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Abstract

We study, with numerical methods, the fractal properties of the domain walls found in slow quenches
of the kinetic Ising model to its critical temperature. We show that the equilibrium interfaces in
the disordered phase have critical percolation fractal dimension over a wide range of length scales.
We confirm that the system falls out of equilibrium at a temperature that depends on the cooling
rate as predicted by the Kibble – Zurek argument and we prove that the dynamic growing length
once the cooling reaches the critical point satisfies the same scaling. We determine the dynamic
scaling properties of the interface winding angle variance and we show that the crossover between
critical Ising and critical percolation properties is determined by the growing length reached when
the system fell out of equilibrium.

Introduction

In recent years, the interplay between percolation and coarsening [1, 2, 3] in bi-dimensional spin
models was studied in quite some detail. A series of papers proved that the critical and sub-critical
instantaneous quench dynamics of the 2d ferromagnetic Ising model rather quickly approach a critical
percolation state (in a time-scale that scales typically, as a small power of the system size) and later
undergo the expected coarsening phenomenon that progressively makes the short length scales acquire
the properties of the equilibrium target state. More precisely, in the quenches performed the evolution
starts from a totally random initial configuration mimicking equilibrium at infinite temperature and
later evolve with different microscopic stochastic spin updates. This feature was demonstrated with
extensive numerical simulations of the Glauber –Ising model for ferromagnetism [4, 5, 6, 7] and the
Kawasaki model for phase separation [8, 9] quenched into their symmetry broken phases. The effects
of weak disorder were considered in [10, 11]. The voter model dynamics was investigated in [12] and,
especially relevant for the present study, quenches to the critical point of the 2d ferromagnetic Ising
model were considered in [13]. The early approach to critical percolation also explained why zero
temperature quenches of the 2d Ising model often get blocked in metastable states with infinitely long-
lived flat interfaces [14, 15, 16, 17, 18, 19, 20]. Metastable states in quenches from the critical point to
zero temperature were considered in [21].

In statistical physics studies, quenches are taken to be instantaneous. Indeed, the relevant time scales
in experimental realisations are such that the cooling time is much shorter than all other time scales.
Instead, in field theoretical models of cosmology, there was interest in determining the cooling rate
dependencies induced by a very slow quench across a second order phase transition. The original
Kibble arguments for the existence of spatial regions that are not causally connected long after going
through the phase transition [22] were complemented by a scaling proposal by Zurek [23, 24]. This
argument allows one to estimate the correlation length reached when the system falls out of equilibrium
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approaching a critical point from the symmetric phase with a weak finite speed. The interest in
counting the number of topological defects left over after crossing the phase transition triggered by
cosmology [25], prompted condensed-matter experimental physicists to try these measurements in the
lab. This kind of experiments were first performed in Helium 3 [26] and liquid crystals [27] more than
twenty years ago. The subject was recently revived by the realisation of cold atom experiments in
which the samples are taken across the critical region with a finite speed [28, 29, 30, 31]. New studies
in ion crystals [32, 33, 34] and 2d colloidal suspensions [35] have also been recently performed. Two
recent reviews give a more complete summary of the status of this field [36, 37].

Studies of cooling rate dependencies in statistical physics models were performed in a number of papers.
The 2d Ising model with non-conserved order parameter dynamics was considered in [38] and the 2d
xy (planar spins) model in [39] (the latter is relevant to discuss the recent experimental activity in
Bose – Einstein condensates and colloidal suspensions). In the former model the phase transition is a
conventional second order one, from a symmetric to a symmetry broken phase, while in the latter case
the transition is of Berezinskii – Kosterlitz – Thouless (BKT) kind and the target phase is a critical one.
The aim of these papers was to show that, contrary to what was usually claimed in the KZ literature, the
dynamics are not frozen after the system falls out of equilibrium close to the critical point, be it second
order or BKT. The critical or subcritical dynamics, at continuously changing control parameters, let
the dynamic correlation length go on growing in time. Scaling arguments were used in these papers to
derive the dependence of the growing correlation length, and hence the number of topological defects,
as a function of time and cooling rate and they were favourably compared to the outcome of numerical
simulations. Exact results for the one dimensional Ising chain and a variety of cooling procedures
were derived in [40]. The spherical ferromagnetic model with exponentially fast cooling was treated,
also analytically, in [41]. A one-dimensional non-equilibrium lattice gas model with a phase transition
was treated in [42]. Extensive numerical simulations of models for two dimensional atomic gases were
very recently presented in [43, 44]. The evolution of the order parameter in the finite dimensional
Ising model slowly cooled to the critical point were studied with different microscopic stochastic rules
in [45].

In this paper we revisit the slow cooling of the 2d Ising model [38, 45] paying now special attention
to the geometric properties of the domain structures formed when approaching the critical point. The
paper is organised as follows. In section 1 we present the model and the observables. Section 2
summarises some features of the equilibrium state that are useful for the dynamic study. We then
present a short account of instantaneous quenches in section 3 and we finally enter the heart of the
results on the cooling rate measurements in section 4. The last section sums up our results.

1 The model and the observables

1.1 The bi-dimensional ferromagnetic Ising model

We focus on the emblematic ferromagnetic Ising model

H({σi}) = −J
∑

〈i,j〉
σi σj ,

with J > 0, and spin variables taking only two values, σi = ±1. In particular, we study its bi-
dimensional d = 2 realisation on the square lattice, so that the symbol 〈i, j〉 represents a sum over
nearest neighbours only. The total number of spins in the system is L × L with L the linear length
of the lattice measured in units of the lattice spacing a. The canonical equilibrium properties as a
function of the parameter K = β J , with β the inverse temperature, are described by the partition
function

Z(K) =
∑

{σi=±1}
expK

∑

〈i,j〉
σi σj .

Hereafter we work with units such that J = 1.
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The model is endowed with microscopic Monte Carlo stochastic dynamics for the individual spins. The
microscopic update rule is defined as follows: we randomly chose a spin i ∈

q
0, L2

q
in the system. The

spin is flipped (σi = −σi) with a probability

p = min
(

1, e−β δH
)
,

where δH is the energy change due by the potential flip of the selected spin. β δH can only takes
five different values: −8K, −4K, 0, 4K, or 8K. The process is controlled by the parameter K given
by the external inverse temperature of the bath β times the exchange parameter J . Repeating this
process L2 times constitutes one unit of time in the kinetic Ising model. Hereafter, the time appearing
in dynamical studies is always in this unit. We use a square lattice with linear size L = 1024 and
periodic boundary conditions.

1.2 Percolation

Site percolation [46, 47, 48, 49] is a purely geometric problem in which particles are placed at the sites
of a lattice with probability p. This model undergoes a phase transition at pc, a critical value of p that
depends on the geometry and dimension of the lattice. In d = 2, and for a square lattice, pc ∼ 0.59.
The two phases correspond to one with no cluster spanning the system from one end to the other
in any spatial directions (p < pc) and one in which there is one cluster percolating across the lattice
(p > pc). At the critical point the behaviour is similar to the one at a thermodynamic second order
critical point with universal critical exponents characterising various geometric quantities that one can
define.

The Ising model can be thought of as a percolation problem after performing a one-to-one mapping
between spins and occupation numbers. For example, an infinite temperature configuration in which
the spins take ± values with probability 1/2 is a random percolation configuration with p = 1/2. It is,
therefore, below the threshold for percolation of a cluster of occupied sites on the square lattice.

1.3 Critical behaviour: fractal domains

We will investigate the properties of geometric domains in the kinetic Ising model, that is to say,
ensembles of connected spins pointing in the same direction (surrounded by a domain of the opposite
orientation when in the bulk, or reaching the boundaries of the system if open boundary conditions
are used).

At the critical point of the 2d ferromagnetic Ising model the geometric domains are fractal objects.
Their typical area and typical interface length are

Ac = `DA , `c = `D` ,

with ` a typical length. The Hausdorff dimensions are given by

DA = 1 +
3κ

32
+

2

κ
, D` = 1 +

κ

8
,

with κ a universal parameter that characterises the critical point. At the thermodynamic critical point
of the Ising model in dimension two, κ = 3. Instead, at the percolation threshold κ = 6. In this study
we only analyse interface properties so we will only use D` in the rest of the paper.

1.4 Observables

We used a small number of observables that are enough to characterise the growing length and geometric
properties of the interfaces. We define them in this section.
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1.4.1 Space time correlation function and correlation length

In equilibrium, the correlation of the spin fluctuations

Cc(r = |i− j|) = 〈σi σj〉 − 〈σi〉 〈σj〉 , (1)

where r ∈
q
0, L/2

y
, allows one to extract the equilibrium correlation length ξeq with different studies

of its decaying properties over distance. For example, one can use a fit to the expected form close to
the critical point,

Cc(r) =
e−r/ξeq

ra
,

or extract it from the weighted integral

ξeq =

Γ(ζ − a)

∫ Λ

0
rζ Cc(r) dr

Γ(ζ − a+ 1)

∫ Λ

0
rζ−1Cc(r) dr

(2)

with a convenient choice of the power ζ and the cut-off length Λ. In particular, we will use ζ = 2 and
Λ is chosen the largest possible such that Cc(r) remains larger than its statistical fluctuations.

In dynamical studies, the space-time correlation is defined just as in eq. (1) where the spins are time-
dependent variables. The average is taken over different histories (random noises) of the dynamics.
After a quench, while the system is far from equilibrium, the spin average vanishes and the connected
and plain correlations simply coincide. The procedure in the right-hand-side of eq. (2) can then
be applied to extract the dynamic growing length ξ(t) that characterises the growth of equilibrium
structures close, at, and below Tc.

1.4.2 Variance of the interfaces winding angle

The winding angle, θ(`), is measured on any bi-dimensional curve as a function of the curvilinear
abscissa, `, as follows. We first choose an origin point for the curvilinear abscissa. Then, we measure
a reference angle, θ0, between a chosen fixed direction and the tangent to the curve at the origin of
the curvilinear lengths. Now, for each point on the curve, we define η(`), the local angle between the
same chosen fixed direction as earlier and the tangent to the curve at `. Finally, the winding angle is
obtained by integrating the variation of the local angle along the curve:

θ(`) = θ0 +

∫ `

0
dη (3)

(note that on a square lattice η can only take four values). For closed curves, after one turn (ie
returning to the origin), we have ∆θ = 2nπ, where n ∈ Z is the number of loops. In particular, since
the curve is an interface, it cannot cross itself and ∆θ = 0 or ∆θ = ±2π (where the sign changes
whether the curve rotates clockwise or anticlockwise). The former means that the interface encloses a
finite area, and the latter means that the interface spans the system from one border to another one.

The moments of these angles can then be computed by taking their desired power and performing the
equilibrium or dynamic statistical averages.

For a fractal curve the average of the angle vanishes and its variance satisfies [50]

〈
θ2(`)

〉
= C +

4κ

8 + κ
log ` ,

where ` is the curvilinear distance along the curve, C is a non-universal constant, and κ takes a
universal value depending on the kind of criticality.

In the dynamic model, this definition can be applied to study the evolution of the geometric properties
of the interfaces in the system.
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2 Equilibrium behaviour

In this section we review some properties of the equilibrium behaviour of the 2d Ising model at high
temperature and at the critical point that are relevant to our study.
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Figure 1: Equilibrium behaviour above the Curie point (T ≥ Tc). Panel (a) shows the winding angle
variance as a function of the curvilinear length on the interfaces, at different temperatures. The two
straight lines, κ = 3 and κ = 6, are the expected slopes for the Ising and percolation universality
classes, respectively. Panel (b) displays, as a function of T , the value of κ extracted from the slope of〈
θ2(log `)

〉
at short length `. The horizontal axis, the same as on the graphic below, is a logarithmic

scale where we added the two extreme points, 0 and ∞. The values of κ corresponding to the two
universality classes (Ising and percolation) are labeled on the graph. The lower row shows, in (c),
typical snapshots of the equilibrium state of the system (L = 128), at different temperatures above
Tc, and in (d) the average occupancy rates of the first largest clusters when approaching the critical
temperature. The nth average occupancy is the fraction of the system occupied, on average, by the nth

largest cluster. Except for the snapshots, all the results presented in this figure were obtained using
L = 1024.

We start by recalling a number of thermal features above the critical temperature. With this, we want
to establish a reference equilibrium behaviour for the relevant observables.

Away from the critical point correlations span a finite distance. The equilibrium correlation length
diverges at the Curie critical temperature, and in the close vicinity of the critical point, it does as a
power law,

ξeq(τ) ∼ τ−ν where τ =
T − Tc

Tc
> 0 (4)
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is the distance to the critical point1, and ν = 1 is the universal critical exponent of the Ising universality
class associated to the correlation length. Equation (4) is only valid in a close vicinity of the critical
temperature (τ � 1); far from it, there are extra corrections to add, but we do not need them here.
Another limitation of eq. (4) is that it is only valid for an infinite system; if the system size (L) is finite,
it limits the growth of the correlation length to a saturation threshold that scales with the system size
as ξeq(τ = 0) = ξ̄eq ∼ L.
Let us now discuss the equilibrium behaviour of the variance of the winding angle (wav), ie the nature
of the interfaces between domains, see fig. 1 (a). We observe that the wav increases logarithmically on
short curvilinear length scales; the value of κ extracted from the slope of

〈
θ2(log `)

〉
is close to 6 at high

temperature and close to 3 at Tc. This means that, on short length scales, the interfaces of the domains
are subject to a conformal invariance (with the criticality of percolation at high temperature and the
one of Ising at Tc). There is nothing surprising here. Firstly, at the Ising critical point the domains
obviously have the criticality of the corresponding universality class. Secondly, at high temperature,
the Ising model is a percolation problem (correlations are so short that one could argue that the spins
are randomly chosen to point up or down with half probability, p = 1/2). A typical configuration is,
therefore, one of a site percolation problem away from its critical point (recall that, on a square lattice,
the critical percolation threshold is at pc ≈ 0.593 > 1/2 = p). In consequence, on average, there are no
percolating clusters in these configurations. This means that the conformal invariance disappears at
sufficiently long length scales: ` ∼ |p− pc|−νpD` ∼ 102, where νp = 4/3 is the percolation correlation
length critical exponent and D` = 7/4 is the fractal dimension of the interface of a percolation cluster.
This leads us to our second remark: at high temperature and long length scales, the wav does not
grow logarithmically anymore; it increases much faster. This is, in fact, due to the finite size of the
domains. Indeed, since we are far from the critical percolation threshold, the domains remain small,
and the overall curvature necessary to close their interface is responsible for a faster growth of the
wav. When the temperature decreases the domains swell (like the correlation length), and the wav
stops its logarithmic growth at a longer and longer length scale. Obviously, when reaching Tc, there
is a true conformal invariance, and the wav increases logarithmically on all length scales. Considering
only the short length scales, as the temperature decreases, the criticality smoothly evolves from the
percolation universality class to the Ising one. This is most clearly shown in panel (b) in fig. 1 where
κ is plotted as a function of T . The slope is extracted from the wav by linear interpolation on short
length scales; the longer length scales, where criticality disappears, are excluded from the interpolation
set. The Ising criticality is only reached in a close vicinity of the critical point (T < 1.1Tc).

The fact that we observe critical percolation properties in the disordered phase is related to the presence
of a critical curve in the temperature-field phase diagram of the 2d Ising model. It separates a phase
with an infinite cluster of parallel spins (at sufficiently large external field) from one without (weak
field). This critical curve joins the Ising critical point (Curie temperature and zero field) with the
infinite temperature limit at non-vanishing value of the external field, while remaining close to the zero
field axis [49]. The vicinity of this line at our working temperatures justifies the fact that we see (finite
size) critical percolation geometric properties on the spins clusters.

The last quantity we want to discuss is the average occupancy rate of the largest clusters shown in
fig. 1 (c). Firstly, at high temperature, all the clusters are more or less of the same size. Then, when
temperature decreases, the bigger clusters start to grow by absorbing the smaller ones, up to a point
(T ≈ 1.1Tc) where only the two biggest prevail over all the others. Having two coexisting big clusters
is a feature of percolation of Ising clusters2. These two clusters will coexist up to a very close vicinity
of the Curie temperature (T . 1.01Tc). In contrast, at the Ising critical point there is only one large
cluster (much larger than all the others).

To summarise, at Tc, or in its very close vicinity, the system is occupied by only one large geometric
cluster having the Ising criticality (κ ≈ 3) at all length scales. See the snapshot at T = Tc in fig. 1

1here we are only interested in the behaviour above the Curie temperature (ie T > Tc).
2 in site percolation, at p = pc, the largest cluster (the percolating one) is much larger than the second one (of

approximately one order of magnitude). In Ising models two percolating clusters are in competition: the up spins one
and the down spins one; generally, in a q-state Potts model, the q largest clusters are of the same order of magnitude
while the q + 1-th will be much smaller.
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(c). At high temperature, the domains are much smaller. However, on short length scales, they have
the geometric properties of critical percolation (κ ≈ 5.5, which is only 5% different from the slope
expected with κ = 6). Finally, in between, the criticality smoothly changes from the percolation one
to the Ising one in the range [Tc, 1.1Tc]; the coexistence of the two biggest clusters ends much closer
to the critical point (T . 1.01Tc).

3 Instantaneous quenches

In this section we recall some features of the dynamics after instantaneous quenches to zero temperature
and the critical point, as interpreted from the geometric point of view that we adopt in this paper.

3.1 Quench to T = 0
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(a) (b)
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(d)

Figure 2: Out-of-equilibrium evolution in post-quench dynamics (from T = 2Tc to T = 0). Panel (a)
represents the winding angle variance (wav) at different times following the quench. These times are
reported in panel (b), and are chosen such that the constraint a � ξ(t) � L is fulfilled. Panel (c)
still represents the wav, but with a different scaling: the horizontal axis is rescaled following eq. (5),
and `d(t) is evaluated through its theoretical expression (∼ t1/zd). Panel (b) shows the evolution over
time of the correlation length ξ(t) extracted from the space-time two point correlation function. Its
theoretical time-dependence is shown with a dashed line; the range of validity of this prediction is
highlighted by the grey shading (a � ξ(t) � L). Panel (d) represents, as a function of time, the
average occupancy rates of the first largest clusters (see fig. 1). All the results presented in this figure
were obtained using a system size L = 1024.
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The second situation of interest is the one of an instantaneous quench to zero temperature. We consider
the following procedure: starting from an equilibrium state at T = 2Tc, at t = 0 we suddenly change
the temperature of the bath to zero, ie

T (t) =

{
2Tc t ≤ 0
0 t > 0

and we observe the further evolution of the system.

In such a procedure, the growing length is known to increase as a power law,

ξ(t) ∼ t1/zd ,

where zd = 2 is the dynamical exponent [51, 2]. Of course, this result holds only for t such that
a� ξ(t)� L: ξ(t) cannot be smaller than the lattice spacing, and it is bounded by the finite system
size. The growing length extracted from the correlation function after such a quench is compared to
the theoretical expectation in fig. 2 (b).

Let us now discuss how the behaviour of the wav evolves in time, as displayed in fig. 2 (a). At the
initial time, the system is in equilibrium, and the wav behaves as described in eq. (3), see fig. 1 (a).
Then, the zero temperature dynamics start to smooth the interfaces: first, on short length scales,
then, on longer length scales. This is the first part of the curve and the wav does not increase since a
smooth interface has no criticality. In the meantime, the clusters swell, and since the system has not
yet realised, at long length scales, that it is at zero temperature (and should have smooth interfaces),
it develops the criticality of percolation. This is the second part of the curve; the wav restarts to grow
logarithmically. The typical (curvilinear abscissa) length scale that separates these two behaviours is
denoted `d(t), and is related to the typical size of the domains:

`d(t) ∼ ξ(t)D ∼ tD/zd =
√
t ,

since D = 1 is the (fractal) dimension of the smooth interfaces on short length scales. The wav has a
universal behaviour in time that is highlighted by the rescaling

`→ `

`d(t)
, (5)

once again, while ξ(t) is in the range a� ξ(t)� L. See fig. 2 (c).

Figure 2 (d) shows the evolution of the average size of the largest clusters. Starting from a high-
temperature equilibrium state, all the clusters are almost of the same size. Next, in the early dynamics,
they all grow in the same way. As soon as the correlation length starts to grow, the larger clusters
progressively swallow the smaller ones. Indeed, the smaller the clusters, the faster they disappear.
This is the so-called coarsening dynamics. In particular, the second largest cluster lengthly coexists
with the largest one. As already mentioned, this long coexistence of two large clusters having almost
the same size (the third cluster is far smaller) is a typical feature of percolation of Ising clusters (see
footnote 2 page 6).

In the course of this process, the quench protocol went through the Ising critical point, and there is no
track of it. Now the question is: what happens if, like in real experiments, we cannot do the quench
instantaneously? What is the influence of the time spent near the Curie temperature? Section 4 will
address these questions. However, let us first explore the dynamics after an instantaneous quench to
the Curie temperature.

3.2 Quench to T = Tc

The process is the same as above, except that the temperature immediately after t = 0 is now the
Curie temperature:

T (t) =

{
2Tc t ≤ 0
Tc t > 0

8
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Figure 3: Out-of-equilibrium evolution in critical post-quench dynamics (temperature is instanta-
neously taken from T = 2Tc to T = Tc). The graphics are organised in the same manner as in fig. 2.
However, panel (c) is now scaled following eq. (6), where `c(t) is evaluated through its theoretical
expression (∼ tDc/zc). Moreover, in the lower right figure, we added with dashed lines the equilibrium
values of the average occupancy rates of the first largest clusters at Tc.

In this situation, the correlation length still grows as a power law,

ξ(t) ∼ t1/zc ,

with zc ≈ 2.17 the critical dynamical exponent [52, 13, 53, 54]. The growth of the correlation length is
slightly slower than in the previous situation since 1/zc ≈ 0.461 < 1/2. See panel (b) in fig. 3. Again,
this result is only true for ξ(t) in the range a� ξ(t)� L.

Concerning the wav, it behaves exactly as in the zero temperature quench except that, instead of the
smooth zero temperature thermal state, it is the Ising criticality that develops over short length-scales,
see fig. 3 (a). The typical (curvilinear abscissa) length scale that separates the Ising criticality from
the percolation one, `c(t), scales differently with the correlation length:

`c(t) ∼ ξ(t)Dc ∼ tDc/zc .

Since the interfaces on short length scales are not smooth anymore, their fractal dimension is given by

Dc = 1 +
κc

8
= 1.375 ,

where κc = 3 is the same universal parameter as in the pre-factor in front of the logarithmic growth
of the wav. Note that Dc/zc ≈ 0.634 > 1/2. The wav still has a universal behaviour, now highlighted
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by the rescaling

〈
θ2(`, t)

〉
→
〈
θ2(`, t)

〉
− 4κc

8 + κc
log ` and `→ `

`c(t)
, (6)

where 4κc/(8 + κc) ≈ 1.09, and still while ξ(t) is in the range a� ξ(t)� L, see panel (c) in fig. 3.

Finally, the average sizes of the largest clusters evolve in a very similar way to the one found in the
T = 0 quenches: the only perceptible differences are that the smallest clusters do not disappear (thanks
to the thermal fluctuations), and the dynamics are slightly slower (since zc > zd). See panel (d) in
fig. 2.

4 Effects of a finite cooling rate
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Figure 4: (a) Description of the cooling process. Temperature is linearly decreases from T = 2Tc at
t = 0 to T = Tc at t = τQ. τQ controls the cooling rate, and the larger the values it takes, the slower
the cooling. The right column (b) shows typical snapshots of the system (L = 128) in the course of
the cooling process, and for different values of the cooling rate. Panel (c) displays the evolution of
the correlation length extracted from the space-time correlation function in the course of cooling in a
system with L = 1024 (note that the maximum value of ξ is close to 10, much shorter than the system
size). We have also represented the equilibrium correlation length at the corresponding temperatures.

In the present section, we will discuss how the time spent in the vicinity of the Ising critical point
affects the dynamics.
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Let us first describe the process considered in the remainder of this paper. The system is initially
placed in an equilibrium state at T = 2Tc (ie T (t) = 2Tc for all t ≤ 0). Next, at t = 0 the temperature
of the bath is linearly cooled following

T (t)

Tc
= 2− t

τQ
,

where τQ is the cooling time up to the Curie temperature (see fig. 4). In the present study, we only
consider the dynamics above Tc (ie t ∈ [0, τQ]). Studies of the cooling rate effects on the coarsening
dynamics that is at work close and below the critical point, even after annealing, have been presented
in [38] for the 2d Ising model, in [39] for the 2d xy model, in [42] for a one-dimensional non-equilibrium
lattice gas model with a phase transition between a fluid phase with homogeneously distributed particles
and a jammed phase with a macroscopic hole cluster, and in [43, 44] for time-dependent dissipative
and stochastic Gross – Pitaievskii models relevant to describe micro-cavity polaritons and cold boson
gases.

4.1 The Kibble – Zurek mechanism

Starting from a thermal state, the system will follow the equilibrium conditions dictated by the changing
environment as long as it can: ie up to a time, called t̂, when the time needed to thermalise becomes
too long with respect to the relative rate of variation of temperature. Next, the system falls out-
of-equilibrium and its further evolution will be discussed later. Obviously, the slower the cooling,
the later the system will fall out-of-equilibrium. For an infinite system size, the time required to
thermalise at the Ising critical point is infinite; it actually scales as Lzc , and, unless cooling rates are
scaled with the system size in a convenient way, the system will necessarily fall out-of-equilibrium at
a certain point. Conversely, for finite-size systems, there exists a sufficiently slow cooling rate such
that the system never goes out-of-equilibrium; we will discuss this point in section 4.2. We suppose
the cooling to be sufficiently slow so that the system falls out-of-equilibrium only in a close vicinity
of the critical point. On the one hand, in equilibrium, the correlation length depends on the distance
from the critical point as τ−ν . On the other hand, close to Tc, the dynamic correlation length grows
in time as ξ(t) ∼ (t+ ] ξ0

zc)
1/zc , where ξ0 is the initial correlation length and ] some constant factor.

After an instantaneous quench from a state with correlation length ξ(t = 0) = ξ0 to a temperature
at a distance τ > 0 from the critical point, the thermal state is reached after a time tth(τ) such that
ξ
(
t = tth(τ)

)
∼ ξeq(τ) ∼ τ−ν . Assuming that the instantaneous quench is performed from 2Tc and

that the correlation length vanishes at this temperature, ξ0 = 0, we have tth(τ) ∼ τ−νzc . This is good
estimate for the time needed to equilibrate at a distance τ from criticality.

Now, following the argument proposed by Zurek [23], the system falls out-of-equilibrium at a time
t̂, when the time needed to reach Tc, τQ − t̂ in the linear cooling procedure, becomes smaller than
the time needed to thermalise at the current temperature T̂ (the standard notation is such that the
temperature and time at which the system falls out of equilibrium are noted by hats). Hence, we have

τQ − t̂ ∼ tth(τ̂) ∼ τ̂−νzc ∼
(

1− t̂

τQ

)−νzc
∼
(
τQ − t̂
τQ

)−νzc
,

where τ̂ is the distance from the critical temperature at t̂. Therefore, the system falls out-of-equilibrium
at

t̂ = τQ − ] τQνzc/(1+νzc) ,
where νzc/(1 + νzc) ≈ 0.685 and ] another constant factor.

In many papers dealing with the slow cooling of atomic systems the assumption is that, after t̂, the
system remains frozen and correlations do not grow beyond the correlation length present at this time,

ξ̂ = ξ
(
t̂
)
∼ τ̂−ν ∼

(
τQ

νzc/(1+νzc)

τQ

)−ν
∼ τQν/(1+νzc) ,

where ν/(1 + νzc) ≈ 0.315. This, however, is not correct in coarsening systems as already discussed
in [38, 39, 42, 43], for example.
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4.2 The out-of-equilibrium dynamics

At early times such that t < t̂, the system evolves in equilibrium and the correlation length grows as
the equilibrium one at the temperature reached at the measuring time:

ξ<(t) ∼ ξeq(τ) ∼
(

1− t

τQ

)−ν
.

When t exceeds t̂, the correlation length does not grow fast enough, and the system falls out of
equilibrium. Now, since the equilibrium correlation length soon becomes much longer than the dynamic
growing length, we can make the simplifying assumption that the system behaves as if it were in contact
with a bath right at the Curie temperature. This proposal amounts to treating the problem as after an
instantaneous quench at t = t̂ from τ = τ̂ to τ = 0. Hence, the correlation length continues to grow,
but now as

ξ>(t) ∼
(
t− t̂+ ] ξ̂zc

)1/zc
,

where the term in ξ̂zc takes into account the non-vanishing correlation length at t = t̂.

Then, imposing the consistency of the correlation length before and after t̂,

ξ>
(
t̂
)

= ξ<
(
t̂
)

= ξ̂ ∼ τQν/(1+νzc) , (7)

we have

ξ(t) ∼
{

(1− t/τQ)
−ν

t ≤ t̂
(
t− τQ + ] τQ

νzc/(1+νzc)
)1/zc

t ≥ t̂
.

where the second line is obtained from eq. (7) where we have replaced t̂ = τQ − ] τQνzc/(1+νzc) and
ξ̂ ∼ τQν/(1+νzc). In particular, when reaching the critical point,

ξ(t = τQ) = ξ̄ ∼ τQν/(1+νzc) ∼ ξ̂ . (8)

While Zurek assumes that the system is frozen immediately after falling out-of-equilibrium, here we
claim that the dynamic growing length, ξ(t), continues to grow after t̂. However, the growth between
t̂ and τQ, when the cooling reaches Tc, only the pre-factor and not the scaling with τQ that is not
modified. Therefore, if the interest is set upon the scaling properties of the system at the critical point
(and not far below it) one can assume that the dynamic correlation length takes the form it had at t̂.

The next section will be devoted to putting eq. (8) to the test.

We are now going to describe the state of the system when reaching the critical point, and how it
depends on the cooling rate. First of all, we can easily check that ξ(τQ) = ξ̄ ∼ ξ̂ is quite an accurate
prediction, see panel (b) in fig. 5.

Next, let us analyse how the wav behaves: as exposed in section 3.2, the interfaces present two critical
properties: the Ising one on short length scales, and the percolation one otherwise. These features
are proven in panel (a) in fig. 5. The length scale that separates the two behaviours scales with the
effective correlation length when reaching the critical point. Thus, the rescaling

〈
θ2(`, t)

〉
→
〈
θ2(`, t)

〉
− 4κc

8 + κc
log ` and `→ `

ξ̄Dc
→ ` τQ

−νDc/(1+νzc) , (9)

where −νDc/(1 + νzc) ≈ −0.434, used in panel (c) in fig. 5, highlights the universal behaviour of the
wav. The quality of this scaling provides a second proof of the accuracy of the prediction (8).

Consequently, when reaching the critical point, the system is (at least) thermalised up to a scale s, as
soon as the cooling is slower than τ ths

Q which is such that

s ∼ ξ̄ ∼ τ ths
Q

ν/(1+νzc) ⇒ τ ths
Q ∼ szc+1/ν .
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Figure 5: Dependence on the cooling rate after a linear cooling to the critical point. Panel (a) represents
the wav for different cooling times and panel (c) shows the same quantity, after the rescaling proposed
in eq. (9); κc = 3 andDc = 1.375 are the same as in section 3.2. The graphics in (b) shows, as a function
of the cooling rate, the measured correlation length when reaching the critical point; the dashed line
is its predicted evolution (see eq. (8)). The last figure, (d), represents the average occupancy rates of
the largest clusters, and the dashed lines highlight the expected values for an infinitely slow annealing
(ie the values in equilibrium at Tc). All the results presented in these graphics were obtained with a
system size of L = 1024.

We recall that for an infinitely fast quench to T = Tc, the scale s is thermalised after a time

tths ∼ szc .

Since zc + 1/ν ≈ 3.17 > 2.17 ≈ zc, an instantaneous quench is more efficient than a linear cooling to
create the structures of the Ising critical point; the time spent far from Tc is not useful to develop the
Ising criticality, the system develops, instead, the percolation one.

This feature can also be observed by looking at the average sizes of the largest clusters by comparing
panels (d) in figs. 3 and 5. Indeed, on fig. 3, at t = 105 ∼ tthL=1024/10, the second largest cluster has
already started to be swallowed by the first one, and the third and fourth have almost reached their
equilibrium average sizes. In contrast, on fig. 5, at τQ = 105, all the largest clusters are still far from
their equilibrium average sizes. Moreover, the first and second are still of the same order of magnitude.

These results confirm that the dynamics are affected by the Ising critical point only in its close vicinity,
and the time spent far from it is not helpful to get closer to equilibrium at Tc.

13



10−2 10−1 1

1

10

102

1− t

τQ
= τ

ξeq(τ), ξ(t)

ξeq(τ)

ξ(t), τQ = 105

= 104

= 103

= 102

= 101

10−2 10−1 1 10 102
10−2

10−1

1

τ ξ̂ν

ξ ξ̂−1

ξeq(τ)

ξ(t), τQ = 105

= 104

= 103

= 102

= 101

0

3

4

5

6

κeq(τ), κS(t), κL(t)

10−2 10−1 1
τκeq(τ)

κS(t), τQ = 105 κL(t), τQ = 105

= 104 = 104

= 103 = 103

= 102 = 102

= 101 = 101

(a)

(b)

(c)

Figure 6: Approach to the critical point; dependency on the cooling rate. Panel (a) shows the increase
of the correlation length during cooling for different cooling rates; the equilibrium correlation length is
also shown. Panel (c) represents the same quantities, but with a different scaling (following eq. (11)).
In panel (b), we show the evolution of the slopes of the wav when approaching the critical point
together with the equilibrium one. κS is extracted from the slope of the wav at short curvilinear
length scales and is expected to have the Ising criticality when reaching the Curie temperature. κL is
extracted from the slope of the wav at long curvilinear length scales and corresponds to the percolation
criticality. All the results presented in these graphics were obtained with a system size of L = 1024.

4.3 Dynamics before reaching the critical point

In the previous section, we have shown that the behaviour when reaching the critical point does not
really rely on the exact out-of-equilibrium dynamics in the range t ∈

[
t̂, τQ

]
; whether the system

remains frozen or evolves like in a post-quench dynamics. In this last section we try to clarify the
situation.

Let us consider that the system’s typical length continues to grow as after an instantaneous quench
after t̂; the correlation length should then grow as

ξ(t) ∼
(
t− τQ + ] τQ

νzc/(1+νzc)
)1/zc

∼ τQ1/zc
(
] τQ

−1/(1+νzc) − τ
)1/zc

,

and forgetting the dependence in the cooling rate, as

ξ(t) ∼ (]− τ)
1/zc , (10)
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where the ] factor has changed but is still positive. Thus, for ]� τ (or τ small enough), the correlation
length is almost constant, and the system seems to be frozen. Moreover, the shape described by eq. (10)
is in a quite good agreement with the numerical results presented in fig. 6(a).

Let us now recall that the correlation length at the time or temperature at which the system falls
out-of-equilibrium scales as

ξ̂ ∼ τQν/(1+νzc) .

This is only valid while τQ is such that ξ̂ ≤ ξeq(τ = 0). Beyond this point, the correlation length
saturates to ξ̂ = ξeq(τ = 0); especially for an infinitely slow cooling (equilibrium). Doing the rescaling

ξ(t)→ ξ(t)

ξ̂
and τ → τ ξ̂ν (11)

(where ξ̂ is taken as its saturation value for the equilibrium curve), the panel (c) in fig. 6 shows that
the correlation length has a universal behaviour. This is in agreement with a power law growth of the
correlation length, as assumed in eq. (10). Nonetheless, universality disappears far from the critical
point since the equilibrium correlation length is subject to non-algebraic corrections in this region.

Let us finally discuss the “change in criticality”, as measured by the evolution of the parameter κ
in the course of the cooling process and compare it to the equilibrium (κeq). As done before, κ is
extracted from the wav. Figure 6 (b) represents the evolution of the criticality on short (κS) and
long (κL) curvilinear abscissa length scales. The long length scales have almost always the criticality
of percolation (κ = 6) except for very slow cooling rates and in the vicinity of the Curie temperature
where the criticality starts to be affected by the Ising critical point. On short length scales, the system
is able to achieve the equilibration process, and the criticality corresponds to the equilibrium one
discussed in section 2 and represented by κeq. However, for the fastest cooling rates, eg τQ = 101, even
the short scales cannot follow the equilibrium.

Conclusions

The purpose of this work was to study the influence of the cooling rate on the dynamics close to a
second order critical point (between a symmetric and symmetry broken phase; here, for Ising models,
the Z2 symmetry). More precisely, we analysed the evolution of the geometric and scaling properties
of the interfaces between domain walls close and at the critical point.

In order to set the stage, we first studied the fractal properties of the interfaces in equilibrium at
various temperatures in the disordered phase. The analysis of the wav allowed us to reach our first
conclusion:

• In equilibrium at T > Tc the long-scale properties of the interfaces are the ones of critical perco-
lation until a crossover length-scale that decreases with increasing temperature. A temperature
dependent crossover towards critical Ising fractality at short-length scales arises close to the
critical point, visible only below, say, T = 1.1Tc.

So far, the influence of critical percolation on the dynamics of the 2d Ising – Glauber model after
instantaneous quenches from infinite temperature to the critical point [13] and below it [4, 5, 6, 7]
was studied. The equilibrium result just mentioned indicates that this critical percolation geometry is
present in high temperature equilibrium configurations.

Next, we recalled some basic features of the coarsening dynamics following an instantaneous quench
from equilibrium at T = 2Tc both to zero and the Curie temperatures. On the one hand, we confirmed
that correlation functions scale with a growing length that increases algebraically with time. On
the other hand, we highlighted the non-trivial evolution of the geometry of the domains of parallel
spins. The critical percolation geometry of the interfaces present in the initial state is progressively
transformed, starting from the short scales, towards the one of the target temperature: smooth at zero
temperature and critical Ising at Tc.
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We then explained the Kibble – Zurek mechanism [22, 23] allowing one to estimate when the system
falls out-of-equilibrium while approaching a critical point from the symmetric phase with a finite speed.
While Zurek assumes that the system freezes after falling out-of-equilibrium, following [38, 39, 44] we
argued that the correlation length continues to grow in this regime as if the system were instantaneously
quenched to the critical point. Our argument does not affect the scaling in the cooling rate predicted
by Zurek, but offers a more accurate description of the growing of the correlation length after the
system has fallen out-of-equilibrium. We examined this scaling numerically and we found that

• after a slow linear cooling with rate τQ to Tc, the dynamic growing length extracted from the
analysis of the space-time correlation function scales as ξ(τQ) ∼ τν/(1+νzc)

Q .

During the slow cooling process, while far from the critical point, the interfaces keep the fractal
properties of critical percolation over a wide range of length scales, up to a temperature dependent
crossover length. However, when approaching temperatures close enough to the critical point, we
observe that

• the winding angle variance satisfies a scaling with respect to ξ(τQ), and besides, the interfaces
with critical Ising properties span the length scales that are shorter than τQ

νDc/(1+νzc).

Finally, our results prove that the Ising critical point influences the dynamics only in its close vicinity.
Therefore,

• an instantaneous quench procedure is much more efficient to create the structures of the Curie
temperature than a slow annealing.

As a matter of fact, the time spent far from the Ising critical point does not contribute to the ther-
malisation of the system; instead, the dynamics of the system is governed by critical percolation.

This study is also a complement to works that try to elucidate the role played by the initial conditions
on the post-quench dynamics of the Ginzburg – Landau scalar field theory [55] and, more recently, the
kinetic Ising model [56, 57, 58] as well as the influence of a non-vanishing cooling rate on the scaling
properties of discrete models close to their phase transition [45]. In the latter paper the emphasis was
set on the scaling properties of the order parameter and how these depend, or not, on the microscopic
stochastic updates. We focus instead on the geometrical and scaling properties of the structures when
slowly approaching the critical point.
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Tartaglia for very useful discussions and M. Henkel for his helpful comments on the manuscript.
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