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Mathematical properties of the Weertman
equation

Marc Josien ∗

September 18, 2017

Abstract

We derive here some mathematical properties of the Weertman
equation and show it is the limit of an evolution equation. The Weert-
man equation is a semilinear integrodifferential equation involving a
fractional Laplacian. In addition to this purely theoretical interest,
the results proven here give a solid ground to a numerical approach
that we have implemented in [13].

Keywords Reaction-advection-diffusion equation, traveling waves, inte-
grodifferential equation, the Weertman equation, fractional Laplacian

1 Introduction
Motivation We derive here some mathematical properties of the Weert-
man equation and show it is the limit of an evolution equation. Our motiva-
tion comes from our interest in materials science. The problem we consider,
however classical, enjoys the following specificity that it involves the dissi-
pative integrodifferential operator − |∂x| (also denoted as −(−∆)1/2), which
has −|k| as Fourier symbol. In addition to this purely theoretical interest,
the results proven here give a solid ground to a numerical approach that we
have implemented in [13].
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Our starting point is the so-called Weertman equation (see [16]):

− |∂x| η(x) + cη′(x) = F ′(η(x)) for x ∈ R, (1)

with boundary conditions

lim
x→−∞

η(x) = ηl and lim
x→+∞

η(x) = ηr, (2)

where both the scalar c ∈ R (called velocity) and the function η ∈ C2(R)
are the unknowns, and where ηl < ηr. The function F ∈ C3(R) is a bistable
potential; namely, it satisfies

F ′(ηl) = F ′(ηr) = 0, F ′′(ηl) > 0, and F ′′(ηr) > 0. (3)

From a physical point of view, Equation (1) is a nondimensionalized form
of the Weertman equation for steadily-moving dislocations in materials sci-
ence (see [16]). Dislocations are linear defects in crystals, the motion of
which is responsible for the plasticity of metals. From a physical standpoint,
the function η represents a discontinuity between the local relative material
displacement u(x, y) in the upper and in the lower half-spaces surrounding
the glide plane on which moves the dislocation line (see Figure 1); see, e.g.,
[11] for details. In (1), the term |∂x| η accounts for the long-range elas-
tic self-interactions that tend to spread the core. This repulsive interaction
is counterbalanced by the nonlinear pull-back force F ′(η), which binds to-
gether the upper and lower half-spaces. Moreover, the moving dislocation
is subjected to various drag mechanisms encoded into the term cη′. From a
broader perspective, the function η can be understood as a moving phase-
transformation front between the states ηl and ηr (see Figure 1), which are
local minimizers of the potential F .

Traveling wave of reaction-diffusion equation Equation (1) is a spe-
cial case of the general equation{

A[η](x) + cη′(x) = 0 for x ∈ R,
η(−∞) = ηl and η(+∞) = ηr,

(4)

where A[η] = Lη−F ′(η) is a nonlinear operator, in which L is a diffusive op-
erator and F is a bistable potential. As is easily seen, Equation (4) describes
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η(x) = u(x, 0+)− u(x, 0−)

x
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u(x, 0−)
ηr − ηl

Figure 1: Typical shape of η(x), solution to (1); here, u(x, y) is the material
displacement.

the traveling waves of the following reaction-diffusion equation:{
∂tu(t, x) = A[u(t, ·)](x) for x ∈ R,
u(0, x) = u0(x) for x ∈ R,

(5)

in the sense that, if u(t, x) = η(x − ct) is a traveling wave satisfying (5),
then (η, c) solves (4). Ipso facto, finding a solution to (4) amounts to finding
traveling waves solutions to (5). Natural questions thus arises:

(i) Does Equation (4) have one and only one solution (η, c)?

(ii) Which properties does the solution to Equation (4) enjoy?

(iii) Is the traveling wave η(x − ct), for (η, c) solution to (4), an attractor
of the dynamical system (5)?

These questions have been addressed by many authors for various operators L
and for bistable potential F satisfying -most of the time- the extra condition
that F does not admit any local minimum between ηl and ηr. Other types of
nonlinearities, not considered here, have attracted much attention. See [18]
for the classification of traveling waves and an overview of reaction-diffusion
equations.

In the seminal article [17], Sattinger remarked that if (η, c) is a solution
to (4), then (η(·+ξ), c) is also a solution to (4), for arbitrary ξ ∈ R. Therefore,
solutions to (4) can at most be unique up to a translation. In this regard, he
introduced the notion of asymptotic stability of traveling wave and proved
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that the solution (η, c) to (4), if it exists, is asymptotically stable under
general assumptions about the spectrum of A.

In the celebrated article [9], Fife and McLeod answered the Questions
(i) and (iii) in the case where L is the Laplacian. They proved indeed that
if F satisfies (3) and has no local minimum between ηl and ηr, then there
exists a solution (η, c) to (4), which is unique up to a translation, and that this
solution is globally asymptotically stable. Namely, for all initial conditions u0
taking values in [ηl, ηr] such that u0(−∞) = ηl and u0(+∞) = ηr, there
exist ξ ∈ R, K > 0 and κ > 0 such that the solution u of (5) satisfies

‖u(t, ·)− η(· − ξ − ct)‖L∞(R) ≤ Ke−κt, (6)

for all t ∈ R+. Among other important concepts, all amenable to a wide class
of dissipative operators, it is observed in [9] that A satisfies a comparison
principle. Thus, any solution u(t, x) of (5) can be squeezed between a super-
solution w+1(t, x) and a sub-solution w−1(t, x), both at a controlled distance
from η(x− ξ − ct).

In a more recent article [7], Chen combined this squeezing approach with
an iterative technique. Under technical assumptions about the operatorA, he
proved the global asymptotic stability of the traveling waves of (5), provided
that there exists a monotonic solution η to (4). In this context, a positive
answer to Question (i) and technical assumptions imply, using Chen’s squeez-
ing technique, a positive answer to Question (iii). We use Chen’s approach
in the present article.

The article [7] also provides tools for establishing the existence and the
uniqueness of a solution to (4). They have been used in [8] to positively an-
swer to Question (i) in the case where L is the fractional Laplacian − |∂x|α,
for α ∈ (0, 2) (the latter operator has −|k|α as Fourier symbol). Also, in [1],
the authors have adapted Chen’s squeezing technique to prove that the so-
lution (η, c) to (4) is globally asymptotically stable in the sense of (6), in a
general framework including the case L = − |∂x|α, for α ∈ (1, 2). However,
they underlined the fact that the case α ≤ 1 (and in particular α = 1), is
still an open question. This motivates our study.

With an approach different from [7], the existence and the uniqueness of
a solution to (4), for L = − |∂x|α and α ∈ (0, 2), has been proved in [4, 5]
in the special case where c = 0 (the so-called balanced case). These results
have been generalized by [10]. Assuming that F ∈ C3(R) satisfy (3) and the
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following extra condition:{
F (u) > F (ηl), ∀u ∈ (ηl, ηr),

F ′(u) > 0 or F (u) > F (ηr), ∀u ∈ (ηl, ηr),
(7)

it is showed in [10, Th. 1.1] that there exist a unique c ∈ R and an increasing
function η ∈ C2(R), which is unique up to a translation, that solve (1).
Conditions (3) and (7) mean that the potential F (u) has two major wells
in u = ηl and u = ηr (the states ηl and ηr are therefore stable), and that
its behavior is controlled between these wells ; for example, the potential
can have minor wells (see Figure 2). The proof of [10] relies on special
solutions to (4) built in [4, 5], which, by homotopy techniques, are used to
find the solutions to the general case. The result of [10] will be our starting
point for proving the global asymptotic stability of the traveling waves of (5)
for L = − |∂x|.

Additionally, the authors of [4, 5, 10] have also studied some properties
of the solutions to (4). In particular, when L = − |∂x|, they have shown
that η′ > 0 and that there exist constants B > A > 0 such that, for all |x| ≥
1,

A|x|−2 ≤ η′(x) ≤ B|x|−2. (8)

See [5, Th. 2.7] for the special case where c = 0 and [10, Prop. 3.2] for the
general case. Moreover, the following identity is proved (see [10, Prop. 4.1]):

c = [F (ηr)− F (ηl)]

(ˆ
R
|η′|2

)−1
. (9)

Formula (9) is useful because it provides the sign of c just by considering the
values F (ηl) and F (ηr).

As remarked in [4], if c = 0, then (1) can be interpreted as the restriction
to the boundary of an elliptic problem with Neumann boundary condition.
If indeed u solves the following problem:{

∆u(x, y) + c∂yu(x, y) = 0 in R× R+,

∂yu(x, 0) = F ′(u(x, 0)) on R× {0}, (10)

for c = 0, then η(x) := u(x, 0) is a solution to (1). However, we stress
that, when c 6= 0, Equation (10) describes a diffusive traveling wave in the
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Figure 2: A double-well “camel-hump” potential F , ηl = −1, ηr = 1.

half-space. In this case, (1) is not the restriction to the boundary of the
problem (10), which instead reads

(−∆− c∂x)1/2 η(x) = −F ′(η(x)). (11)

We refer to [3] for a mathematical study of (11).
But, we mention for completeness that (1) is in fact the restriction to the

boundary of the following elliptic equation{
∆u(x, y) = 0 in R× R+,

∂yu(x, 0) + c∂xu(x, 0) = F ′(u(x, 0)) on R× {0}. (12)

In a physical context, the latter is envisioned as an elastic equation in the
half-plane with a nonlinear boundary condition. We briefly justify it. If
indeed we take the Fourier transform with respect to x, denoted as Fx, of
the first equation of (12), and if we restrict on bounded solutions, we obtain

Fx {u(·, y)} (k) = e−|k|yFx {u(·, 0)} (k).

Injecting the above information in the second equation of (12) then yields (1)
if we denote η(x) = u(x, 0) (recall that |∂x| is an operator which has |k| as
Fourier symbol).

Main results Our first result concerns the asymptotic expansion of the
solution η to (1). The following proposition is a refinement of results of [4,
5, 10]:
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Proposition 1.1. Let ηl < ηr and F ∈ C3(R) satisfy (3). Assume that (η, c)
is a solution to (1) and (2) such that η ∈ C2(R) is an increasing function
satisfying η′ > 0 and (8). Then η has the following asymptotes:

η(x)− ηr ∼
x→+∞

ηl − ηr
πF ′′(ηr)

x−1, and η(x)− ηl ∼
x→−∞

ηl − ηr
πF ′′(ηl)

x−1. (13)

In addition to their theoretical interest, these asymptotes also allow for
getting more accurate numerical approximations of η, as shown in [13].

Our second result is:

Proposition 1.2. Under the hypotheses of Proposition 1.1, (c, η) satisfies
the following identity:

c =
1

ηr − ηl
lim

R→+∞

ˆ R

−R
F ′(η). (14)

The above identity is formally obtained by integrating Equation (1) over R;
we rigorously prove it. Notice that, by Proposition 1.1 and using a Taylor
expansion, F ′(η) /∈ L1(R).

As mentioned above in the concise form (5), we consider the following
dynamical system:{

∂tu(t, x) + |∂x|u(t, x) = −F ′(u(t, x)) for x ∈ R,
u(0, x) = u0(x) for x ∈ R,

(15)

for an initial condition u0 ∈ L∞(R). We say that u ∈ L∞loc (R+,L
∞(R)) is a

weak solution to (15) if, for all T > 0, for all φ ∈ C1
c ([0, T ),C∞c (R)), there

holds
ˆ T

0

ˆ
R
u(t, x) (−∂t + |∂x|)φ(t, x)dx dt

=

ˆ
R
u0(x)φ(0, x)dx−

ˆ T

0

ˆ
R
F ′(u(t, x))φ(t, x)dx dt. (16)

Our third and final result is that (1) is the long-time limit of (15), for general
initial conditions u0 with suitable behavior at infinity (see Figure 3 for an
example). We prove the following:
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Theorem 1.3. Let ηl < ηr, F ∈ C3(R) satisfy (3) and ∆0 > 0 be such that

F ′′ > 0 on [ηl −∆0, ηl + ∆0] ∪ [ηr −∆0, ηr + ∆0]. (17)

Assume that u0 ∈ L∞(R) takes values in [ηl −∆0, ηr + ∆0] and satisfies

lim sup
x→−∞

u0(x) < ηl + ∆0 and lim inf
x→+∞

u0(x) > ηr −∆0. (18)

Then:

(i) Equation (15) has a unique weak solution u ∈ L∞loc (R+,L
∞(R)). More-

over, for all T0 > 0,

u ∈ C
(
(T0,+∞),C2(R)

)
∩ C1 ((T0,+∞),C(R)) . (19)

(ii) In addition, for all t > 0 and x ∈ R, u(t, x) ∈ [ηl −∆0, ηr + ∆0].

(iii) Assume that (η, c) is a solution to (1) and (2) such that η ∈ C2(R) is
an increasing function satisfying η′ > 0 and

lim
|x|→+∞

η′(x) = 0. (20)

Then, there exist constants κ > 0, K > 0 and ξ such that

‖u(t, ·)− η(· − ct+ ξ)‖L∞(R) ≤ Ke−κt, (21)

for all t ∈ R+. In the above estimate, κ only depends on F , η and ∆0,
whereas K and ξ also depend on u0.

Theorem 1.3 suggests that simulating (15) is sufficient to obtain in the
long time a numerical approximation of the solution (η, c) to (1). In this
regard, it is significant that c, which is an unknown of (1), does not appear
in (15). This in particular allows for constructing an approximation of the
traveling wave velocity, which is unknown before the end of the simulation.
We refer the reader to our study [13], where we explain the details of the
numerical strategy, and to a forthcoming article [15] for the multi-dimensional
case.
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Figure 3: A possible initial condition u0 in Theorem 1.3.

Outline Our contribution is organized as follows. In Section 2, we intro-
duce notations and give essential properties of the operator |∂x|. In Section 3,
we prove Propositions 1.1 and 1.2. In Section 4, we justify the existence and
the uniqueness of a weak solution to Equation (15), which satisfies (19), es-
tablishing thus (i) of Theorem 1.3. In Section 5, we use Chen’s approach
for proving (ii) and (iii) of Theorem 1.3. The key ingredients are a compar-
ison principle and specific sub-solutions and super-solutions. Although we
could check the technical assumptions and apply Chen’s theorem, we prefer
to restrict Chen’s proof to our special case for self-consistency and simplicity.

2 Notations and definitions
Notations We denote by C∞c (R) the space of smooth functions with com-
pact supports in R and by D′ the space of distributions over R. For u ∈
C∞c (R), we denote the Fourier transform by F {u} (k) :=

´
R e−ikxu(x)dx.

For two functions u and v, we denote by ∗ the convolution. Henceforth, the
Fourier transform and the convolution are only taken with respect to the
space variable x (and never with respect to the time variable t). We make
use of the principal value of 1

x
, denoted by p.v.

(
1
x

)
, which is the distribution

defined by〈
p.v.

(
1

x

)
, u

〉
= lim

ε→0+

{ˆ +∞

ε

u(y)

y
dy +

ˆ −ε
−∞

u(y)

y
dy

}
,

for u ∈ C∞c (R).

Definition and properties of the operator |∂x| For convenience, we
recall some elementary properties of the operator |∂x|. The Hilbert trans-
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form H of u ∈ L2(R) is defined by

H{u} := F−1 {−i sign(k)F {u} (k)} . (22)

It is immediate that, if u ∈ L2(R), then H2 {u} = −u. Next, the operator |∂x|
is defined as

|∂x|u(x) := H{u′} (x) = F−1 {|k|F {u} (k)} (x), (23)

for u ∈ C∞c (R). As F {p.v. (1/x)} (k) = −iπsign(k), the operator |∂x| can
be rewritten as

|∂x|u(x) =− 1

π

ˆ +∞

0

u′(x+ y)− u′(x− y)

y
dy (24)

=− 1

π

ˆ +∞

0

u(x+ y)− 2u(x) + u(x− y)

y2
dy, (25)

the last expression being obtained from the previous one by integrating
by parts. We see from (23) that the operator |∂x| is symmetric and pos-
itive, like the Laplacian. But, unlike the Laplacian, it is clear from (25)
that |∂x|u(x) does not only depend on u in the neighborhood of x but also
on each value u(y), for y ∈ R; put differently, |∂x| is non-local.

A straightforward computation yields that |∂x|φ ∈ L1(R) whenever φ ∈
C∞c (R). Hence, one can extend |∂x| over L∞(R) by duality, defining |∂x|u as
the following distribution:

|∂x|u : φ ∈ C∞c (R) 7→
ˆ
R
u(y) |∂x|φ(y)dy. (26)

When u is sufficiently regular, explicit expressions of |∂x|u are available.
Namely, if u ∈ L∞(R) ∩ C2(R), then Expression (25) is valid. In particu-
lar, |∂x|u ∈ C(R) ∩ L∞(R). The proof can be done by density of C∞c (R)
in C2

loc(R), using the fact that (25) is true for smooth functions. If we as-
sume furthermore that u′ ∈ L1(R), then Expression (24) is also valid; this is
deduced from (25) by integration by parts.

3 Asymptotes and an identity about velocity
The proof of Proposition 1.1 relies on the asymptotic behavior of Cauchy
integrals (see [14, p. 267]) and involves the following technical lemma:
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Lemma 3.1. Under the hypotheses of Proposition 1.1, there holds

η′′ ∈ L∞(R). (27)

Remark 3.2. Remark that it is also possible to establish by technical argu-
ments that there exists a constant C > 0 such that, for all |x| > 1,

|η′′(x)| ≤ C|x|−2 (1 + ln(|x|)) . (28)

(We refer the reader to [12] for the proof of (28)). However, (27) is sufficient
to prove Proposition 1.1. Yet, if F is sinusoidal, one can derive analytical
solutions η to (1), as is shown in [16], which are of the form

η(x) = ηl +
ηr − ηl
π

(π
2

+ arctan (ax)
)
,

for a > 0. Whence

η′′(x) = −ηr − ηl
π

2a3x

(a2x2 + 1)2
∼

x→+∞
−2(ηr − ηl)

πax3
.

Thus (28) is probably not optimal.

We postpone the proof of Lemma 3.1 until the end of the proof of Propo-
sition 1.1 and temporarily admit Lemma 3.1.

Proof of Proposition 1.1. We focus on the case x→ +∞. Provided that

x |∂x| η(x) −→
x→+∞

1

π

ˆ +∞

−∞
η′(y)dy =

1

π
(ηr − ηl) , (29)

then, using (1), (2), (3) and (8), we get by Taylor expansion

F ′′(ηr) (η(x)− ηr) ∼
x→+∞

− 1

π
x−1 (ηr − ηl) ,

which is (13).
Let us now prove (29). By assumption, η′ ∈ C1(R), and by (8), we

have η′ ∈ L1(R). As a consequence, there holds

x |∂x| η(x) =
x

π
lim
ε→0+

(ˆ x−ε

−∞
+

ˆ +∞

x+ε

)
η′(y)

x− ydy.
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Let R > 0 and x > 2R. We split the integral into three parts

πx |∂x| η(x) =

ˆ R

−∞

η′(y)

1− y/xdy + x

(ˆ x−R

R

+

ˆ +∞

x+R

)
η′(y)

x− ydy

+ x lim
ε→0+

(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x− ydy. (30)

The first right-hand term in (30) is dealt with the dominated convergence
theorem, the second one avoids the singularity of |x − y|−1 and is bounded
thanks to (8), and the third one is on the singularity of |x − y|−1 and is
controlled thanks to (27) and (8).

As η′ ∈ L1(R) and since (recall that x > 2R)∣∣∣∣ η′(y)

1− y/x

∣∣∣∣ ≤ 2 |η′(y)| if y < R, and
η′(y)

1− y/x −→x→+∞
η′(y),

then, by the dominated convergence theorem
ˆ R

−∞

η′(y)

1− y/xdy −→
x→+∞

ˆ R

−∞
η′(y)dy. (31)

Next, we split the second integral of (30) into three parts. Invoking (8), we
deduce that, as |x| > 2R,∣∣∣∣(ˆ x−R

R

+

ˆ +∞

x+R

)
η′(y)

x− ydy

∣∣∣∣
≤ Cx−1

ˆ x/2

R

|η′(y)| dy + CR−1
(ˆ x−R

x/2

+

ˆ +∞

x+R

)
|η′(y)| dy

≤ Cx−1
ˆ x/2

R

dy

y2
+ CR−1

(ˆ x−R

x/2

+

ˆ +∞

x+R

)
dy

y2

≤ CR−1x−1. (32)

Last, we split the last integral of (30) into two parts, namely:∣∣∣∣(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x− ydy

∣∣∣∣ =

∣∣∣∣∣
(ˆ x−2

ε

+

ˆ R

x−2

)
η′(x− z)− η′(x+ z)

z
dz

∣∣∣∣∣ .
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The first part of the right-hand side of the above equation is dealt with
by using (27), and the second one by using (8). Whence, as x > 2R and
for x−2 ≥ ε,∣∣∣∣(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x− ydy

∣∣∣∣ ≤ Cx−2
ˆ R

x−2

z−1dz + C

ˆ x−2

ε

dz

≤ Cx−2
(
ln(Rx2) + 1

)
.

Therefore∣∣∣∣x lim
ε→0+

(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x− ydy

∣∣∣∣ ≤ Cx−1
(
ln(Rx2) + 1

)
. (33)

Convergence (31) and Estimates (32) and (33) finally yield

lim sup
x→+∞

∣∣∣∣πx |∂x| η(x)−
ˆ +∞

−∞
η′(y)dy

∣∣∣∣ ≤ ∣∣∣∣ˆ +∞

R

η′(y)dy

∣∣∣∣+ CR−1,

which, thanks to (8), implies (29) upon letting R→ +∞.

We then proceed with the:

Proof of Lemma 3.1. We first remark that if g ∈ L2(R) and if

− |∂x|h(x) + ch′(x) = g(x), (34)

then h′ ∈ L2(R). Indeed, the Fourier transform turns (34) into

(−|k|+ cik)F{h}(k) = F{g}(k).

Therefore, kF{h}(k) ∈ L2(R), whence h′ ∈ L2(R). We use this result to
prove that η′′ ∈ L∞(R).

Upon differentiating (1), we obtain

− |∂x| η′(x) + cη′′(x) = F ′′(η(x))η′(x). (35)

As η ∈ L∞(R), F ∈ C3(R) and η′ ∈ L2(R) (thanks to (8)), then the right-
hand side of (35) is in L2(R). Therefore η′′ ∈ L2(R). Differentiating (35)
yields

− |∂x| η′′(x) + cη′′′(x) = F ′′(η(x))η′′(x) + F ′′′(η(x)) (η′(x))
2
. (36)
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As η ∈ L∞(R), F ∈ C3(R), η′′ ∈ L2(R), and, thanks to (8), (η′)2 ∈ L2(R),
then the right-hand side of (36) is in L2(R). Therefore η′′′ ∈ L2(R). As a
consequence, since η′′ ∈ L2(R), we deduce by Sobolev injection that η′′ ∈
L∞(R), whence (27).

We now focus on Proposition 1.2. Both Identities (9) and (14) are for-
mally obtained by testing (1) against a certain function g, namely g = η′

for (9), and g = 1 for (14). We justify below this formal integration.

Proof of Proposition 1.2. Let R > 2. We integrate (1) over [−R,R]:

−
ˆ R

−R
|∂x| η(x)dx+ c (η(R)− η(−R)) =

ˆ R

−R
F ′(η(x))dx. (37)

Thus, Identity (14) stems from (37), provided that

lim
R→+∞

ˆ R

−R
|∂x| η(x)dx = 0. (38)

We prove (38) using (8) and (27). As η′ ∈ L1(R) ∩ C1(R), there holds

|∂x| η(x) =
1

π

ˆ +∞

0

η′(x− y)− η′(x+ y)

y
dy

=
1

π

ˆ
|y|<R

(η′(x− y)− η′(x))

y
dy +

1

π

ˆ
|y|>R

η′(x− y)

y
dy. (39)

Remark that ˆ
|y|>R

∣∣∣∣η′(x− y)

y

∣∣∣∣ dy ≤ 2R−1 ‖η′‖L1(R) ,

and that, using (27),ˆ
|y|<R

∣∣∣∣(η′(x− y)− η′(x))

y

∣∣∣∣ dy ≤2R ‖η′′‖L∞(R) ≤ CR.

Therefore, integrating (39) thanks to Fubini’s theorem yieldsˆ R

−R
|∂x| η(x)dx =

1

π

ˆ
|y|<R

(η(R− y)− η(R))− (η(−R− y)− η(−R))

y
dy

+
1

π

ˆ
|y|>R

η(R− y)− η(−R− y)

y
dy

= : T1 + T2. (40)

14



First, we bound T1. If |y| < R/2, thanks to (8), we obtain

|η(R− y)− η(R)| ≤ C|y|R−2 and |η(−R− y)− η(−R)| ≤ C|y|R−2.

As a consequence,
ˆ
|y|<R/2

∣∣∣∣(η(R− y)− η(R))− (η(−R− y)− η(−R))

y

∣∣∣∣ dy ≤ CR−1. (41)

Note that, as underlined in [10], a consequence of (8) is that{
A|x|−1 ≤ ηr − η(x) ≤ B|x|−1, if x > 1,

A|x|−1 ≤ η(x)− ηl ≤ B|x|−1, if x < −1.
(42)

Therefore, if |y| < R

|η(R− y)− η(R)| ≤ C

R− |y|+ 1
and |η(−R− y)− η(−R)| ≤ C

R− |y|+ 1
.

Whence ˆ
R/2<|y|<R

∣∣∣∣(η(R− y)− η(R))− (η(−R− y)− η(−R))

y

∣∣∣∣ dy
≤ C

R

ˆ R

R/2

dy

R + 1− y ≤ CR−1 ln(R). (43)

We deduce from (41) and (43) that

|T1(R)| ≤ CR−1(1 + ln(R)). (44)

Thanks to (8) and since η ∈ L∞(R), if |y| > R, we have

|η(R− y)− η(−R− y)| ≤ C min
{
R (|y| −R)−2 , 1

}
.

Whence, splitting T2 into two parts,

|T2(R)| ≤C
(ˆ R+

√
R

R

dy

y
+

ˆ +∞

R+
√
R

R

y(y −R)2
dy

)

≤C
√
R

R
+ C

ˆ +∞

√
R

dz

z2
≤ CR−1/2. (45)

Bearing (40) in mind, we observe that (44) and (45) imply (38).
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4 Existence, uniqueness and regularity of the
solution to the evolution equation (15)

We now justify the existence, the uniqueness and the regularity of a weak
solution u to (15). We proceed in the classical way; as the methods as well
as the type of results are well-known, we only give a few hints of proofs.
We refer the interested reader to [12] for some technical details and extra
materials about the proofs, and to [6] for a reference on evolution equations
involving m-dissipative operators.

Using the Fourier transform, the solution to the homogeneous linear equa-
tion

∂tu(t, x) + |∂x|u(t, x) = 0 for x ∈ R, and u(0, x) = u0(x) (46)

is given by u(t, x) = {Kt ∗ u0} (x), where the kernel Kt is defined by

Kt(x) =
t

π(t2 + x2)
if t > 0 and K0 = δ0, (47)

the Fourier transform of which is e−|k|t. Before getting to the inhomogeneous
linear equation, we underline some interesting properties of the kernel Kt.
First, for all t ≥ 0, Kt is a probability measure. Moreover, for all t > 0, Kt

is a smooth function. In particular, the space derivative of Kt satisfies∥∥∥∥ d

dx
Kt

∥∥∥∥
L1(R)

≤ Ct−1, (48)

where C is a universal constant. In all these aspects, Kt is similar to the
Gaussian kernel Kt(x) = e−

x2

2t2 /(t
√

2π).
The semi-group generated by Kt allows for solving the inhomogeneous

equation {
∂tu(t, x) + |∂x|u(t, x) = g(t, x) for x ∈ R,
u(0, x) = u0(x) for x ∈ R.

(49)

Indeed, let T > 0, u0 ∈ L∞(R) and g ∈ L∞([0, T ] × R). Then there exists
a unique weak solution u ∈ L∞([0, T ] × R) to (49) in the sense that, for
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all φ ∈ C1
c ([0, T ),C∞c (R)), the following identity holds:ˆ T

0

ˆ
R
u(t, x) (−∂t + |∂x|)φ(t, x)dxdt−

ˆ
R
u0(x)φ(0, x)dx

=

ˆ T

0

ˆ
R
g(t, x)φ(t, x)dxdt. (50)

This solution can be written thanks to the Duhamel formula as

u(t, x) = Kt ∗ u0(x) +

{ˆ t

0

Kt−s ∗ g(s, ·)ds
}

(x), (51)

with the convention that K0∗u0 = u0, even if u0 is not regular. The existence
of a solution u to (49) is a consequence of the fact that (51) is well-defined;
its uniqueness is showed using the adjoint problem of (49).

We now turn to the semi-linear equation (15). Let F ∈W2,∞(R) and u0 ∈
L∞(R). Then there exists a unique weak solution u ∈ L∞loc (R+,L

∞(R))
to (15). Moreover, u can be expressed as

u(t, x) = {Kt ∗ u0} (x)−
{ˆ t

0

Kt−s ∗ F ′(u(s, ·))ds
}

(x). (52)

The proof is done by a classical fixed-point argument on (52) (see for exam-
ple [6, Sec. 4.3 p. 56]).

Finally, we justify that the evolution equation (15) has a regularizing
effect; in other words, the weak solution to (15) becomes instantly a classical
solution. Assume indeed that F ∈ C3(R) ∩W3,∞(R) and u0 ∈ L∞(R), and
let u ∈ L∞loc (R+,L

∞(R)) be the weak solution to (15). Then, for all T0 > 0,
we have (19). Therefore, for all t > 0, there holds

∂tu(t, x) + |∂x|u(t, x) = −F ′(u(t, x)), (53)

in the strong sense. Finally

u ∈ C ([0,+∞[ ,weak-∗-L∞(R)) . (54)

The proof of (19) relies on an iterative argument based on (52), using the
fact that, for all t > 0, Kt is a smooth probability measure that satis-
fies (48). Last, a straightforward adaptation of the proof of [2, Ex. 4.24
p. 126] yields (54).

Note that, similarly to [1, Th. 2.9.], t 7→ u(t, ·) may not be continuous
at 0 in L∞(R). If indeed u0 is discontinuous, then u(t, ·) cannot tend to u0
in L∞(R) when t→ 0 because, invoking (19), u(t, ·) is a continuous function
for all t > 0.
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5 Convergence of the evolution equation (15) to
the Weertman equation (1)

In this section, we prove (ii) and (iii) of Theorem 1.3. The proof can be
summarized in two steps: first, we show that (15) satisfies a comparison
principle, then we use Chen’s method of squeezing, establishing respectively
(ii) and (iii) of Theorem 1.3. For the sake of self-consistency, simplicity and
conciseness (Chen’s theory being quite general), we prefer to restrict the
whole proof of [7, Th. 3.1] to our specific case rather than to check that the
hypotheses of Chen’s theory are satisfied (precisely Hypotheses (A1), (A2),
(A3), (B1), (B2) and (B3) of [7], which are indeed satisfied in our case).

We henceforth assume that F ∈ C3(R) ∩W3,∞(R) satisfies (3) and (17).
We introduce the non-linear operator A[u] := − |∂x|u − F ′(u), of which we
now discuss some immediate properties. By the results of Section 4, A gen-
erates a semi-group on the Banach space L∞(R). A is translation invariant;
namely, for all h ∈ R, and for any function u(x), there holds

A[u(h+ ·)](x) = A[u](x+ h), ∀x ∈ R. (55)

Moreover, A maps constant functions to constant functions; namely

A[α · 1] = −F ′(α) · 1,

for all α ∈ R, where 1 above denotes the function identically equal to 1.
The operator A satisfies the following comparison principle:

Proposition 5.1. Let F ∈ W2,∞(R). Let u and u ∈ L∞loc (R+,L
∞(R)) be

such that {
∂tu(t, x)−A[u(t, ·)](x) = g(t, x) ≤ 0,

∂tu(t, x)−A[u(t, ·)](x) = g(t, x) ≥ 0,
(56)

where g and g ∈ L∞loc (R+,L
∞(R)), and u(0, ·) ≤ u(0, ·) with u(0, ·) 6= u(0, ·)

on a non-negligible set. Then, for almost every t > 0, x ∈ R, there holds

u(t, x) < u(t, x). (57)

Remark 5.2. Proposition 5.1 has an immediate corollary: Assume that u0 ∈
L∞(R) takes values in [ηl−∆0, ηr + ∆0] and let u ∈ L∞loc (R+,L

∞(R)) be the
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unique solution to (15) with the initial condition u0. By (3), u := x 7→ ηr+∆0

and u : x 7→ ηl−∆0 are respectively supersolutions and subsolutions to (15).
Therefore, Proposition 5.1 implies that u(t, x) ∈ [ηl−∆0, ηr +∆0], for almost
every t ∈ R+ and x ∈ R, establishing thus (ii) of Theorem 1.3.

Proposition 5.1 is shown thanks to the Duhamel Formula (51) and Grön-
wall’s Lemma.

Proof. Let M > ‖F ′′‖L∞(R). We set

v(t, x) := eMt (u(t, x)− u(t, x)) , (58)

and prove that v ≥ 0. In view of (56), we have

∂tv(t, x) + |∂x| v(t, x) = Mv(t, x)− eMt (F ′(u(t, x))− F ′(u(t, x)) + g(t, x) ,

where g(t, x) := eMt
(
g(t, x)− g(t, x)

)
≥ 0. Since the right-hand side of the

latter equation is in L∞loc (R+,L
∞(R)), then, using (51), one can express v(t, x)

as

v(t, x) = {Kt ∗ v(0, ·)} (x) +

{ ˆ t

0

Kt−s ∗
[
Mv(s, ·)

− eMs (F ′(u(s, ·))− F ′(u(s, ·)) + g(s, ·))
]
ds

}
(x). (59)

We introduce v−(t) := −ess inf {min(0, v(t, x)), x ∈ R}. By Taylor expan-
sion, for almost every (s, y) ∈ [0, t]× R, there holds

Mv(s, y)− eMs (F ′(u)− F ′(u)) (s, y) ≥Mv(s, y)− ‖F ′′‖L∞(R) eMs |u(s, y)− u(s, y)|
≥Mv(s, y)−M |v(s, y)|
≥ − 2Mv−(s). (60)

Therefore, using (59), since Kt, g and v(0, ·) are nonnegative, and since Kt

is a probability measure for all t ≥ 0, we obtain, for almost every t ∈ R+

and x ∈ R,

−v(t, x)) ≤ 2M

ˆ t

0

v−(s)ds,

19



whence

v−(t) ≤ 2M

ˆ t

0

v−(s)ds. (61)

Since u, u ∈ L∞loc (R+,L
∞(R)), then, v− ∈ L∞loc (R+). Hence, by Grönwall’s

Lemma, we deduce from (61) that v−(t) = 0, for almost every t > 0. Injecting
this information in (60), and next in (59), yields v(t, x) ≥ {Kt ∗ v(0, ·)} (x).
As a consequence, as Kt is positive if t > 0 and as v(0, ·) = u(0, ·)− u(0, ·) is
nonnegative and positive on a non-negligible set, we deduce that v(t, x) > 0,
for almost every t > 0 and x ∈ R. This implies (57).

Then, we establish a stronger version of the comparison principle, the
proof of which mimicks that of Proposition 5.1:

Corollary 5.3. Under the assumptions of Proposition 5.1, there exists a
positive decreasing function ρ such that, for all R > 1,

ess infx∈[−R,R] (u(1, x)− u(1, x)) ≥ ρ(R)

ˆ 1

0

(u(0, y)− u(0, y)) dy. (62)

Proof. Introducing v defined by (58), and using (59) and (60), we obtain

v(t, x) ≥ {Kt ∗ v(0, ·)} (x),

since v is nonnegative. By definition of Kt and of v, it implies (62).

The proof of (iii) of Theorem 1.3 is done after [7, Th. 3.1], the proof
of which we restrict here to our particular case. By the previous steps, we
already know that there exists a unique weak solution u(t, x) to (15) (see
Remark 5.2), and we aim at establishing (21).

Namely, we build special sub-solutions and super-solutions to (15) that
are based on the existing solution to (1) (see Lemma 5.4 below). Then, we
prove that both the vertical and the horizontal distances between these solu-
tions are controlled (respectively 2δj and 2lj on Figure 5, see also Lemma 5.5
below). Using the fact that (15) is an autonomous system, we use the estab-
lished control to iteratively build successive sub-solutions wj−1 and super-
solutions wj+1 surrounding the actual solution u(tj, x) to (15). At each
step j, the distance between these sub-solutions and super-solutions is low-
ered. Thus, the solution u is squeezed between these sub-solutions and super-
solutions. As a consequence, when t goes to infinity, the solution u(t, ·) tends,
up to a translation, to the solution to (1). Because of the iterative nature of
the squeezing, this convergence is achieved with exponential speed.
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2δj

2lj

+

+

wj
+1(tj , ·)

wj
−1(tj , ·)

u(tj , ·)

2δj+1

2lj+1

+

+

wj+1
+1 (tj+1, ·)

wj+1
−1 (tj+1, ·)

u(tj+1, ·)

Figure 4: Squeezing of u(t, x) solution to (5).

Lemma 5.4 (Lemma 2.2 of [7]). Under the hypotheses of Theorem 1.3,
let ∆1 < ∆0. Then, there exist positive constants σ and β such that, for
all δ ∈ (0,∆1) and l ∈ R, the functions w−1(t, x) and w+1(t, x) defined by

wi(t, x) = η (ζi(t, x)) + iδe−βt for i ∈ {−1,+1}, (63)

where

ζi(t, x) = x− ct+ il + iσδ
[
1− e−βt

]
for i ∈ {−1,+1}, (64)

are respectively a sub-solution and a super-solution to (15).

Proof of Lemma 5.4. As A is invariant by translation, the variable l in the
definition of ζ plays no role. Hence, we take l = 0 in the proof below. We
also impose for the moment σ ≤ 1.

A straightforward computation yields

(∂t + |∂x|)wi(t, x) =
(
iσβδe−βt/2 − c

)
η′ (ζi(t, x))− iδβe−βt + |∂x| η (ζi(t, x)) ,

and, as η satisfies (1),

(∂t + |∂x|)wi(t, x) = iσβδe−βtη′ (ζi(t, x))− iβδe−βt − F ′ (η (ζi(t, x))) .

Thus

(∂t −A)wi(t, x) =iβδe−βt [ση′ (ζi(t, x))− 1] + F ′ (wi(t, x))− F ′ (η (ζi (t, x))) .
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By Taylor-Lagrange expansion, there exists a convex combination θi(t, x)
of η (ζi(t, x)) and wi(t, x) such that

(∂t −A)wi(t, x) =iδe−βt
[
βση′ (ζi(t, x))− β + F ′′

(
θi(t, x)

)]
. (65)

Recall that ∆0 > ∆1. Then, by (2), there exists R0 > 0 such that{
|η(y)− ηl| < (∆0 −∆1)/2 if y < −R0,

|η(y)− ηr| < (∆0 −∆1)/2 if y > R0.

Therefore, as σδ < ∆1, we also have{
|wi(t, x)− ηl| ≤ (∆0 + ∆1)/2 < ∆0 if ζi(t, x) < −R0,

|wi(t, x)− ηr| ≤ (∆0 + ∆1)/2 < ∆0 if ζi(t, x) > R0.

Let

β := inf
{
F ′′(v), |v − ηr| ≤ ∆0 or |v − ηl| ≤ ∆0

}
(66)

Thus, if |ζi(t, x)| > R0, by definition of β and of θi(t, x), F ′′ (θi(t, x))−β ≥ 0.
Moreover, η′ > 0. Therefore

βση′ (ζi(t, x)) + F ′′
(
θi(t, x)

)
− β ≥ 0. (67)

Now, we set

σ := min

{
β−1

(
inf
|y|<R0

η′(y)

)−1 (
‖F ′′‖L∞(R) + β

)
, 1

}
. (68)

Therefore, if |ζi(t, x)| ≤ R0, we also have (67). As a conclusion, in any case,
(65) and (67) yield

i (∂t −A)wi(t, x) ≥ 0,

which implies that w+1 and w−1 are respectively a super-solution and a sub-
solution to (15).

Using Lemma 5.4, it is eventually possible to squeeze a solution u(t, x)
of (15) between a sub-solution and a super-solution. The following Lemma
explains how this squeezing is tightened:
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Lemma 5.5 (Lemma 3.3 of [7]). Under the hypotheses of Theorem 1.3,
let ∆1 < ∆0. Assume that there exist ξ ∈ R, δ ∈ (0,∆1) and l ∈ [0, L]
for fixed L such that, for all x ∈ R,

η(x− l)− δ ≤ u(0, x) ≤ η(x+ l) + δ. (69)

Then, taking β and σ as in Lemma 5.4, there exist a positive constant ε∗
depending only on η, F ′, and L, and parameters ξ̃, δ̃, l̃ satisfying∣∣∣ξ̃∣∣∣ ≤ l, δ̃ = δ + ε∗min(1, l)eβ, and 0 ≤ l̃ ≤ l + σδ − σε∗min(1, l)

2
,

such that, for all t ≥ 1 and x ∈ R,

η(x− ξ̃ − l̃ − ct)− δ̃e−βt ≤ u(t, x) ≤ η(x− ξ̃ + l̃ − ct) + δ̃e−βt. (70)

Proof. Thanks to Lemma 5.4, the functions w+1 and w−1 defined by (63),
for ζi defined by (64), are respectively a super-solution and a sub-solution
to (15). Using (69), it follows from Proposition 5.1 that, for all t ≥ 0 and x ∈
R,

w−1(t, x) ≤ u(t, x) ≤ w+1(t, x). (71)

Let l̂ := min(1, l) and ε1 := infx∈[−1,2] η
′(x). Since η is increasing, a Taylor

expansion yieldsˆ 1

0

(η(x+ l)− η(x− l)) dx ≥
ˆ 1

0

(
η
(
x+ l̂

)
− η

(
x− l̂

))
dx ≥ 2ε1l̂.

Therefore, at least one of the following estimates is trueˆ 1

0

(u(0, x)− η(x− l)) dx ≥ ε1l̂ or
ˆ 1

0

(η(x+ l)− u(0, x)) dx ≥ ε1l̂.

Hereafter, we only consider the first case, as the second one is similar. First,
using (20), there exists R1 such that

2ση′(x) ≤ 1 if |x| > R1 (72)

Let R2 := R1 +L+ |c|+1+σ∆0. On the one hand, invoking Proposition 5.1,
we compare u and w−1 on [−R2, R2]

inf
x∈[−R2,R2]

{
u(1, x)− η (ζ−1(1, x)) + δe−β

}
≥ ρ(R2)

ˆ 1

0

[u(0, y)− η(y − l) + δ] dy

≥ ρ(R2)ε1l̂. (73)
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We define

ε∗ := min

(
∆1

(
1− e−β

)
,

1

2σ
,
ρ(R2)ε1

2σ
‖η′‖−1L∞(R)

)
. (74)

As a consequence, if |x| < R2, (73) yields

u(1, x)− η
(
ζ−1(1, x) + 2ε∗σl̂

)
+ δe−β ≥ ρ(R2)ε1l̂ − 2ε∗σl̂ ‖η′‖L∞(R) ≥ 0.

(75)

On the other hand, if |x| > R2, then |ζ−1(1, x)| ≥ R1 + 1 whence, by
definition of ε∗,

∣∣∣ζ−1(1, x) + 2ε∗σl̂
∣∣∣ ≥ R1. Inequality (71) and Definition (72)

then imply that

u(1, x)− η
(
ζ−1(1, x) + 2ε∗σl̂

)
+ δe−β ≥ u(1, x)− w−1(1, x)− ε∗l̂ ≥ −ε∗l̂.

(76)

Therefore, from (75) and from (76), it appears that, for all x ∈ R, there holds

u(1, x) ≥ η
(
ζ−1(1, x) + 2ε∗σl̂

)
−
(
ε∗l̂ + δe−β

)
.

We set

δ̃ :=
(
δe−β + ε∗l̂

)
eβ,

which, thanks to (74), satisfies δ̃e−β ≤ ∆1. Applying once more Lemma 5.4
yields, for all t ≥ 1,

u(t, x) ≥ η
(
ζ−1(1, x)− c(t− 1) + 2ε∗σl̂ − σδ̃e−β

[
1− e−β(t−1)

])
− δ̃e−βt.

(77)

By definition of δ̃ and ζ−1, the argument of η in the above estimate is

x− ct− l − σδ
[
1− e−β

]
+ 2ε∗σl̂ − σδ̃e−β

[
1− e−β(t−1)

]
≥ x− ct−

[
l + σδ − σε∗l̂

]
. (78)

Defining now

ξ̃ := −σε∗l̂
2
, and l̃ := l + σδ − σε∗l̂

2
,
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and bearing in mind that η is increasing, we deduce from (77) and (78) that

u(t, x) ≥η
(
x− ct− ξ̃ − l̃

)
− δ̃e−βt. (79)

Moreover, recalling (71), we have

u(t, x) ≤η (x− ct+ l + σδ) + δe−βt ≤ η
(
x− ct+ l̃ − ξ̃

)
+ δ̃e−βt. (80)

As a consequence, we obtain the desired result (70) from (79) and (80).

We are now in position to finish the proof of Theorem 1.3. The proof
is done while iterating Lemma 5.5, which gradually tightens the squeezing
around u(t, x).

Proof of (iii) of Theorem 1.3 (restriction of the proof of Theorem 3.1 of [7]).
We proceed in four steps, lowering iteratively in time the values δ and l such
that, for all x ∈ R, there holds

η (x− ct− ξ − l)− δ ≤ u(t, x) ≤ η (x− ct− ξ + l) + δ. (81)

Step 1 By assumption (18) and since η is increasing from ηl to ηr, there
exist ∆1 < ∆0, and L > 1 sufficiently large such that (81) holds with

t = t1 := 0, δ = δ1 := ∆1, ξ = ξ1 := 0, and l = l1 := L− σ∆0.

Step 2 We define

δ∗ := min (∆1, ε∗/4) and κ∗ := σε∗/2− σδ∗ ≥ σε∗/4 > 0. (82)

Also, we set t∗ ≥ 2 such that

e−βt∗ (1 + ε∗/δ∗) eβ ≤ 1− κ∗. (83)

Using Lemma 5.4, we deduce from the previous step that there exists t2
sufficiently high such that (81) holds with t = t2, δ = δ2 = δ∗ and for a
certain ξ ∈ R and l = l2 ≤ L (as ε∗ implicitly depends on L, we further
ensures that lj ≤ L, for all j).

If l2 ≤ 1, one directly goes to Step 3. Otherwise, as long as lj > 1,
one applies Lemma 5.5 at time tj = t2 + (j − 2)t∗ (recall that (15) is an
autonomous evolution equation), δj = δ∗ and get, by (82) and (83), that (81)
holds for t = tj+1 with l ≤ lj − κ∗ and δ ≤ (1 − κ∗)δ∗. Therefore, one can
take δj+1 := δ∗, lj+1 := lj − κ∗ and iterate until lj < 1.
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Step 3 By Step 2, we have an index j0 such that (81) holds for t = tj0 ,
δ = δj0 = δ∗, ξj0 ∈ R and l = lj0 = 1. Using Lemma 5.5 and Definitions (82)
and (83), a straightforward computation inductively shows that, for all j ≥ 0,
Inequalities (81) hold for t = tj+j0 , δ = δj+j0 , and l = lj+j0 being defined by

tj+j0 := tj0 + jt∗, δj0+j := (1− κ∗)jδ∗ and lj+j0 := (1− κ∗)j, (84)

and for ξ = ξj such that |ξj0+j+1 − ξj0+j| ≤ (1− κ∗)j.

Step 4 We have shown that (81) holds for (t, δ, l) = (tj, δj, lj), for all j ≥ 0.
For t > 0, we associate j implicitly defined by t ∈ [tj, tj+1). Thus, we deduce
from Lemma 5.4 that (81) also holds for t, δ = δj, ξ = ξj, and l = lj + σδj.
Taking Step 3 into account yields, for all j > j0,

δ ≤ δ∗(1− κ∗)j−j0 and l ≤ (1 + σδ∗) (1− κ∗)j−j0 .

Moreover, ξj converges to ξ∞ and, for all j > j0,

|ξj − ξ∞| ≤ κ−1∗ (1− κ∗)j−j0 .

Yet, a simple calculation shows

(1− κ∗)j−j0 = (1− κ∗)−j0−tj0/t∗ exp (t ln(1− κ∗)/t∗) .

Setting κ := − ln(1− κ∗)/t∗ > 0 and

K :=
[
δ∗ +

(
1 + σδ∗ + κ−1∗

)
‖η′‖L∞(R)

]
(1− κ∗)−j0−tj0/t∗ ,

we obtain, for all t ≥ tj0 , t ∈ [tj, tj+1),

sup
x∈R
|η(x− ct− ξ∞)− u(t, x)| ≤δj + (|lj|+ |ξj − ξ∞|) ‖η′‖L∞(R) ≤ Ke−κt.

This concludes the proof of Theorem 1.3.
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