson et al. (2009) on the Stockholm cordon charge. These studies �nd cordon charges

do reduce tra�c within the priced area. Also related are Foreman (2013) and Small and
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Gomez-Ibanez (1998), which �nd evidence of intertemporal substitution in response to time-

varying tolls. Our work complements the theoretical literature on second-best road pricing

(Lévy-Lambert, 1968; Marchand, 1968; Verhoef et al., 1996), particularly the literature on

cordon charges (Mun et al., 2003; Verhoef, 2005). Finally, we contribute to the literature

on environmental e�ects of tra�c policies. Many such studies have found no evidence of air

quality improvements (Transport for London, 2005, 2008; Invernizzi et al., 2011). Authors

commonly attribute this to driver substitution behaviors or exploitation of policy loopholes

(Davis, 2008; Gallego et al., 2013). In important work, Wol� (2014) �nds that German Low

Emissions Zones reduce the concentration of particles with a diameter of 10 microns or less

(PM10) by approximately 9 percent; this study is particularly signi�cant given e�orts by

European cities to meet stringent air quality standards.

Our study is unique in obtaining unconfounded causal estimates of behavioral responses

to road pricing and net road pricing e�ectiveness. This is the �rst analysis to examine

removal, rather than imposition, of a tra�c policy. Other studies have used indirect measures

of tra�c (such as gasoline sales or vehicle registrations) or hourly vehicle counts, but to the

best of our knowledge ours is the �rst to combine direct, high-resolution measures of tra�c

volume with air pollution data. Finally, our �nding that the net e�ect of pricing varies with

public transit availability is novel. It contributes to the literature on public transit and air

quality (Friedman et al., 2001) and adds a new dimension to the literature on tra�c policies.

The remainder of the paper proceeds as follows. Section 2 provides policy background and

describes the natural experiment. Section 3 covers data, Section 4 describes our estimating

equations, and Section 5 discusses results. Section 6 concludes.

2. Background

Located in the center of Milan, Area C includes approximately 8.2 square kilometers (5

percent of city land area) and 77,000 residents (6 percent of population). The boundary

follows the Cerchia dei Bastioni, the route of the walls built under Spanish control in 1549.

Many of the portals still stand today, though the walls are largely gone. Figure A2 illustrates

the area.

Milan provides high levels of public transit, including four subway lines, 19 tram lines,

120 bus lines, and 4 trolley lines. Together these lines transport 700 million passengers

across 155 million kilometers per year. The 80-kilometer subway network is larger than all

other Italian subways combined (Azienda Transporti Milanesi, 2013). Public transit has a

41 percent mode share in the city, followed by cars at 30 percent, walking at 17 percent,

bicycles at 6 percent, and motorbikes at 6 percent (Martino, 2012). The average round-trip
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commute in Milan takes 53 minutes, comparable to US cities like Dallas (52 minutes), Seattle

(55 minutes), and Los Angeles (56 minutes; Toronto Board of Trade, 2011).

Milan is one of the most polluted large cities in Europe. From 2002 through 2010 the

city exceeded the EU standard for PM10 on an average of 133 days per year (Danielis et al.,

2011). Since the mid 1990s the city has experimented with tra�c policies intended to curb

its air pollution problem. Milan's �rst major road pricing program, called Ecopass, ran from

January 1, 2008 to December 31, 2011. Drivers paid a fee to enter Area C that varied with the

emissions from their vehicles. Vehicles meeting the Euro 3 standard paid nothing, while the

dirtiest diesel vehicles paid ¿10.1 The charge applied weekdays 7:30AM-7:30PM. Drivers

could pay by internet, phone, or at the bank. The city enforced the charge using license

plate-reading cameras located at the 43 entrances to Area C (Danielis et al., 2011). Drivers

who entered without paying faced �nes of ¿70-¿275 (la Repubblica, 2008). Approximately

2 percent of entering vehicles each day incurred �nes (Martino, 2012).

In June 2011 the voters of Milan overwhelmingly approved continued road pricing, with

79 percent in favor (Danielis et al., 2011).2 As of January 16, 2012, the city implemented a ¿5

congestion charge for most vehicles entering Area C weekdays 7:30AM-7:30PM. This policy

was named Area C.3 Motorcycles and public vehicles (e.g. ambulances) were exempted.4

Administrative details were largely the same as those for Ecopass. Drivers gained the option

to pay by direct debit, using a radio re�ector placed in the vehicle (similar to FasTrak or

E-ZPass in the US). Violators were �ned ¿87 (Carra, 2012).

On July 25, 2012, a court unexpectedly suspended the Area C congestion charge in

response to a lawsuit by Mediolanum Parking (Povoledo, 2012). More than ten previous

lawsuits against Ecopass and Area C had failed, so the suspension provoked surprise from the

press (Carra and Gallione, 2012). Charge enforcement halted the next day, July 26. There

was no press coverage prior to the court injunction, suggesting the decision was completely

unanticipated. The duration of the suspension was unknown and some observers believed

it would be permanent (Carra, 2012). Political forces marshaled on both sides. The mayor

declared, �We will save Area C.� Meanwhile the opposition called suspension the �death�

of Area C, �the defeat of ideological fervor and the victory of Milan's productivity and

1Vehicles built prior to imposition of EU emissions standards were prohibited from October 15 through
April 15. Drivers received a 50% discount on the �rst 50 entries and a 40% discount on the next 50 entries.
Residents of Area C were also eligible for discounts (Rotaris et al., 2010).

249 percent of voters participated. The referendum did not specify the exact form the continued program
would take.

3Vehicles classi�ed diesel Euro 3 or below, or gasoline Euro 0 or below, were prohibited. Private vehicles
over 7m long were also prohibited. Scooters, motorcycles, and alternative-fuel vehicles, including hybrids,
were exempted. Residents paid ¿2 per entry (City of Milan, 2012; Milan Tourism, 2012).

4This category includes mopeds and powered scooters.
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good sense� (Carra, 2012). The city altered neither public transit service nor parking fees

in response to the injunction. On September 6, the city announced the charge would be

reinstated as of September 17, 2012.5 For a timeline of these events, see Figure 1.

3. Data

Our tra�c data come from AMAT and the Settore Piani�cazione e Programmazione

Mobilità e Trasporto Pubblico Comune di Milano. For Area C, we have entries by vehicle type

and entry portal at 15-minute resolution, 2008-2012. There are 43 entry portals. These data

are recorded by the license plate cameras used to enforce the Area C charge. In addition, we

have counts of passing vehicles at 15-minute resolution, 2008-2012. These data are measured

by 748 buried sensors, mostly outside Area C.6 Table 1 reports descriptive statistics for both

data sets at the daily level (aggregating over sensors/cameras and 15-minute intervals).

Our pollution and weather data come from ARPA Lombardia, the provincial air quality

agency. We have pollution and weather data at the monitor level, from 2003 through Febru-

ary 2013. Measured pollutants include carbon monoxide (CO), particles 10 microns or less

in diameter (PM10), and particles 2.5 microns or less in diameter (PM2.5). CO is measured

hourly, while particulates are measured daily. There are eight pollution measurement sta-

tions in the city of Milan proper (see Figure 2), of which two are inside Area C. The number

of monitors varies by pollutant and over time, as not all stations monitor all pollutants.

Table 1 provides descriptive statistics at the monitoring station-day level. The rightmost

column includes EU pollution standards for comparison. The European Commission (EC)

has the power to levy large �nes against non-attainment cities. For example, the EC �ned

Leipzig ¿700,000 per non-attainment day for failing to meet the PM10 standard (Wol� and

Perry, 2010).

4. Estimation

To explore the e�ect of policy suspension on tra�c volume we estimate a series of equa-

tions within the following framework:

5The reinstated charge now ends at 6PM on Thursdays, rather than at 7:30PM as before (Corriere della
Sera, 2012a). Other features are unchanged.

6According to AMAT, the buried sensors are less accurate than the cameras. Neither buried sensor data
nor camera data are available prior to 2008 (the cameras had not yet been installed and activated).
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traffict = β ∗ suspensiont + λ ∗ suspensiont ∗ wkendt
+ γ̄ ∗ time FEt + θ̄ ∗ date trendt + η̄ ∗ weathert + εt (1)

The traffic variable measures either Area C entries or passing cars, over a day or a 15-

minute period, with t indexing days. The vector time FE includes �xed e�ects (FE) for

year, month, week, weekend, day of week, and holidays, plus interactions of weekend with

year. In addition, it includes dummies for the two-week interim period between Ecopass and

Area C and the interaction of the interim period with weekend.7 While the interim period is

non-random, we brie�y analyze it in Section 5.5.1. The vector date trend is a polynomial

trend in date, which controls for long-run trends not captured by our dummies for year,

month, etc.8 In our primary results below we report estimates using a 7th-degree trend,

following Davis (2008). Weather controls comprise ten-piece linear splines in temperature

and positive precipitation. We control for weather because it plausibly in�uences the choice

of public versus private transportation, or car versus motorcycle. The suspension variable

is a dummy equal to one for the period July 26, 2012 through September 16, 2012, when

the charge was suspended. The error term ε includes shocks to tra�c not captured by our

controls, for example, an unusually bad auto accident or the Pope's visit on June 2, 2012.

In this and all subsequent equations, the coe�cient of interest is β, the weekday e�ect of

charge suspension. Weekends were unpriced both under the Area C policy and during charge

suspension. Intuition suggests the weekend e�ect (β + λ) will be negative if there is some

scope for weekday-weekend substitution, zero if there is little such scope.

The key identifying assumption underlying both equation 1 and subsequent models is

the exogeneity of the suspension variable. That is, we assume that conditional on our

rich seasonal and weather controls, the timing of charge suspension is unrelated to other

determinants of tra�c volume and pollution. This is reasonable because the charge was

suspended unexpectedly by a court, as discussed in Section 2.

For the analysis of spatial substitution, we estimate two panel models at the sensor-day

level, with sensor �xed e�ects. The �rst speci�cation is as follows (s indexes sensor):

7We do not explicitly control for Ecopass because of the year dummies 2008-2011.
8The date trend is constructed as follows. We de�ne a variable t equal to one for the �rst date in our

data, two for the second date, and so on. We then control for polynomials in t.
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trafficst = β̄ ∗ suspensiont ∗ distances + λ̄ ∗ suspensiont ∗ wkendt ∗ distances

+αs + γ̄ ∗ time FEt + θ̄ ∗ date trendt + η̄ ∗ weathert + εst (2)

In equation 2 distances is a vector of dummies for sensors in several distance bins, where

distance is measured from the outside of the Area C boundary. For example, this vector

includes a dummy that equals one if a sensor is within one kilometer outside the Area C

boundary, zero otherwise. Interacting these distance dummies with the charge suspension

dummy allows us to estimate the e�ect of charge suspension both inside Area C and in

di�erent donut-shaped regions outside Area C. The second speci�cation is similar, but instead

of grouping sensors by distance, we group them into ring roads (unpriced, larger roads

encircling the priced area) and other roads (described in more detail in Section 5).

To analyze heterogeneity by public transport availability, we estimate a panel version of

equation 1 (p indexes portal), including portal �xed e�ects αp:

trafficpt = β ∗ suspensiont ∗ pubtransp + λ ∗ suspensiont ∗ pubtransp ∗ wkendt
+αp + γ̄ ∗ time FEt + θ̄ ∗ date trendt + η̄ ∗ weathert + εpt (3)

In the equation above, pubtransp is a vector containing a dummy for the presence of public

transit, and another for the absence of public transit. We also estimate versions of the

model comparing portals with and without bus, tram, and metro service.9 By interacting

these measures of public transit availability with the suspension dummy, we can identify

cross-sectional di�erences in responses to charge suspension that arise from portal-speci�c

di�erences in public transit access.

To investigate the e�ect of suspension on daily average pollution we estimate the following

equation:

9For example, a given portal will have bus equal to 1 if a bus line crosses the boundary of Area C through
that portal. This is a simpli�cation that ignores the e�ect of being near (but not on) a bus line. If the two
e�ects have the same sign, as is plausible, this speci�cation will bias us against �nding a di�erence between
portals with and without a bus line. Similarly, the tram and metro variables equal 1 only if the mode in
question passes directly through or beneath the portal in question.
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ln(avg_pollution)t = β ∗ suspensiont + λ ∗ suspensiont ∗ wkendt
+ γ̄ ∗ time FEt + θ̄ ∗ date trendt + η ∗ ln (avg_pollutiont−1) + δ̄ ∗ atmospheret + εt

(4)

The dependent variable is the log average level of a pollutant measured over a day, with t

indexing days. We conduct the analysis in logs to make the estimates for di�erent pollu-

tants more easily comparable. To avoid the endogeneity problems that arise in a dynamic

panel speci�cation, we average over monitors and estimate the model separately for each

pollutant and area of Milan.10 In order to control for the persistence of pollutants emitted

on the previous day, we include one lag of the dependent variable. The lagged pollution

variable also controls for the previous day's atmospheric conditions, avoiding the need for

functional form assumptions on lagged atmospheric variables. ARPA normalizes the pollu-

tion measurements for temperature and pressure. The vector atmosphere includes 4-knot

cubic splines in humidity, wind speed, solar radiation, and precipitation, plus a dummy for

positive precipitation. As in equation 1, our speci�cation also includes a 7th-degree trend in

date and time �xed e�ects.

5. Results

5.1. Tra�c

We �rst provide some semi-parametric evidence on the e�ect of charge suspension for

vehicle types subject to the charge (buses and motorcycles are excluded). Figure 3 plots

the residuals from equation 1, omitting the suspension variable. We �t separate degree-

zero local polynomials for the period June-July 2012 (Area C pricing), August-September

(suspension of pricing), and October-November (pricing reinstated). The graph shows a

sharp increase in weekday entries into Area C upon charge suspension, consistent with a

surprise announcement. All three �tted lines are �at; there is no evidence of a seasonal

trend in the residuals before, during, or after charge suspension. This indicates that our

time �xed e�ects, together with a polynomial trend in date, are e�ectively controlling for

seasonal patterns that might otherwise bias our estimates. There are several large positive

residuals between the Sept. 17 reinstatement of pricing and Oct. 1. This may re�ect

commuters delaying a mode switch before purchasing an October public transit pass.

10Estimation results from a dynamic panel speci�cation are available upon request. They are extremely
similar, as the asymptotic bias is of order 1/T (Nickell, 1981) and our data contain thousands of days.
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Table 2 records results from our linear model for all vehicles, charged vehicles (buses and

motorcycles excluded), motorcycles (including mopeds and scooters), and other vehicles (pri-

marily police cars and ambulances, which are exempt from the charge). Charge suspension

results in approximately 27,000 additional entries per day (14.5 percent) and the estimate

is statistically signi�cant at the one percent level. The composition of entries also changes.

Entries by charged vehicles increase by roughly 29,000 (19 percent) while entries by motor-

cycles, which are exempt from the Area C charge, fall by roughly 2,000 (92 percent). The

latter result is not statistically signi�cant. The estimate for other vehicles, predominantly

public vehicles like police cars, is small in magnitude and not statistically distinguishable

from zero at any conventional signi�cance level. This provides a placebo test, as drivers of

public vehicles are exempt and so do not face a price change from charge suspension. The

weekend e�ect of charge suspension is the sum of the estimates in the �rst and second rows.

Estimated weekend e�ects are positive but not statistically signi�cant under a zero null

hypothesis. This implies there is little scope for weekday-weekend substitution. Weekend

estimates for our subsequent models are similarly indistinguishable from zero and we omit

them for concision. We employ Newey-West standard errors to account for autocorrelation in

εt out to seven lags. Because of occasional missing data, these standard errors will be biased

slightly downward. We have also estimated our models with standard errors clustered at the

week level and the results (available upon request) are not meaningfully di�erent. Note that

the assumption of independence across clusters fails for days near the boundary of a week,

so this is not our preferred method of estimating standard errors.

Table A2 compares our estimated change in vehicle entries to results for 10 other pricing

policies. Eight �nd e�ects broadly comparable in magnitude, ranging from −3 percent to

−22 percent. These include the London (−18 percent) and Stockholm (−22 percent) cordon

charges studied by Santos (2008) and Eliasson et al. (2009), respectively. Singapore's central

Restricted Zone yields two appreciably larger estimates,−44 percent and −52 percent. Small

and Verhoef (2007) suggest this policy produced such a dramatic response because the charge

was initially set extremely high.

To examine intertemporal substitution, Figure 4 plots the coe�cients from a series of

96 regressions, with each 15-minute interval of the day modeled separately.11 The estimates

show intertemporal substitution in both the morning and the evening. Charge suspension

results in approximately 500 fewer entries (23 percent) in the 15 minutes just before the

11We use Newey-West standard errors to account for serial correlation. For most 15-minute intervals, serial
correlation falls to near zero after 7 lags. For the period 11:30PM-5:15AM, however, there are spikes in serial
correlation at 14, 21, and 35 days. We hypothesize that this results from the preponderance of public and
commercial vehicles during this window.
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charge begins at 7:30AM and just after it ends at 7:30PM. This indicates that under the

charge, drivers were shifting trips into these unpriced periods. Indeed in the morning the

negative estimates are statistically distinguishable from zero (at the 5 percent level) for the

entire hour 6:30-7:30AM. Charge suspension increases entries during the 7:30AM-7:30PM

period that is priced under the Area C policy, consistent with the daily average estimates

reported in Table 2. The increases achieve local maxima just after 7:30AM and before

7:30PM, suggesting some intertemporal substitution by commuters. The hours 9AM-3PM,

however, see roughly uniform increases in tra�c under charge suspension. This indicates

that non-commuters comprise a large share of marginal drivers.

Such a pattern of responses is the inverse of what is often called �peak spreading.� In

theory peak spreading a�ects driver welfare through two channels: 1) by reducing trip du-

ration; and 2) by rescheduling trips (Arnott et al., 1993; Lindsey and Verhoef, 2000). The

former welfare e�ect is positive, but the sign of the latter is theoretically ambiguous. Spread-

ing the peak tra�c load increases aggregate schedule delays12, but pricing better aligns trip

times with drivers' values of schedule delay (Arnott and Kraus, 1998; Lindsey and Verhoef,

2000). Because most air pollution emitted by vehicles is persistent within a day (Seinfeld

and Pandis, 2012), peak spreading may not change welfare along this dimension.

Finally we investigate spatial substitution toward roads outside Area C. Table 3 presents

results from a panel model at the sensor-day level, estimated from the buried sensor data.

Note these data measure passing cars per unit time and the resulting estimates are not

directly comparable to those from camera data. Tra�c at the average sensor increases by

469 vehicles per day (8 percent) and the estimate is statistically signi�cant at the one percent

level. This overall result conceals an interesting spatial pattern. Consistent with the models

based on camera data, suspension of the charge increases tra�c inside Area C. Tra�c on

the roads within one kilometer outside the Area C boundary, however, decreases by 1,061

vehicles per day (approximately 18 percent). This estimate is signi�cant at the ten percent

level. Both point estimates for roads more than two kilometers outside the boundary are

positive, with one statistically signi�cant at �ve percent and the other not signi�cant. This

is consistent with an increase in radial trips (e.g. commutes from a residential neighborhood

into the center) from charge suspension. Overall this pattern of results suggests that some

drivers respond to the charge by driving around Area C. For drivers seeking to avoid the

priced area, the natural route typically involves the Circonvallazione Esterna, a ring of larger

roads located .6km-2km outside the Area C boundary. Table 3 shows the estimated e�ect of

12In keeping with the theoretical literature, by �delay� we mean a deviation from the desired arrival time,
either earlier or later.
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charge suspension on these ring roads is large, negative, and signi�cant at the �ve percent

level. Some of this decrease may re�ect reduced circumferential commuting to public transit

stations. Evaluating this type of spatial substitution has proved di�cult in other settings

due to confounding factors. In London, for example, the city substantially improved ring-

road infrastructure because Transport for London anticipated spatial substitution (Santos,

2004). To the best of our knowledge, ours is the �rst study to recover an unconfounded

driver response on this dimension.

In interpreting these results, it is reasonable to ask whether they capture the short-

run response to a pricing holiday or a long-run response. The initial six-month trial of

the Stockholm cordon charge provides some evidence on this point. Eliasson et al. (2009)

observe, �. . . there was some doubt as to whether any tra�c reduction would actually take

place during a brief and transient trial. Could it be that people would decide to `sit out'

the trial period without changing their travel habits? We now know that the trial indeed

had an immediate e�ect.� E�ects from Stockholm's initial trial proved very similar to long-

run e�ects (Börjesson et al., 2012). In Milan the suspension of the Area C charge was

widely publicized, so the vast majority of residents knew about the change. Evidence on

residents' expectations is qualitative and limited. Press accounts suggested Area C pricing

might not return (Corriere della Sera, 2012b), but there was likely a range of beliefs about

this. The key question is not, however, whether residents expected the suspension to be

permanent, but whether they behaved as though it were. We have some suggestive evidence

on this point from Figure 3. If residents exhibited habit persistence or slowly updated their

beliefs about the suspension, we would expect an upward trend in the residuals during the

suspension period. No such trend is apparent; instead the full magnitude of driver responses

emerges immediately. This pattern also implies that switching costs across modes, routes,

and travel times are not �rst-order considerations for marginal drivers. Therefore we believe

our estimates largely re�ect long-run behavior.

There is one respect in which the observed behavior during suspension likely does not

correspond to long-run behavior: vehicle portfolios. Intuition suggests they adjust slowly.

Given the possibility of renewed pricing, a risk-averse resident of Milan might well have been

reluctant to purchase a new vehicle in response to charge suspension. If vehicle portfolios

constrained a reasonably large fraction of the population, our estimates represent lower

bounds on the magnitude of long-run e�ects. While our use of a natural experiment does

incur this cost on the external validity dimension, it brings o�setting bene�ts on the internal

validity dimension (e.g. avoidance of policy endogeneity concerns).

It is impossible to conduct a full welfare analysis of the Area C policy using our data, but

previous work casts light on some of its e�ciency properties. Verhoef (2005) studies a cordon
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charge in a general-equilibrium model of a monocentric city with endogenous population

density. He �nds the optimal cordon location is at 22 percent of the distance from the city

center to the city limits. We can compare the location of Milan's cordon to this benchmark.

Like many older European cities, Milan is monocentric. From the land area of Area C, we

can calculate an idealized radius of
√

8.2km2

π
= 1.62 kilometers. Proceeding in like fashion

for the city limits, we obtain an idealized radius of
√

181km2

π
= 7.59 kilometers. Dividing

yields a ratio of 1.62km
7.59km

= .21. This suggests that at minimum Milan's cordon is not badly

located. We can also evaluate the level of Milan's charge. Mun et al. (2003) simulate a

cordon charge using data from Osaka and �nd the optimal charge is equivalent to roughly 30

minutes' worth of labor income. In Milan this would be about ¿9. While Milan di�ers from

Osaka on many dimensions, it is possible that a charge modestly above the current ¿5 level

would increase welfare. Verhoef (2005) �nds that an optimal cordon charge achieves 88-90

percent of the gains from a �rst-best pricing policy. De Borger and Proost (2001) �nd an

optimal combination of a cordon charge and parking fees can achieve 70 percent of �rst-best

gains. Taken together, this body of research implies that the Area C pricing policy may be

reasonably e�cient.

5.2. Interaction with public transit

In addition, we investigate the interaction of charge suspension and public transit avail-

ability. To that end we estimate a panel model with a portal-day as the unit of observation.

The results in Table 4 indicate commuters on routes with public transit available respond

much less to the suspension of the charge. Portals on a metro line, for example, show a

response that is not statistically distinguishable from zero.13

There are at least two plausible explanations for these results. The �rst relies on cost

di�erences. Assume an identical distribution of preferences for driving on two routes, one

with public transit ("Route A") and one without ("Route B"). If a sorting equilibrium holds,

commuters on the two routes must achieve equal utility. This implies that if Route A has

cheap public transit, it must have expensive car travel. This could be a direct result of public

transit, as when road lanes are devoted to tram lines, or a product of transit planning, as

when metro lines are placed beneath more congested roads. If a city applies the same charge

to cars on both routes, the percentage price change for Route A is much smaller and theory

predicts a smaller tra�c response.

Alternatively, the results in Table 4 could spring from residential sorting (preference

heterogeneity). Suppose people with strong preferences for public transit live near Route A.

13Portals with public transit may still be generating welfare changes if the composition of tra�c is changing,
but we cannot evaluate this with our data.
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They might not own cars. They might, for example, dislike the claustrophobic conditions that

prevail on buses and trains at rush hour. Such individuals might be relatively unresponsive

to changes in the price of driving. Assume the initial cost of driving is the same for both

routes. Then for a given road price change, there will be more infra-marginal drivers on

Route B than Route A.

It is di�cult to choose between these explanations using the available data, but Table

A1 provides suggestive evidence. When we interact charge suspension with a time-invariant

measure of rush-hour congestion,14 the response is larger for congested portals without public

transit than for uncongested portals without public transit. (Congestion does not matter

for portals with public transit.) This result is inconsistent with an explanation based solely

on cost di�erences, which would predict smaller responses on more congested routes. It

provides some evidence of preference heterogeneity, but does not exclude the possibility that

cost di�erences drive some of the responses to charge suspension. For further discussion, see

Appendix Section A.1.

5.3. Price response

Milan's sequence of tra�c policies, including both Ecopass and Area C, presents an

opportunity to recover another important feature of driver behavior: price responsiveness.

Under Ecopass (2008-2011), the weighted average weekday price for passenger vehicles was

approximately¿0.72 (author's calculation, based on Rotaris et al. 2010). In January 2012 the

Area C policy increased the weekday price to ¿5. This provides potentially exogenous price

variation, although the usual concerns about policy endogeneity obtain. We estimate the

elasticity of vehicle entries with respect to price using a variant of equation 1, replacing the

dependent variable with log entries and the policy variables with log price. This speci�cation

does not rely on the natural experiment that forms the basis of our other results. Table 5

reports results. A one percent price increase decreases entries by charged vehicles by .3

percent and the estimate is signi�cant at the one percent level. This estimated response

captures the net e�ect of two changes: the increase in pecuniary cost and the decrease in

time cost (from reduced congestion) under the Area C policy. Given that the Area C charge

is a relatively small part of total trip cost, which includes time, fuel, and depreciation, this

demand response is large. For passenger and commercial vehicles elasticities are -.17 and

14We standardize entries at the portal-15 minute-lane level, then average the resulting values during rush
hour periods (over days). Portals with lower values (low rush hour throughput relative to the portal average)
are likely more congested. We de�ne a congestion dummy equal to 1 for portals in the bottom 10 percent of
the distribution.
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-.47, respectively, with both estimates signi�cant at the �ve percent level.15 The estimate

for other vehicles is a placebo test of the e�ect of passenger prices on entries by exempt

municipal vehicles; we �nd no e�ect. Our elasticity estimates are necessarily local and may

not obtain outside the range of prices observed in our data. They suggest, however, that a

modest price increase, e.g. from ¿5 to ¿6, might produce substantial additional reductions

in Area C entries.

If the change in price from Ecopass to Area C is conditionally exogenous, our estimate

captures an internally valid causal e�ect. The question of external validity remains, however.

Theory predicts that demand elasticity will vary with income, preferences, the availability

of substitutes, and other factors. To provide a qualitative sense of such factors, Table A2

puts our estimated elasticity in the context of estimates developed in other studies, using

data from other locations. At -.3 our overall estimate is modestly larger than most previous

�ndings for cordon charges, which generally range from -.2 to -.1. Estimates for expressway

and bridge tolls exhibit more variation, ranging from -.56 to -.06. While some are similar to

our result (e.g. Small et al. (2006) for California State Route 91), others are substantially

larger or smaller. For example, Odeck and Brathen (2008) �nd an average price elasticity of

-.56 on Norwegian toll roads. Such larger estimates may re�ect the often-greater availability

of close substitutes for single-facility tolls than for cordon charges.

Some cities manipulate parking prices, rather than road prices, in order to optimize travel

demand. Studies of such policies typically estimate parking demand, rather than demand for

travel on a given road or demand for cordon crossing. While these estimates are not directly

comparable to ours, they may provide an instructive benchmark. In a survey of research

�ndings, the US Transit Cooperative Research Program found a range of parking demand

elasticities from -.6 to -.1, with -.3 the mode (Vaca and Kuzmyak, 2005). Using data from

exogenous changes in San Francisco parking prices, Pierce and Shoup (2013) estimate an

average demand elasticity of -.4.

5.4. Pollution

Table 6 reports the pollution e�ect of charge suspension on weekdays, estimated using

equation 4. We focus on CO, PM10, and PM2.5 because these pollutants have direct, nega-

tive health e�ects (Seaton et al., 1995) and all are closely associated with vehicle emissions

(Gallego et al., 2013). Estimates show statistically signi�cant increases in CO and PM10,

both inside and outside Area C, in the 6 to 17 percent range. These magnitudes are similar

to those from our tra�c models. The point estimate for PM2.5 outside Area C is greater

15We do not separate passenger and commercial vehicles in our analysis of tra�c volume because under
the Area C policy they both face the same ¿5 price.
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at 21 percent, but the standard error is large and the estimate is signi�cant only at the ten

percent level. This imprecision may stem from the much shorter period over which PM2.5

data have been collected. For CO we can also estimate the e�ect for monitors located on

the ring roads (Circonvallazione Esterna). This estimate is near zero, which roughly accords

with our tra�c results in Table 3. As the half-lives of commonly regulated air pollutants

are measured in hours or days (Seinfeld and Pandis, 2012), the observed pollution increases

likely derive from additional trips and mode shifting, rather than from trip rescheduling.

These pollution e�ects are large, particularly given that the priced area is small (5 percent

of land area) and Milan has an unusually clean vehicle �eet. Milan's earlier Ecopass policy,

which applied from 2008 through 2011, created incentives for drivers to purchase cleaner

vehicles and many did so (Rotaris et al., 2010). This means that for a given number of

foregone trips, the e�ect on pollution would have been smaller in 2012 than in 2007. Like

our tra�c estimates, our pollution estimates are lower bounds on long-run e�ects because of

the potential for vehicle portfolios to change over the long run.

In order to evaluate the welfare e�ects of these air pollution changes, we require an es-

timate of willingness to pay for reductions in PM10 pollution. We adopt estimated annual

willingness to pay of $148.70 per person per µg/m3 (in 1982-1984 dollars) from Bayer et al.

(2009), who use data from US metropolitan statistical areas. By accounting for migration

costs and instrumenting for ambient pollution, this study overcomes several important iden-

ti�cation challenges. For comparison, note that the meta-analysis by Smith and Huang

(1995) �nds a mean marginal willingness to pay of $110 (in 1982-1984 dollars) per µg/m3

TSP reduction in US cities. While this estimate is meaningfully smaller than the one from

Bayer et al. (2009), this is unsurprising for two reasons: 1) the downward biases in the OLS

hedonic speci�cations analyzed by Smith and Huang (1995); and 2) the higher real income

of the US population in the data used by Bayer et al. (2009). The rough similarity between

the Bayer et al. (2009) and Smith and Huang (1995) estimates provides some reassurance

that our choice is reasonable.

Naturally the use of a willingness to pay estimate from the United States raises bene�t

transfer concerns. Kaul et al. (2013) �nd that transfer errors are typically smaller for function

transfers than for value transfers. While a full function transfer is beyond the scope of the

present exercise, we can scale the Bayer et al. (2009) estimate to account for local income

in Milan. As suggested by Ready and Navrud (2006), we employ a PPP-adjusted exchange

rate and �nd that average income in Milan was roughly 85 percent of US income in 2007

(Hammitt and Robinson, 2011; OECD, 2011). Both Smith and Huang (1995) and Hammitt

and Robinson (2011) �nd that the income elasticity of willingness to pay for air pollution

reduction is small in wealthier nations, with the latter noting that US agencies often use an

15



5.5 Robustness checks 5 RESULTS

income elasticity of approximately .5. Multiplying $149∗ (1− (.15∗ .5)) yields approximately

$138. Converted to 2014 dollars, this becomes $327.

With this �gure in hand, we can compute the aggregate welfare e�ects of the PM10

changes in Milan from the Area C policy. Mean PM10 concentration in our data is 48µg/m3

inside Area C, 44µg/m3 outside. The concentration changes implied by our estimates are

1.9µg/m3 and 7.5µg/m3, respectively. Approximately 77,000 people live in Area C and 1.2

million outside. The implied welfare gain from the Area C policy is approximately $48

million inside Area C and $2.94 billion outside, for a total of $3 billion. This estimate is

very large relative to the annual PM10 bene�t �gures used by transportation researchers in

cost-bene�t analysis of the Ecopass policy, which have typically been in the range of ¿0.4-1.3

million (Rotaris et al., 2010; Danielis et al., 2011). We note that the median transfer error

identi�ed by Kaul et al. (2013) is 39 percent, and this does suggest some caution. Even

allowing for the possibility of large transfer error, however, our welfare estimate is an order

of magnitude larger than those in Rotaris et al. (2010) and Danielis et al. (2011).

The �nding that pricing reduces air pollution both inside and outside Area C speaks to

an important distributional question. Opponents of the Area C policy have argued that it

improves air quality in an a�uent area while doing nothing to address the remainder of the

city (Danielis et al., 2011). The estimates in Table 6 provide evidence against this claim.

While spatial substitution may reduce air quality near ring roads, the policy improves air

quality in other locations, both inside and outside Area C. Voting behavior is consistent

with such a widespread improvement. In a 2011 referendum on road pricing, more than 79

percent voted in favor (Danielis et al., 2011), an outcome that would be unlikely if only Area

C residents bene�ted from the policy. The successful referendum is somewhat surprising in

view of the generally unfavorable public attitudes toward road pricing. As in Stockholm,

residents experienced the bene�ts of road pricing during a trial period before voting and this

may have been in�uential (Eliasson, 2008; Harsman and Quigley, 2010).

5.5. Robustness checks

5.5.1. Tra�c

We estimated all models with the following trends in date: 1) no trend; 2) linear trend;

3) 4th-degree trend; and 4) 7th-degree trend. In nearly all cases the choice of trend had

negligible in�uence on the sign, magnitude and signi�cance of the estimates.

In addition, we compare our primary estimates to those from the interim period between

the end of the Ecopass policy and the start of the Area C policy (January 1-15, 2012).

During this time drivers could enter the city center without paying, but this period raises

identi�cation concerns. First, it was not randomly timed and therefore the potential for
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unobserved confounders (like changes in bus service) is greater than for the period of our

natural experiment. Second, because the return of pricing was assured, questions of habit

formation and switching costs are more problematic. Third, because this period lasted

only two weeks, these models have less statistical power. Nonetheless the interim period

provides a rough benchmark against which to evaluate our main results. Table A3 shows

that the estimated e�ects on Area C entries for all vehicles and charged vehicles are similar

in magnitude to our primary results and statistically signi�cant at the one percent level.

The estimated e�ect on motorcycle entries is positive and signi�cant for the interim period,

which di�ers from our primary result and does not accord with theory. The positive sign

could re�ect the fact that riding a motorcycle in a lower-tra�c environment is both safer

and more enjoyable.

Table A4 reports spatial substitution results for the interim period. The pattern of results

accords with those from our natural experiment, but the decrease in tra�c on ring roads is

no longer statistically signi�cant. Similarly, Table A5 shows how e�ects on Area C entries

during the interim period vary with public transit availability. (These estimates come from

the same model as those in Table 4.) Again the pattern of results is strongly similar to those

from our natural experiment, with portals lacking public transit seeing greater increases in

tra�c.

Taken together, Tables A3, A4, and A5 demonstrate that estimates from the interim

period (in January) are quite similar to those from our natural experiment (July-September).

This pattern suggests that seasonality in the elasticity of demand for Area C trips is not

a �rst-order concern. Thus our primary estimates provide evidence on driver responses to

pricing that generalizes beyond the time of year at which the natural experiment happened

to occur. There remains the possibility of bias from seasonal trends in the level of demand.

As discussed in Section 5.1 and illustrated in Figure 3, our time �xed e�ects and polynomial

trend in date appear to e�ectively control for such trends. Nonetheless we describe seasonal

trends in more detail here. Figure A3 shows the seasonal pattern of entries into Area C. The

period of the natural experiment includes Italy's traditional vacation season, which sees far

fewer Area C entries in three August weeks. The �ve remaining weeks of the experiment,

however, include some of the busiest weeks of the year (in September). Given the pattern in

Figure A3, any failure of our seasonality controls will bias the magnitude of our estimates

downward.

Figure 5 displays the �e�ect� of a placebo charge suspension each year 2008-2011 on Area

C vehicle entries. There is no evidence of an increase in Area C entries during the placebo

periods; if anything they show slight decreases. Similarly, Table A6 reports estimated e�ects

of a placebo suspension for the same dates in 2011, rather than 2012. Estimated magnitudes
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are much smaller than those in our main results and not one is signi�cant.

5.5.2. Pollution

Table 7 reports the estimated e�ects of placebo suspensions for the same dates 2008-2011

(rather than 2012). Half the estimates are negative and most are statistically insigni�cant,

which aligns with the placebo tests from our tra�c models and suggests that our main results

are not driven by misspeci�cation. The estimated placebos for CO inside Area C (2011) and

PM10 outside Area C (2009) are positive and statistically signi�cant, which recommends

some caution in interpreting our corresponding primary estimates.

6. Conclusion

Our analysis uses a natural experiment to examine behavioral responses and recover

causal e�ects of Milan's Area C road pricing policy. We �nd the policy reduces tra�c and

pollution considerably. Drivers respond with intertemporal substitution toward unpriced

times and spatial substitution toward unpriced roads outside the charge area. In addition, we

show that the e�ect of pricing on tra�c depends on the availability of public transportation.

Routes without public transit experience large tra�c changes from the Area C charge, while

those with public transit experience much smaller changes. We also use long-run changes in

Milan's pricing policies to estimate elasticities of tra�c with respect to the charge: entries

by charged vehicles decrease .3 percent in response to a one percent price increase. This

estimate captures the net e�ect of an increase in the charge and the resulting decrease in

time cost from reduced congestion.

Our �ndings are relevant for policy design. Theory predicts that the substitution be-

haviors we observe would occur under both optimal and second-best policies, but cities can

tailor policy to manage their magnitudes. Cities like Milan, with �xed cordon charges, might

reduce intertemporal substitution and move closer to the theoretical optimum by charging

a lower but non-zero price for �shoulder� periods adjacent to peak periods. Some drivers

might still choose the shoulder period, or switch back to the peak period, but others might

switch to public transit or carpool. A city might reduce spatial substitution by expanding

the geographic area subject to pricing, such that driving around the priced area would be

impractical. Alternatively it might improve roads likely to see policy-driven tra�c increases,

as London did prior to introducing its cordon charge (Santos, 2004).

Our public transit results also have policy implications. Because responses to pricing

vary with transit availability, welfare impacts from pricing will be spatially heterogeneous.

Policymakers may wish to consider these distributional impacts when designing a road pricing

policy. More generally, our results suggest that road pricing and public transit may be
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substitutes, at least within cities. In areas that already have high levels of public transit,

there may be limited scope for reducing tra�c via road pricing.

We �nd suspension of the charge increased weekday concentrations of CO by 6 percent

and PM10 by 17 percent. This is a remarkable change in air quality, given: 1) the charge

area represents only 5 percent of Milan's land area, and a smaller fraction of the broader

metropolitan area; and 2) it is a lower bound on the potential long-run increase. Our estimate

is still more surprising in light of the city's relatively clean vehicle �eet. Previous welfare

analyses of Milan's Ecopass policy have found net bene�ts of approximately ¿7-12 million

per year, even placing extremely low values on air pollution reductions (Danielis et al., 2011).

Using an adjusted willingness to pay for PM10 reduction from Bayer et al. (2009), we �nd

that the Area C policy produces a $3 billion welfare gain from air pollution reductions alone.

Pollution e�ects from similar policies in cities with dirtier �eets could well be larger. More

congested cities would also tend to see larger welfare gains. Among the most congested large

world cities are Istanbul, Mexico City, and Rio de Janeiro (TomTom, 2014). Among large

US cities, New York, Los Angeles, and Chicago see the highest welfare losses from congestion

(Lomax et al., 2012). Our results suggest there is scope for road pricing, even in second-best

form, to produce very large welfare gains in such environments.
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Figures

Figure 1: Time line of road pricing in Milan
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Figure 2: Air pollution monitoring stations in Milan

Green circles represent the locations of pollution monitoring stations operated by ARPA Lombardia. Not all stations monitor
all pollutants. The via Senato and Verziere stations are inside Area C. The Piazza Zavattari, viale Marche, and viale Liguria
stations are on the ring roads (Circonvallazione Esterna). The Piazza Abbiategrasso, Pascal Citta Studi, and Parco Lambro
stations are outside the ring roads.
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Figure 3: E�ect of Area C charge suspension on vehicle entries
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Residuals are from equation (1), with the charge suspension dummy variable excluded. The dependent variable is daily entries
into Area C by vehicles subject to the charge. Each point represents one observation (one day). Fitted lines are based on
separate degree-zero local polynomial regressions for pre-suspension, suspension, and post-suspension periods. Time controls
include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday dummy, a
7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period. Weather controls comprise ten-piece
linear splines in temperature and positive precipitation.
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Figure 4: E�ect of Area C charge suspension on vehicle entries, by 15-minute interval
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Dependent variable is Area C entries by vehicles subject to charge. Estimates are from equation (1), estimated separately for
each 15-minute interval. Whiskers represent Newey-West standard errors multiplied by 1.96. The lag length is 35 for hours
23.5-5.25, 7 otherwise. �Unpriced� and �priced� labels refer to status of a given interval under the Area C policy, which prices
entries 7:30AM-7:30PM.
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Figure 5: E�ect of placebo suspensions on Area C vehicle entries
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Residuals are from equation (1). Dependent variable is daily entries into Area C by vehicles subject to charge. Each point
represents one observation (one day). Fitted lines based on separate degree-zero local polynomial regressions for pre-placebo,
placebo, and post-placebo periods (which correspond to the dates of the 2012 natural experiment). Time controls include 0-4
year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday dummy, a 7th-degree time
trend in date, a dummy for the unpriced January 2012 interim period, and a dummy for the June-Sept. 2012 charge suspension.
Weather controls comprise ten-piece linear splines in temperature and positive precipitation.

Tables

Table 1: Descriptive statistics, daily level

Units Mean Std. dev. Min Max N EU standard

Area C entries - 169,744 47,628 3,905 261,172 1,737 -
Passing vehicles - 2,585,316 1,348,275 37,412 5,918,492 1,754 -

CO mg/m3 1.26 .67 0 7.6 17,625 10
PM10 µg/m3 47.66 31.07 0 276 9,091 40
PM2.5 µg/m3 33.74 26.56 0 177 2,550 25

Precipitation mm 2.07 6.91 0 121.2 30,929 -
All statistics calculated over daily means. The EU standard for CO is based on a rolling 8-hour mean, while those for PM10
and PM2.5 are based on annual means.
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Table 2: E�ect of Area C charge suspension on vehicle entries

All vehicles Charged vehicles Motorcycles Other vehicles
Charge suspension 26725.2∗∗∗ 29266.1∗∗∗ -1920.9 -62.69

(5059.5) (3275.8) (2447.3) (54.50)

Charge suspension*weekend -19590.1∗∗ -23094.3∗∗∗ 3295.2 171.4∗

(9090.5) (5865.1) (3566.0) (98.93)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes
Observations 1737 1737 1720 1737
R2 0.808 0.805 0.785 0.901

Dependent variable is daily Area C entries. �Other� vehicles are primarily public vehicles like police cars and ambulances, which
are exempt from the charge. Each column is a single model corresponding to equation (1). �Charge suspension� corresponds
to the weekday e�ect, while the sum of �Charge suspension� and �Charge suspension*weekend� corresponds to the weekend
e�ect. All speci�cations include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year,
a holiday dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period. Weather
controls comprise ten-piece linear splines in temperature and positive precipitation. Newey-West standard errors with 7 lags in
parentheses. Signi�cance denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01. The e�ect on entries by all vehicles is approximately
14.5 percent of the mean.
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Table 3: Weekday e�ect of Area C charge suspension on sensor-level tra�c volume, by distance outside Area
C boundary

Vehicle count Vehicle count Vehicle count
All roads 469.8∗∗∗

(131.3)

Area C 1063.2∗∗∗

(337.1)

0-1km outside boundary -1061.1∗

(587.0)

1-2km outside boundary -161.5
(361.0)

2-4.2km outside boundary 606.8∗∗

(258.3)

>4.2km outside boundary 515.3
(391.2)

Non-ring roads 469.2∗∗∗

(158.4)

Ring roads -2433.7∗∗

(1020.0)

Year, month, week, DoW FEs Yes Yes Yes

7th-deg. trend in date Yes Yes Yes

Weather controls Yes Yes No
Observations 803086 801442 801442
R2 0.085 0.093 0.093

Dependent variable is daily count of vehicles passing over sensor. Each column is a single model corresponding to equation
(2). All speci�cations include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a
holiday dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period. Weather controls
comprise ten-piece linear splines in temperature and positive precipitation. Distance measured from the outside of the Area C
boundary. Distance dummies set at the 25th, 50th, and 75th percentiles. �Ring roads� denotes the Circonvallazione Esterna,
a ring of unpriced, larger roads located .6km-2km outside the Area C boundary. Standard errors clustered at sensor level in
parentheses. Signi�cance denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01. The overall e�ect in the leftmost column is
approximately 8 percent of the mean.
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Table 4: Weekday e�ect of Area C charge suspension on portal-level vehicle entries, by public transit
availability

Vehicle count Vehicle count Vehicle count Vehicle count
No metro 883.9∗∗∗

(160.4)

Metro 259.9
(266.5)

No bus 905.6∗∗∗

(148.6)

Bus 374.3∗

(211.7)

No tram 788.6∗∗∗

(152.3)

Tram 586.1∗∗

(247.1)

No public trans. 1063.2∗∗∗

(208.9)

Public trans. 518.3∗∗∗

(133.4)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes
Observations 71862 71862 71862 71862
R2 0.407 0.407 0.406 0.407

Dependent variable is daily Area C entries through a given portal. Each column is a single model corresponding to equation
(3). All speci�cations include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year,
a holiday dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period. Weather
controls comprise ten-piece linear splines in temperature and positive precipitation. Standard errors clustered at portal level in
parentheses. Signi�cance denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5: Price elasticity of Area C vehicle entries

All charged Passenger Commercial Other
log(Price) -0.304∗∗∗ -0.171∗∗∗ -0.467∗∗ -0.0222

(0.0944) (0.0330) (0.221) (0.0341)

Month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes
Observations 1147 1147 1147 1147
R2 0.458 0.418 0.662 0.557

Dependent variable is log daily Area C entries. Each column is a single model corresponding to equation (1), but with the
policy variables replaced by the log of weekday average price: ¿0.72 for passenger vehicles and ¿3.52 for commercial vehicles
under Ecopass, ¿5 under Area C. Estimated elasticities re�ect tra�c response to two changes: 1) a 1 percent increase in
the Area C cordon charge; 2) the resulting cost decrease from reduced congestion and travel time. Weekends were unpriced
under both policies and are excluded from the sample. The January 2012 interim period and the July-September 2012 natural
experiment period were also unpriced. All speci�cations include 11 month, 51 week, and 4 day of week FEs, a holiday dummy,
and a 7th-degree time trend in date. Co-linearity with price variation prevents the inclusion of year dummies. Weather controls
comprise ten-piece linear splines in temperature and positive precipitation. �Other� vehicles are primarily public vehicles like
police cars and ambulances, which are exempt from charge. Standard errors clustered at the year-week level. Signi�cance
denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 6: Weekday pollution e�ect of Area C charge suspension, by location

ln(CO) ln(PM10) ln(PM2.5)
Area C 0.0606∗∗ 0.0404

(0.0248) (0.0407)

Ring roads 0.0182
0.0205

Outside 0.1696∗∗ 0.2139∗

(0.0676) (0.1210)

Lagged pollution Yes Yes Yes

Weather controls Yes Yes Yes

Year, month, week, DoW FEs Yes Yes Yes

7th-deg. trend in date Yes Yes Yes

Dependent variable is daily log average pollution in a given area of Milan. Pollution normalized for temperature and pressure by
ARPA. Each estimate comes from a di�erent regression corresponding to equation (4). Speci�cations include 10 year, 11 month,
51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday dummy, a 7th-degree trend, a dummy for
the unpriced January 2012 interim period, and 1 lag of log average pollution. Weather controls include 4-knot cubic splines in
humidity, wind speed, solar radiation, and precipitation, plus a dummy for positive precipitation. Newey-West standard errors
with 1 lag in in parentheses. Signi�cance denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 7: Weekday pollution e�ects of placebo suspensions

CO PM10 PM25
2008
Area C 0.0463 -0.0642

(0.0247) (0.0472)
Ring roads -0.0358∗

(0.0206)
Outside -0.0495 0.0474

(0.0681) (0.1399)
2009
Area C -0.0095 0.0464

(0.0198) (0.0428)
Ring roads 0.0433∗∗

(0.0182)
Outside 0.1231∗∗ 0.1492

(0.0591) (0.0917)
2010
Area C -0.0182 -0.0718

(0.0254) (0.0493)
Ring roads 0.0063

(0.0184)
Outside -0.0258 -0.0498

(0.0736) (0.1054)
2011
Area C 0.1007∗∗∗ -0.0516

(0.0177) (0.0492)
Ring roads -0.0506∗∗∗

(0.0190)
Outside 0.0142 0.0697

(0.0849) (0.1138)

Dependent variable is daily log average pollution pollution in a given area of Milan. Pollution normalized for temperature
and pressure by ARPA. Each estimate comes from a di�erent regression corresponding to equation (4). Placebo suspensions
run July 27-September 16. Speci�cations include 10 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy
interacted with year, 7th-degree trend, a holiday dummy, a dummy for the unpriced January 2012 interim period, a dummy
for the June-Sept. 2012 charge suspension, and 1 lag of log average pollution. Weather controls include 4-knot cubic splines in
humidity, wind speed, solar radiation, and precipitation, plus a dummy for positive precipitation. Newey-West standard errors
with 1 lag in parentheses. Signi�cance denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

Appendix A

A.1 Public transit results

The results in Table A1 provide evidence of some preference heterogeneity (sorting).

They are inconsistent with an explanation solely based on cost di�erences, which would
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predict smaller responses on more congested routes, but do not exclude the possibility that

cost di�erences drive some of the responses to charge suspension.

To see this, consider the framework of Anderson (2014), who derives a condition for

choosing rail over driving (simpli�ed here): crail−cdrive ≤ P0, where crail and cdrive denote the

time costs of driving and the subway. P0 is the �scal cost di�erence between modes converted

to units of time. Suppose three driver types, A, B, and C as illustrated in Figure A1, all of

whom initially take the subway.16 Drivers B and C face higher subway time cost because they

must commute circumferentially to the subway line. Assume B and C are close enough that

this cost is the same (crail,C = crail,B). Then we have crail,C− cdrive,C < crail,B− cdrive,B ≤ P0.

Provided cdrive,A is not too small, crail,A − cdrive,A < crail,C − cdrive,C < crail,B − cdrive,B ≤ P0.

This framework partially reproduces the public transit results of Table 4; it predicts the

marginal drivers will be of types B and C, not A. But it implies more infra-marginal drivers

on less congested roads (more type B than C), which does not match the pattern of Table

A1.

Figure A1: Marginal drivers

16While this example is obviously stylized, the radial layout mimics the actual pattern of roads in Milan.

34



A.2 Supplemental �gures A

Table A1: Weekday e�ect of Area C charge suspension on portal-level vehicle entries, by public transit
availability and congestion

Vehicle count
No public trans. 1012.6∗∗∗

(211.4)

Public trans. 541.5∗∗∗

(149.3)

No public trans. * congested 843.9∗∗∗

(159.7)

Public trans. * congested -189.1
(534.9)

Year, month, week, DoW FEs Yes

7th-deg. trend in date Yes

Weather controls Yes
Observations 71862
R2 0.407

Dependent variable is daily Area C entries through a given portal. Each observation is a portal-day. Each column is a single
model corresponding to equation (3). Congested dummy equals 1 for portals where avg standardized peak (8-9:30AM, 5:45-
8PM) volume is below 10th percentile. All speci�cations include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend
dummy interacted with year, a holiday dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012
interim period. Weather controls comprise ten-piece linear splines in temperature and positive precipitation. Standard errors
clustered at portal level in parentheses. Signi�cance denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

A.2 Supplemental �gures

Figure A2: Milan's Area C

Area C is the area of the Milan city center that has been priced under the Ecopass and Area C policies. Numbered circles
represent entry portals where the charge is applied using license plate-reading cameras.
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Figure A3: Area C vehicle entries by day of year, 2008-2011
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Figure shows average number of Area C entries by day of year 2008-2011, as measured by license plate readers. Vertical lines
delimit the period of the 2012 charge suspension.
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A.3 Supplemental tables

Table A2: Comparison of tra�c volume e�ects and elasticities to other empirical road pricing studies

Paper Location Policy Volume change Price elasticity

Gibson and Carnovale 2015 Milan Cordon charge +14.5% -.30

Jones and Hervik (1992) Alesund Toll - -.45

Jones and Hervik (1992); Ramjerdi et al. (2004) Oslo Cordon charge -10% to 0% -.22, -.03

Polak and Meland (1994); Meland (1995) Trondheim Cordon charge -10% -.10

Small and Gomez-Ibanez (1998) Autoroute A1 Paris-Lille Variable toll -4% -.16

Small and Gomez-Ibanez (1998) Singapore Restricted Zone Cordon charge (1975) -44% -

Goh (2002); Olszewski and Xie (2002) Singapore Expressways Toll (1995) -16% -.22 to -.15

Olszewski and Xie (2002) Singapore Restricted Zone Cordon charge (1976, 1989) -52% to -10% -.22 to -.32

Tretvik (2003); Ramjerdi et al. (2004) Bergen Cordon charge >-3% -

Small et al. (2006) Orange County SR91 Variable toll - -.36

Odeck and Brathen (2008) Norway, various Toll - -.56 to -.82

Santos (2008) London Cordon charge -18% -

Eliasson et al. (2009) Stockholm Cordon charge -22% -

Finkelstein (2009) Various US Toll - -.06

Foreman (2013) SF Bay Bridge Variable toll -9%, -4% -.08

Xie (2013) Minneapolis I-394 Variable toll - -.14
With the exception of our result, papers are listed in order of publication. Volume changes are from the introduction of pricing or a price change. The volume estimate from
our study is positive because we examine the removal of a pricing policy, rather than the imposition of one. Note that our volume change estimate is from a natural experiment,
while our price elasticity relies on long-run policy variation. Small and Verhoef (2007) suggest the very large e�ect of Singapore's initial pricing policy was due to the extremely
high charge, which they characterize as far above the second-best optimum level. We separate estimates based on the initial 1977 introduction of pricing in Singapore (Small and
Gomez-Ibanez, 1998) from those based on later price changes (Goh, 2002; Olszewski and Xie, 2002). Foreman (2013) provides two estimates: -9% from a regression discontinuity
identi�cation, and -4% from a di�erence-in-di�erences identi�cation. The rightmost column contains elasticities of tra�c volume (cordon crossings or volume on a segment)
with respect to price. Unless otherwise noted, they re�ect both the direct e�ect of a toll increase (negative) and the rebound e�ect from reduced congestion (positive). They
generally do not correspond to structural parameters. Elasticities are not available for all of the policies. In some cases authors do not provide su�cient information to calculate
them. In others the relevant toll rises from zero to a positive number, leaving the percentage change unde�ned. In particular, the elasticity estimate of Olszewski and Xie (2002)
comes from later price variation, not the initial introduction of the Singapore cordon charge. The Finkelstein (2009) estimate is an average over 33 US facilities.
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Table A3: Comparison of Area C charge suspension to unpriced January 2012 interim period

All vehicles Charged vehicles Motorcycles Other vehicles
Charge suspension 26725.2∗∗∗ 29266.1∗∗∗ -1920.9 -62.69

(5059.5) (3275.8) (2447.3) (54.50)

Interim period 38692.4∗∗∗ 31237.0∗∗∗ 7924.1∗∗ 13.11
(8308.6) (6166.6) (3978.2) (68.76)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes
Observations 1737 1737 1720 1737
R2 0.808 0.805 0.785 0.901

Charge suspension estimates are identical to those in main results (Table 2). Dependent variable is daily Area C entries. Each
column is a single model corresponding to equation (1). All speci�cations include 4 year, 11 month, 51 week, and 5 day of
week FEs, a weekend dummy interacted with year, a holiday dummy, and a 7th-degree time trend in date. Weather controls
comprise ten-piece linear splines in temperature and positive precipitation. Other vehicles are primarily public vehicles like
police and ambulances, which are exempt from charge. The interim period January 1-15, 2012, between the Ecopass and Area
C policies, was unpriced. Newey-West standard errors with 7 lags in parentheses. Signi�cance denoted by: * p < 0.10, ** p <
0.05, *** p < 0.01.
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Table A4: Weekday e�ect of unpriced January 2012 interim period on sensor-level tra�c volume, by distance
outside Area C boundary

Vehicle count Vehicle count Vehicle count
All roads 1067.6∗∗∗

(127.4)

Area C 1597.4∗∗∗

(437.7)

0-1km outside boundary 583.8
(494.3)

1-2km outside boundary 892.9∗∗∗

(344.6)

2-4.2km outside boundary 978.0∗∗∗

(308.1)

>4.2km outside boundary 1402.0∗∗∗

(310.5)

Non-ring roads 1330.2∗∗∗

(150.8)

Ring roads -231.0
(697.1)

Year, month, week, DoW FEs Yes Yes Yes

7th-deg. trend in date Yes Yes Yes

Weather controls Yes Yes No
Observations 803086 801442 801442
R2 0.085 0.093 0.093

Dependent variable is daily count of vehicles passing over sensor. Each column is a single model corresponding to equation (2).
All speci�cations include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday
dummy, a 7th-degree time trend in date, and a dummy for the July-September 2012 charge suspension. Weather controls
comprise ten-piece linear splines in temperature and positive precipitation. Distance measured from the outside of the Area C
boundary. Distance dummies set at the 25th, 50th, and 75th percentiles. �Ring roads� denotes the Circonvallazione Esterna, a
ring of unpriced, larger roads located .6km-2km outside the Area C boundary. The interim period January 1-15, 2012, between
the Ecopass and Area C policies, was unpriced. Standard errors clustered at sensor level in parentheses. Signi�cance denoted
by: * p < 0.10, ** p < 0.05, *** p < 0.01.

39



A.3 Supplemental tables A

Table A5: Weekday e�ect of unpriced January 2012 interim period on portal-level vehicle entries, by public
transit availability

Vehicle count Vehicle count Vehicle count Vehicle count
No metro 800.9∗∗∗

(118.9)

Metro 577.1∗∗∗

(153.9)

No bus 822.4∗∗∗

(131.2)

Bus 571.6∗∗∗

(130.3)

No tram 791.5∗∗∗

(128.1)

Tram 598.6∗∗∗

(133.8)

No public trans. 913.3∗∗∗

(148.2)

Public trans. 633.5∗∗∗

(109.2)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes
Observations 71862 71862 71862 71862
R2 0.407 0.407 0.406 0.407

Dependent variable is daily Area C entries through a given portal. Each column is a single model corresponding to equation
(3). All speci�cations include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year,
a holiday dummy, a 7th-degree time trend in date, and a dummy for the July-September 2012 charge suspension. Weather
controls comprise ten-piece linear splines in temperature and positive precipitation. The interim period January 1-15, 2012,
between the Ecopass and Area C policies, was unpriced. Standard errors clustered at portal level in parentheses. Signi�cance
denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.
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A.3 Supplemental tables A

Table A6: E�ect of 2011 placebo suspension on Area C vehicle entries

All vehicles Charged vehicles Motorcycles Other vehicles
Placebo suspension (2011) 2296.6 419.8 1815.7 -77.80

(5826.7) (3992.3) (2297.9) (48.72)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes
Observations 1737 1737 1720 1737
R2 0.808 0.805 0.785 0.901

Dependent variable is daily Area C entries. �Other� vehicles primarily public vehicles like police cars and ambulances, which are
exempt from charge. Each column is a single model corresponding to equation (1). Placebo suspension runs July 27-September
16, 2011. All speci�cations include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with
year, a holiday dummy, a 7th-degree time trend in date, a dummy for the unpriced January 2012 interim period, and a dummy
for the June-Sept. 2012 charge suspension. Weather controls comprise ten-piece linear splines in temperature and positive
precipitation. Newey-West standard errors with 7 lags in parentheses. Signi�cance denoted by: * p < 0.10, ** p < 0.05, *** p
< 0.01.
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