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Abstract— Nowadays, visual information is everyday more 
present, cameras are more and more fast, small and accurate. 
Improvements in computer vision enable to go further: to 
consider cameras as smart sensors.   
In this framework, this article propose to mix complex 
mechanical models with video processing in order to estimate 
invisible parameter and to enable the camera to forecast in the 
video, with a dynamic meaning. The concept is developed on 
particular cases of objects moving in a scene where the scenario 
is known. This application is a proof of concept on a case study of 
a 2D scenario of a ruler sliding on a table. The aim is to prove the 
feasibility on a real case with real time architecture. 

Dynamic systems, stochastic identification, computer vision, 
Kalman filters 

I. INTRODUCTION 
In several parts in the world, manufacturers are expected to 

make a revolution. With the explosion of the Internet of Things 
on the consumer market, and the improvement on domains 
such as augmented reality, virtual reality, or robotics, 
manufacturing is being redesigned in several development 
smart industry programs. Leaders companies are already taking 
the leap and investing in new methods of manufacturing. 
Improvements of costs, better quality monitoring, new 
diagnostic tools, data management, the field for innovation in 
those industries is very large. Cameras are particularly one of 
the smart sensor of those manufacture method by improving 
quality, traceability or manufacturing time. In this way, the 
development of a system able to mix complex mechanical 
model directly with frame from camera could open the path for 
the machine to understand the filmed scene and process 
augmented variables as prediction, interpolation, or estimation 
of hidden variables. 

Mixing data with models is not a new trend. Marchand & 
al. [1] use UKF to do identification and model calibration, 
Naets and al. [2] use accelerometers to display an augmented 
reality measurement on a vibrating beam, Simon [3] applied it 
on complex model. Kalman filters have been used in image 
tracking [4] but with linear models, but this is Particle filter 
which is most used in video processing to calibrate models (see 
[5]). 

Following the development initiated in a previous 
publication [6], this article carry on the promising concept to 
enable vision machine dealing with all the points mentioned 
before by improving the comprehension of the object by the 
computer. Based on a physical model of the object seen, this 
algorithm enables the machine to understand the behavior of 
the scene and to extract some hidden physical parameters 
directly from observation. This article introduce those concept 
are applied on a case study of a ruler sliding on a table. 

After a general overview of the algorithm, the model of the 
case study is described. Kalman filters and extraction process 
are developed after. Then the experimental setup is explained 
before the results. 

II. CASE STUDY

A. Algorithm overview 
The algorithm introduced here is composed of 3 main parts 

described on Fig. 1. The important part is that every block is 
designed to be real time with architecture frame to frame. In 
spite of the current results which are not yet real time, the aim 
is to switch to real time during a future code optimizing phase. 

Fig. 1: Macro architecture of the algorithm 

The video is respecting a classical frame of object 
detection. We took a static background hypothesis. It allows 
using background subtraction technic [7]. Here the detector 
used is a GMM (Gaussian Mixed Mixture) [8] and gives a 
binary mask of the ruler. Extracted information is the center 
position of the object and the main orientation angle α using 
the statistical moments [9]. From those position are calculated 
the object center speed and angular speed. Length and width 
are measured directly on the image and correspond to the 
variables. The state vector used later in the assimilation part is 
created from those extracted values.  
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The assimilation process is composed by two parts. First, a 
decision process is designed to initialize and manage the 
second part. This first part is based on the number on 
consecutive frames where the object is detected. The second 
part is an Unscented Kalman Filter (UKF) [10]. 
This architecture of Kalman filter management allows to run 
the Kalman filter without observation and to be more robust. 

Finally, the video output is augmented with the data from 
the dynamic model using a 2D model of the ruler. Here, the 2D 
model chose here is a simple rectangle. In order to separate the 
detection errors and the filter errors, two rectangles are 
displayed, one for the detected object, one for the assessed 
object ruled by the filter result (see Fig. 2) 

Fig. 2: Augmented video with real ruler in black, extracted ruler in blue, 
assessed ruler in red and length assessment in green. 

B. Model description 
The model chosen to simulate the behavior of the ruler is a 

double sliding contact point, A and B in the Fig. 3: ruler 
consideration for study, which models the ruler resistance by 
solid friction. TA and TB are the friction forces applied on A 
and B. 

Fig. 3: Ruler parametrization for the study 

The position of A and B could be variable in order to model 
some rough variation on a real table. The position of the two 
sliding contacts enables to model a ruler not perfectly flat. 

⎩⎪⎨
⎪⎧ ��̈ = ��� + �����̈ = ��� + �����̈̿ = �� ����. sin(�) − ��� . cos(�)�−�� ���� . sin(�) − �� �. cos(�)�

Fig. 4: Equation system of the model 

Two main hypothesis have been taken here in the model: 

 The table surface is considered to be perfect which
imply that the friction coefficient is considered
constant.

 The 2 contact points are symmetric regarding the
ruler gravity center.

III. EXTRACTION PROCESS

A. Gaussian Mixture Models (GMM) 
The GMM has been first proposed by Stauffer and Grimson 

[8]. It is first a method to model an unknown distribution with a 
sum of weighted Gaussian.  
Let’s explain with an application related to object extraction. 
We define for a particular pixel (u0,v0) an history of intensity 
grayscale value: I = {I1,…,It}. 

The aim here is to assess which intensities are most 
probably in the background. Supposing we want to model a 
group of pixel by K Gaussian, let’s define a canonical basis of 
dimension K based on those Gaussian : {e1,…,eK} 

We define a hidden random variable � ∈ {��, … , ��} and 
the probability P(Z = ek) = βk. 

So when Z = ek, X is projected onto the kth Gaussian : I ~ 
N(mk,Σk) with mk the mean and Σk the covariance of the 
Gaussian. 

Which gave for �(�) =  ∑ �(�|�). �(�) �= � �(� = ��). �(�|� = ��)�
���  

= � ��. �(�|��, Σ�)�
���  

This means that the probability of X can be formulated as a 
sum of K weighed Gaussian. The problem consists on 
optimizing the values (βk,µk,Σk) for each � ∈ {1, … , �} 

The procedure of initialization is the following: 

1. Define the N first frame without the object to find a
set of the values (βk,µk,Σk), � ∈ {1 , … , �}. 
In our case N = 5.

2. After those N first frame, for each frame, classify each
pixel into the category: {Foreground, Background}.
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3. Use the connected component in order to consolidate
the detection.

4. Update the GMM with the “Background” labeled
pixels.

The output of the GMM is a labelled frame, which means a 
frame which groups the different binary masks of the objects 
detected. 

The GMM detection is very efficient for detecting moving 
object which appears to be as transitory signal regarding the 
background model. There is a limit when the object becomes 
static: the object is progressively integrated in the background. 
To become more robust, the solution is to provide more frame 
in the initialization phase. 

Some authors add a tracking step [11] or a shadow 
detection step [12] to consolidate the GMM detector. 

B. Statistical moments method 
Statistical moments are here used only to find basic 

mechanical parameters of each object: centroid, area, and 
orientation.  Only few parts of the Hu moment are described 
here, regarding the needs we had. 

Considering a 2D continuous function f(x,y), the raw 
moment is defined as : ��� = � � �����(�, �)�� ���

��
�

��  

Thus the discrete equivalent to apply in a numeric image is: ��� = � � �����(�, �)��  

I is the 2 variables function describing the intensity of each 
gray-level pixel. 

In this framework, some moments refers to interesting 
images properties for a given object in the image: M00 as the 
area, or the centroid (�, �) = (������ , ������). 

To obtain the orientation, we place in the object reference 
by defining the central moments M’pq as for the discrete 
version: �′�� = � �(� − �̅) �(� − ��)��(�, �)��  

A covariance matrix of I(u,v) can be construct from those 
moments. Defining: �������� = �′���′��

The covariance matrix: �����(�, �)� =  ��������� ���������������� ���������
From this matrix, the major axe of the object is given by the 

eigenvector of the largest eigenvalue, which means for the 
object orientation: 

� = 12  arctan � 2 ���������������� − ���������
IV. STOCHASTIC IDENTIFICATION

A. Kalman Filters 
Kalman filtering refers to a family of algorithms that tracks 

the temporal evolution of a dynamic model based on noised 
measurements. This evolution is described here in the discrete 
time domain: 

� ���� = �(��, ��)���� = ℎ(����, �′���) 

The first equation of the system above is the propagation 
equation whereas the second is the observation equation. Xk is 
the state vector at the step k, f(.) is the model function, wk the 
process noise assumed to be Gaussian N(0,Q), and Zk is the 
observation vector, h(.) the observation function and w’k the 
observation noise assumed to be Gaussian N(0,R). 

The Kalman filter is an efficient algorithm able to predict 
the future state vector using its means and covariances. It is 
based on a model of the system described by the function f(.) 
compared to the observation Zk with the observation function 
h(.). The Kalman filter is based on two major hypotheses: the 
model function and the observation function are linear, and the 
variables considered in the system are Gaussian. Due to the 
linear hypotheses, f(.) is the F matrix and h(.) the H matrix in 
the following. 

An approach of Kalman algorithm is to separate it in two 
phases. The predict phase gives an a priori estimate of the state 
and covariance based on previous time step tk: �����|� = ��|����|� �����|��� =  ��|����|�����|�� + � 

The update phase corrects the deviation of these estimations 
based on new observations at time stem tk+1. It is composed by 
an innovation phase: �����|� = ���� − ������|� �����|��� =  ����|��� �� + � 

Then the calculus of the Kalman gain: ���� = �����|��� ��������|��� ���
Finally the update of the state and covariance: �����|��� =  �����|� + ���������|�  �����|����� = (� − �����)�����|���

B. Unscented Kalman Filters 
Kalman has been derived in a lot of different forms in order 

to pass through the problem of non-linear cases. Among those 
methods, the Unscented Kalman filter method (called UKF) 
has been chosen to deal with the two issues of our case: the 
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mechanical model is highly nonlinear, and it is described by 
unsolved differential equations. 

Unscented Kalman filter has a totally different approach 
compared to others filters as Extended Kalman filters [2]. The 
Extended version proposed to linearize using a first order 
development of the nonlinear function. The Unscented version 
proposes to use the probability distribution to approximate the 
nonlinear function. 

The unscented transform enables the propagation of the 
state vector through the model function f(.) or the observation 
function h(.). In this way, a deterministic sampling technique is 
used to catch the state probability distribution and the two first 
moments. The sampling set is composed of sigma points and 
those sigma points are propagated through the nonlinear 
function. The minimal number of points is n+1 with n the size 
of the state vector. In our case, it has been chosen 2n+1 sigma 
points. After that, the inverse unscented transformation is used 
to obtain the state vector and the covariance from the sigma 
points. This method can be repeated for the innovation phase 
whether the observation function is nonlinear too. 

After the unscented step, the standard Kalman filter can be 
applied. Another unscented step is added around the innovation 
phase whether the h(.) function is nonlinear. 

V. EXPERIMENTAL SETUP  

A. State system choice 
The state equation transform is a crucial step in the model 

process. Regarding to the model equation and description (Fig. 
3 and Fig. 4), we can separate the state vector in 3 different 
parts: 

 The observed variable from the camera: object
centroid (�� , �� ), object angle (�), and ruler
length (�).

 The model is using the translation and rotation
speed as intermediate variables. These speeds have
been added into the state vector in order to have a
smoother value: object center speed and angular
speed (���  , ��� , ��).

 The equation parameters: the friction coefficient μ
and the position of the virtual points L1 and L2.

The motion equations are quickly complicating to a 
nonlinear form due to the intervention of sinus/cosinus for the 
intervention of α. Moreover the differential system is a coupled 
one, making an explicit solution impossible. All these points 
lead to associate the Unscented Kalman filter with a Runge-
Kutta 4 solving method. 

The adopted approach is to make an observation matrix 
simple and linear and transfer all the nonlinearities to the 
model function. 

The state vector and the observation vector at discrete time 
k are:  

�� =
⎝⎜
⎜⎜⎜
⎜⎜⎛

����������������� ⎠⎟
⎟⎟⎟
⎟⎟⎞

 and  �� =  ������� � 

The propagation matrix is linear and has the form: 

H = �1 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0� 

B. Experimental setup 
The test bench used to film the ruler movement is described 

on Fig. 5 below. 

Fig. 5: Test bench 

The setup of the experimental was defined in order to respect 
some hypotheses to simplify the video processing and to 
respect the framework used on the simulated ruler: 

 A static background
 The real scene projected on the camera sensor can be

approximated to a 2D scene.
 The object is considered to have the same aspect

during the scene which means no reflection

The sensor plane has been set parallel to the table and the 
thickness of the ruler is about ½ mm: this setup is avoiding 
shadows and perspective changes. 

In order to avoid reflection, the light was set up with an 
angle of 30° in order to light up the table and keep the ruler as a 
dark object. 

In order to solicit the whole model, 3 different scenarios 
have been chosen: 

- Quasi exclusive translation movement 
- Quasi exclusive rotation movement 
- Mixed translation/rotation movement 
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VI. RESULTS

A. Extraction 
The method used to quantify the results is to compare the 

area detected by the GMM detector and the real area measured 
on the frame. 

The measure consists on extracting a first binary image 
from the detected polygon and a second binary image from the 
frame threshold with an adapted value to extract only the ruler. 
An “exclusive or” function allows to identify the pixels P 
which belongs to the not overlapped area by the two extracted 
masks (in white on Fig. 6). Then, the matching ratio is: ����ℎ��� ����� = ∑(� ∈ ������� ����������)∑(� ∈ �������� �����)

Fig. 6: “Exclusive or” between the real ruler in 
orange and the detected ruler in blue 

As we can see on Fig. 7 and Fig. 8 the extraction has good 
performance. There is one non-detection because of a parasite 
reflection, and the detection is not complete when the ruler 
appears in the frame and when it begins to disappear because 
of its static behavior. 

Mean Minimum Maximum 

89.0% 83.3% 96.2% 

Fig. 7: Performance of detection during the movement without the non-
detection 

Fig. 8: Detection error 

B. Assimilation 
The assimilation part can be characterized in the restricted 

framework of our model of two kind of comparison. 

1) Tracked variables

The variables observed. In our case it is the position, angle 
and ruler length. In the table below (Fig. 9) are summarizing 
the performances using the same method than the extraction 
(see Fig. 10). 

Mean Minimum Maximum 

68.5% 14.4% 100% 

Fig. 9: Performance of assimilation compared to detection during the 
movement without the non-detection 

Fig. 10: Assimilation Error 

Those results are far from satisfactory. But, it is interesting 
to compare it to the Fig. 11 of the different tracked variables. 
The results are more satisfying because the variables are 
tracked. The bad performances on the matching tests are due to 
a bad assessment of the velocities, which induce an error on the 
position. The correcting behavior of the Kalman filter can be 
seen from the frame 250 on Fig. 10. 

Fig. 11: Comparison between the assimilated position and the real 
position 

2) Assessed variables

The variable linked to the observed variables by the model. 
It is the centroid velocity and the angular velocity. In order to 
do a comparison, the different velocities are also computed 
directly from the video processing data. 
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We can see on Fig. 12 that the assessment of the angular 
velocity is efficient and robust compare to the video processing 
computed angular velocity. 

Fig. 12: Comparison between the assessed angular velocity and the 
angular velocity computed from detected angles 

C. Estimation 
The model has 2 parameters: the sliding friction coefficient 

and the 2 symmetric contact points. The sliding friction 
coefficient has been experimentally determined at about 0.88. 
We can see on the Fig. 13 that the value estimated is 
converging to the expected value which is the experimentally 
determined. 

Fig. 13 : Comparison between the estimation value of the sliding friction 
coefficient and the expected value 

VII. CONCLUSION

This article applies a concept of mixing dynamic models with 
video processing. The concept is developed here in 2D and for 
known objects with a known scenario in the filmed scene. The 
aim is to enable the camera to understand the mechanical 
behavior of the object in order to do prediction, interpolation, 
compression and augmented reality. The results developed here 
show the feasibility of the concept applied on a real case study 
of a ruler sliding on a table: variables tracking, variable 
assessment and parameter estimation. 
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