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Abstract—Industrial use of Model Driven Engineering tech-
niques has emphasized the need for efficiently store, access,
and transform very large models. While scalable persistence
frameworks, typically based on some kind of NoSQL database,
have been proposed to solve the model storage issue, the same
level of performance improvement has not been achieved for the
model transformation problem. Existing model transformation
tools (such as the well-known ATL) often require the input models
to be loaded in memory prior to the start of the transformation
and are not optimized to benefit from lazy-loading mechanisms,
mainly due to their dependency on current low-level APIs offered
by the most popular modeling frameworks nowadays.

In this paper we present Gremlin-ATL, a scalable and efficient
model-to-model transformation framework that translates ATL
transformations into Gremlin, a query language supported by
several NoSQL databases. With Gremlin-ATL, the transfor-
mation is computed within the database itself, bypassing the
modeling framework limitations and improving its performance
both in terms of execution time and memory consumption. Tool
support is available online.

Index Terms—ATL; Gremlin; OCL Scalability; Persistence
Framework; model transformation; NoSQL

I. INTRODUCTION

Models are used in various engineering fields as abstract
views helping designers and developers understand, manipu-
late, and transform complex systems. They can be manually
constructed using high-level modeling tools, such as civil
engineering models [1], or automatically generated in model-
reverse engineering processes such as software evolution tasks
[2] or schema discovery from existing documents [3].

Models are then typically used in Model Driven Engineering
(MDE) processes that rely intensively on model transformation
engines to implement model manipulation operations like view
extraction, formal verification or code-generation [4].

With the growing accessibility of big data (such as national
open data programs [5]) as well as the progressive adoption
of MDE techniques in the industry [6], [7], the volume and
diversity of data to model has grown to such an extent that
the scalability of existing technical solutions to store, query,
and transform these models has become a major issue [8].

For example, reverse engineering tools such as MoDisco [2]
rely on MDE technologies to extract a set of high-level
models representing an existing code base. These models are
then operated by model transformations to create a set of
artifacts providing a better understanding of the system, such

as UML [9] class diagrams, code documentation, or quality
metrics. However, these tools typically face scalability issues
when the input code base increases because the underlying
modeling frameworks are not designed to store and transform
large models efficiently.

Scalable modeling storage systems [10]–[12] have been
proposed to tackle this issue, focusing on providing a solution
to store and manipulate large models in a constrained memory
environment with minimal performance impact. Relational and
NoSQL databases are used to store models, and existing solu-
tions rely on a lazy-loading mechanism to optimize memory
consumption by loading only the accessed objects from the
database.

While these systems have improved the support for man-
aging large models, they are just a partial solution to the
scalability problem in current modeling frameworks. In its
core, all frameworks are based on the use of low-level model
handling APIs. These APIs are then used by most other
MDE tools in the framework ecosystem to query, transform,
and update models. These APIs are focused on manipulating
individual model elements and do not offer support for generic
queries and transformations.

This low-level design is clearly inefficient when combined
with persistence framework because (i) the API granularity is
too fine to benefit from the advanced query capabilities of the
backend, and (ii) an important time and memory overhead is
necessary to construct navigable intermediate objects needed
to interact with the API. As shown in Figure 1, this is par-
ticularly true in the context of model transformations, which
heavily rely on high-level model navigation queries (such as
the allInstances() operation returning all instances of a
given type) to retrieve input elements to transform and create
the corresponding output elements. This mismatch between
high-level modeling languages and low-level APIs generates
a lot of fragmented queries that cannot be optimized and
computed efficiently by the database [13].

To overcome this situation, we propose Gremlin-ATL, an al-
ternative transformation approach. Instead of translating high-
level model transformation specifications into a sequence of
inefficient API calls, we translate them into database queries
and execute them directly where the model resides, i.e. in the
database store. This approach is based on a Model Mapping
that allows to access an existing database using modeling
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primitives, and on a Transformation Helper that lets modelers
tune the transformation execution to fit their performance
needs.

The rest of this paper is structured as follow: Section II
introduces the input transformation language and the output
database query language of our approach and presents a run-
ning example that will be used through the paper. Section III
presents Gremlin-ATL and its key components, Section IV
present how a transformation is executed from a user point
of view. Sections V and VI present our prototype and the
benchmarks used to evaluate our solution. Section VII shows
an application example where Gremlin-ATL is used to specify
data extraction rules between two data sources. Finally, Sec-
tion VIII presents the related work and Section IX summarizes
the key points of the paper, draws conclusion, and presents our
future work.

II. BACKGROUND

In this section we introduce the key features of ATL [4],
the model transformation language we use as the input of our
framework, and Gremlin [14], a multi-database graph traversal
query language we use as our output language. We also present
along the section a running example that is used through this
article to illustrate the different steps of our approach.

A. ATL Transformation Language

In MDE, models are key elements in any software engineer-
ing activity. Models are manipulated and refined using model-
to-model transformations, and the final software artifacts are
(partially) generated with a model-to-text transformation. Each
model conforms to a metamodel that describes its structure and
the possible relationships between model elements and their
properties.

As an example, Figure 2(a) shows a simple metamodel
representing Types, Methods, and Blocks. Methods are defined
by a name, a visibility, and contain a set of Blocks representing
their body. A Method is associated with a return Type, and
can have type parameters. A Constructor is defined as a
subclass of Method. An instance of this metamodel is shown
in Figure 2(b).

ATL [4] is a declarative rule-based model transformation
language that operates at the metamodel level. Transformations
written in ATL are organized in modules, that are used to group

transformation rules and define libraries. The language defines
three types of rules: (i) matched rules that are declarative
and automatically executed, (ii) lazy rules that have to be
invoked explicitly from another rule, and (iii) called rules
which contain imperative code1. ATL does not assume any
order between matched rules, and keeps a set of trace links
between the source and target models that are used to resolve
elements, and set target values that have not been transformed
yet.

The language also defines helpers expressed in OCL [15]
that are used to compute information in a specific context,
provide global functions, and runtime attributes computed on
the fly. OCL helpers can be invoked multiple times in a
transformation, and are a good solution to modularize similar
navigation chains and condition checking.

Finally, ATL programs are themselves described as models
that conform to the ATL metamodel. This feature allows to
define high-order transformations, that take an ATL transfor-
mation as their input and manipulate it to check invariant
properties that should hold in the output model, infer type, or
refine the transformation. Our approach relies on this reflective
feature to translate ATL transformations into efficient database
queries.

Note that in this paper we focus on ATL as our input
language, but our approach can be adapted to other rule-based
transformation languages, notably the QVT [16] standard.

(a) Metamodel (b) Instance Model

Fig. 2. Example Metamodel and Model

Listing 1 shows a simple ATL transformation based on the
metamodel shown in Figure 2(a). The rule MethodToMethod-
Unit (line 10) matches all the Method elements from the input
model that do not contain a typeParameter and creates the
corresponding MethodUnit in the target model. The attributes
and references of the created element are set using binding
specifications: the first one (line 13) checks if the source ele-
ment is a Method or a Constructor and sets the kind attribute
accordingly. The second binding (line 15) sets the value of
the export attribute by calling the OCL helper getVisibility on
the source element. Finally, the codeElement reference is set
with the Block elements contained in the body reference of the
source Method. Note that an additional rule has to be specified

1Imperative constructs are not discussed in this paper



to map Block instances to their corresponding output elements,
that will be resolved by the ATL engine using its trace links
mechanism.

1-- returns a String representing the visibility of a
Method

2helper context java!Method def: getVisibility():String=
3let result : VisibilityKind = self.visibility in
4if result.oclIsUndefined() then
5"unknown"
6else
7result.toString()
8endif;
9-- Transforms a Java Method into a KDM Method unit
10rule MethodToMethodUnit {
11from src : java!Method(src.typeParameters.isEmpty())
12to tgt : kdm!MethodUnit(
13kind <- if (src.oclIsKindOf(java!Constructor))
14then ’constructor’ else ’method’ endif,
15export <- src.getVisibility(),
16codeElement <- src.body->asSet() }

Listing 1. Simplified Java2KDM Rule Example

B. Gremlin Query Language

NoSQL databases are an efficient option to store large
models [17], [18]. Nevertheless, their diversity in terms of
structure and supported features make them hard to unify
under a standard query language to be used as a generic
solution for our approach.

Blueprints [19] is an interface designed to unify NoSQL
database access under a common API. Initially developed for
graph stores, it has been implemented by a large number of
databases such as Neo4j, OrientDB, and MongoDB. Blueprints
is, to our knowledge, the only interface unifying several
NoSQL databases2.

Blueprints is the base of the Tinkerpop stack: a set of tools
to store, serialize, manipulate, and query graph databases.
Gremlin [14] is the query language designed to query
Blueprints databases. It relies on a lazy data-flow framework
and is able to navigate, transform, or filter a graph.

Gremlin is a Groovy domain-specific language built on top
of Pipes, a data-flow framework based on process graphs. A
process graph is composed of vertices representing computa-
tional units and communication edges which can be combined
to create a complex processing. In Gremlin terminology, these
complex processing vertices are called traversals, and are
composed of a chain of simple computational units named
steps. Gremlin defines three types of steps: (i) transform steps
that compute values from their inputs, (ii) filter steps that
select or rejects elements w.r.t a given condition, and (iii) side-
effect steps that compute side-effect operations such as vertex
creation or property updates. In addition, the step interface
provides a set of built-in methods to access meta information,
such as the number of objects in a step, output existence,
or the first element in a step. These methods can be called
inside a traversal to control its execution or check conditions
on particular elements in a step.

Gremlin allows the definition of custom steps, functions,
and variables to handle query results. For example, it is
possible to assign the result of a traversal to a variable and

2Implementation list is available at https://github.com/tinkerpop/blueprints

use it in another traversal, or define a custom step to handle
a particular processing.

Fig. 3. Persisted Model

Figure 3 presents a possible graph database representation
of the model shown in Figure 2(b): grey vertices represent
Method, Type, and Block metaclasses that are linked to their
instance through instanceof edges. The Method m1 is linked
to a Block instance through the body edge, and the Types
void and T using returnType and typeParameters edges, re-
spectively. Finally, m1 contains a property visibility that
holds a string representation of the VisibilityKind enumeration.
This graph mapping of metamodel instances is based on the
one used in NeoEMF/Graph [20].

In what follows, we describe some simple Gremlin exam-
ples based on this model. A Gremlin traversal begins with a
Start step, that gives access to graph level information such as
indexes, vertex and edge lookups, and property based queries.
For example, the traversal below performs a query on the
classes index that returns the vertices indexed with the name
Method, representing the Method class in the Figure 2(a). In
our example, this class matches vertex 1.
g.idx("classes")[[name:"Method"]]; // -> v(1)

The most common steps are transform steps, which allow
navigation in a graph. The steps outE(rel) and inE(rel) navigate
from input vertices to their outgoing and incoming edges,
respectively, using the relationship rel as filter. inV and outV
are their opposite: they compute head and tail vertices of
an edge. For example, the following traversal returns all the
vertices that are related to the vertex 4 by the relationship
typeParameters. The Start step g.v(4) is a vertex lookup that
returns the vertex with the id 4.
g.v(4).outE("typeParameters").inV; // -> [v(6)]

Filter steps are used to select or reject a subset of input
elements given a condition. They are used to filter vertices
given a property value, remove duplicate elements in the
traversal, or get the elements of a previous step. For example,
the following traversal returns all the vertices related to vertex
4 by the relationship typeParameters that have a property name
containing at least one character.
g.v(4).outE("typeParameters").inV
.has("name").filter{it.name.length > 0}; // -> [v(6)]

Finally, side-effect steps modify a graph, compute a value, or
assign variables in a traversal. They are used to fill collections

https://github.com/tinkerpop/blueprints


with traversal results, update properties, or create elements.
For example, it is possible to store the result of the previous
traversal in a table using the Fill step.
def table = [];
g.v(3).outE("typeParameters").inV.has("name")
.filter{it.name.length > 0}.fill(table); // -> [v(6)]

III. GREMLIN-ATL FRAMEWORK

In this section we present Gremlin-ATL, our proposal for
handling complex model-to-model transformations by taking
advantage of the features of the database backends where
the model resides. We first introduce an overview of the
framework and its query translation process. We then present
the ATLtoGremlin transformation that maps ATL transforma-
tions into Gremlin traversals. Finally, we present the auxiliary
components used within the Gremlin query to specify the
database on which to compute the query on and the specific
configuration to use.

A. Overview

Figure 4 presents an overview of the translation used in
Gremlin-ATL to create Gremlin Traversals from ATL Trans-
formations. An input transformation is parsed into an ATL
Transformation Model conforming to the ATL metamodel.
This model constitutes the input of our ATLtoGremlin high-
order transformation that creates an output Gremlin Traversal
representing the query to compute.

The ATLtoGremlin transformation uses two generic libraries
to produce the output query: (i) a Model Mapping Definition
allowing to access a database as a model by mapping its im-
plicit schema to modeling primitives, and (ii) a Transformation
Helper Definition used to tune the transformation algorithm
according to memory and execution time requirements.

The generated traversal can be returned to the modeler
or directly computed in a Gremlin engine that manages the
underlying database. Note that our approach also allows to
compute directly the generated query in a preset NeoEMF
database, as explained in Section V.

In the following we detail the ATLtoGremlin transformation,
the Model Mapping and Transformation Helper Definition
used in the generated traversal. A dynamic view of our
approach is provided in Section IV.
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Fig. 4. Overview of the Mogwaï-ATL Framework

B. ATLtoGremlin Transformation

1) Transformation Mapping: Table I shows the mapping
used by Gremlin-ATL to translate ATL constructs into Gremlin
steps. An ATL Module is translated into a Gremlin script, that
represents the top-level container storing the entire query to
execute.

Matched Rule Definitions inside the ATL module are
mapped to a sequence of steps that access all the elements of
the type of the rule. For example, the matched rule definition
MethodToMethodUnit in Listing 1 is translated into the Grem-
lin expression g.allOfKind("Method") that searches in the
input graph all the elements representing Method instances.
Abstract Rule Definitions are not translated, because they are
called only when a specialized rule is matched. Lazy rule
definitions are translated into function definitions named with
the rule’s identifier and containing their translated body.

Matched rule bodies are mapped to a transform step contain-
ing the translated expressions representing rule’s out pattern
and bindings. This transform step is followed by an iterate step
that tells the Gremlin engine to execute the query. Abstract
rule bodies are directly mapped without creating a transform
step, and generated Gremlin steps are added to the ones of the
translated bodies of the corresponding specialized rules. This
approach flattens the inheritance hierarchy of a transformation
by duplicating parent code in each concrete sub-rule.

Rule Guards defining the set of elements matched by a rule
are translated into a Gremlin filter step containing the trans-
lated condition to verify. For example, the guard of the rule
MethodToMethodUnit is translated into the following Gremlin
expression that first navigates the reference typeParameters
and searches if it contains at least one value: filter{!(src
.getRef("typeParameters").hasNext())}.

Rules’ body can contain two types of ATL constructs:
out patterns representing the target element to create, and
attribute/reference bindings describing the attribute and refer-
ences to set on the created element. Out patterns are mapped
to a variable definition storing the result of the createElement
function which creates the new instance and the associated
trace links. This instruction is followed by a resolveTraces
call that tells the engine to resolve the potential trace links
associated to the created element. In our example it generates
the sequence tHelper.createElement("MethodUnit",

src) that creates a new MethodUnit instance in the target
model and associates it with the src element from the source
model. Attribute and Reference Bindings are respectively trans-
lated into the mapping operation setAtt and a Transformation
Helper’s link call.

Our mapping translates helper definitions into global meth-
ods, which define a self parameter representing the context
of the helper and a list of optional parameters. This global
function is dynamically added to the Object metaclass to allow
method-like invocation, improving query readability. Global
helper definitions are also mapped to global methods, but
do not define a self parameter. Finally, Global Variables are
translated into unscoped Gremlin variables.



ATL embeds its own specification of OCL, which is used to
navigate the source elements to find the objects to transform,
express the guard condition of the transformation rules, and
define helpers’ body. We have adapted the mapping defined
in the Mogwaï framework [21] to fit the OCL metamodel
embedded in ATL. In addition, we integrated our Model
Mapping Definition component in the translation in order to
provide a generic translation based on an explicit mapping.
The current version of Gremlin-ATL supports an important
part of the OCL constructs, allowing to express complex
navigation queries over models. As an example, the inline
if construct used in MethodToMethodUnit to check whether
the source element represents a constructor can be translated
into the equivalent Gremlin ternary operator: src.isKindOf
("Constructor")? "constructor": "method".

TABLE I
ATL TO GREMLIN MAPPING

ATL expression Gremlin step

module Gremlin Script
matched_rule definition g.allOfType(type)
abstract_rule definition not mapped
lazy_rule definition def name(type) { body }
matched_rule body transform{ body }.iterate()
abstract_rule body body3

specialized_rule body transform{ body U parent.body }.iterate()
rule_guard(condition) filter{condition}
out_pattern(srcEl, tgtEl) var out = thelper

.createElement(tgtEl.type, srcEl)
tHelper.resolveTraces(srcEl,tgtEl);

attribute_binding e1.setAtt(exp)
reference_binding e1.link(exp)
helper_definition def name(var self, params){ expression }

Object.metaClass.name = {
(params) -> name(delegate, params)}

obj.helper(params) obj.helper(params)
global_helper_definition def name(params) { expression }
global_helper_computation name(params);
global_variable def name = expression
OCL_Expression Mogwaï4

2) Operation Composition: The above mappings explain
how ATL constructs are mapped individually into the corre-
sponding Gremlin steps. In this section we present an overview
of the algorithm used to compose these generated steps into a
complete query. Listing 2 shows the final Gremlin output for
the transformation example shown in Listing 1.

In order to generate a complete Gremlin query, our trans-
formation has to navigate the input ATL model and link the
generated elements together. First, the transformation searches
all the helper definitions (including global ones) and trans-
lates them according to the mapping shown in Table I. The
generated functions are added to the Gremlin script container,
making them visible for the translated ATL rules. This first
step generates the lines 1 to 8 for the helpers getVisibility.
Note that this initial phase also generates the function that

3The body of abstract rules is duplicated in the transform step of all its
sub-rules

4OCL expression are translated by an improved version of the Mogwaï
framework

registers contextual helpers to the Object metaclass (lines 10-
13), allowing method-like invocation in generated expressions.

Lazy_rule definitions are then translated into global func-
tions, and added to the Gremlin script container. Out pattern
and bindings contained in the Lazy_rule body are translated
into their Gremlin equivalent following the mapping presented
in the previous section and appended in the generated function
body.

1 // getVisibility() helper
2 def getVisibility(var vertex) {
3 var result = vertex.getAtt("visibility");
4 if(result == null)
5 return "unknown";
6 else
7 return result;
8 }
9

10 // Add getVisibility to Vertex method list
11 Vertex.metaClass.getVisibility =
12 { -> getVisibility(delegate) }
13
14 // MethodToMethodUnit
15 g.allOfKind(Method).filter{
16 def src = it;
17 !(src.getRef("typeParameters").hasNext())
18 }.transform{
19 def src = it;
20 var tgt = tHelper.createElement("MethodUnit", src);
21 tHelper.resolveTraces(src, tgt);
22 tgt.setAtt("kind", src.isKindOf("Constructor") ? "

constructor" : "method");
23 tgt.setAtt("export", src.getVisibility());
24 tgt.setRef("codeElement", src.getRef("body").toList

() as Set);
25 }.iterate();

Listing 2. Generated Gremlin Traversal

Once this initial step has been performed the transformation
searches all the matched rules definitions and creates the
associated Gremlin instructions. If the rule defines a guard
the generated filter step is directly linked after the allOfKind
operation in order to select the elements that satisfy the guard’s
condition. Then, the transform step (and the associated iterate
call) corresponding to the matched rule body is created and
added at the end of the traversal. In our example this operation
generates lines 15 to 18.

Out pattern elements contained in the matched rule body are
retrieved and the corresponding Gremlin instructions (lines 19
to 24) are added to the transform step closure. Finally, Rule’s
bindings are transformed following the mapping and added in
the closure’s instructions. Note that helper calls inside bind-
ing’s expressions are also translated into the corresponding
method calls during this operation.

C. Auxiliary Components

1) Model Mapping: The Model Mapping library defines the
basic modeling operations that can be computed by a given
database storing a model. It provides a simple API allowing
designers to express the implicit schema of their database with
modeling primitives. Model Mapping can be manually imple-
mented for a given database, or automatically extracted using
schema inference techniques such as NoSQLDataEngineering
[22]. This mapping is used within the generated Gremlin query
to access all the elements of a given type, retrieve element’s
attribute values, or navigate references.



Table II summarizes the mapping operations used
in Gremlin-ATL and groups them into two categories:
metamodel-level and model-level operations. The first group
provides high-level operations that operate at the metamodel
level, such as retrieving the type of an element, type con-
formance checks, new instances creation, and retrieve all the
elements conforming to a type. The second group provides
methods that compute element-based navigation, such as re-
trieving a referenced element, computing the parent/children
of an element, and access its attributes. Finally, these model-
level methods allow to update and delete existing references
and attributes.

Note that the ATLtoGremlin transformation only relies on
the definition of these operations to generate a Gremlin query,
and is not tailored to a specific Model Mapping implementa-
tion.

TABLE II
GRAPH MAPPING API

Operation Description
allOfType(type) Returns all the strict instances of the given type
allOfKind(type) Returns all the instances of the given type or

one of its sub-types
getType(el) Returns the type of the element el
isTypeOf(el, type) Computes whether el is a strict instance of type
isKindOf(el, type) Computes whether el is an instance of type or

one of its sub-types
newInstance(type) Creates a new instance of the given type
getParent(el) Returns the element corresponding to the par-

ent of el
getChildren(el) Returns the elements corresponding to the chil-

dren of el
getRef(from, ref) Returns the elements connected to from with

the reference ref
setRef(from, ref, to) Creates a reference ref between from and to
delRef(from, ref, to) Deletes the reference ref between from and to
getAtt(from, att) Returns the value of the attribute att contained

in the element from
setAtt(from, att, v) Set the value of the attribute att of the element

from to the given value v
delAtt(from, att) Deletes the attribute att contained in the ele-

ment from

2) Transformation Helper: The second component used by
the ATLtoGremlin transformation is a Transformation Helper
library that provides transformation-related operations that can
be called within the generated Gremlin traversal. It is based
on the ATL execution engine (presented in Section II-A), and
provides a set of methods wrapping a Model Mapping with
transformation specific operations. Note that this library aims
to be generic and can be used directly in ad hoc Gremlin
scripts to express transformation rules.

Specifically, our TransformationHelper provides the follow-
ing interface:

- createElement(type, source): creates a new instance of
the given type mapped to the provided source element.

- link(from, ref, to): creates a link between from and to.
- resolveTraces(source, target): resolves the trace links

connected to source with the target.
- getTarget(source, bindingName): retrieves the target

element mapped to source. If multiple target elements are

created from a single source an optional. bindingName
can be specified to tell the engine which one to choose.

- isResolvable(el): computes whether an element can be
resolved.

- isTarget(el): computes whether an element is in the target
model.

- isSource(el): computes whether an element is in the
source model.

The two first operations are wrappers around mapping
operations that add model transformation specific behavior to
the mapping. The createElement(type, sourceElement

) operation delegates to the mapping operation newInstance

(type), and adds a trace link between the created element
and the source one. link(from, ref, to) delegates to the
mapping operation setRef to create a regular reference between
from and to or a trace link if to is not yet part of the target
model.

The five last operations define transformation specific be-
haviors, such as retrieving the target element from an input
one, resolve trace links, or compute whether an element is
part of the source of the target model. Note that Gremlin-
ATL provides two implementations (one in memory and one
in a database) of this library that can be directly plugged to
compute a transformation.

IV. RUNTIME FRAMEWORK

The Gremlin script generated by the ATLtoGremlin trans-
formation is generic and relies on the Model Mapping and
Transformation Helper interfaces. In order to execute it on an
existing database, the framework needs to bind these abstract
interfaces to their concrete implementations designed to access
a specific database.

Figure 5 shows our framework from a user point of view:
the user provides an ATL query to the Query Translation
component (1), which compiles the query into a Gremlin
script and returns it to the user (2). The generated script
is then sent to the Query Execution API with the concrete
implementation of the Model Mapping and a Transformation
Helper (3) the user wants to use during the execution. The
internal Gremlin engine finally computes the transformation
using these implementations (4) and returns the result (such
as execution traces, or transformation errors if any) to the user
(5).

This architecture allows to pre-compile transformations into
Gremlin scripts and execute them later with specific imple-
mentations of the Model Mapping. In addition, generated
scripts can be executed multiple times on different mappings
without recompilation. The framework can also process and
compile new input transformations on the fly, generating the
corresponding Gremlin scripts dynamically.

As an example, we can define a possible Model Mapping
implementation for the persisted model of Figure 3 that would
compute the allOfType(Type) operation with an access
to the vertex representing the metaclass Type and a backward
navigation of its incoming instanceof edges. The getAtt
and getRef operations can be translated into property access
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and edge navigation, respectively, and the newInstance
operation can be computed by adding a new vertex in the
database with an outgoing edge linked to the vertex represent-
ing its metaclass. Note that Gremlin-ATL embeds preset Model
Mapping implementations for accessing NeoEMF, Neo4j, and
relational databases.

Once the Model Mapping interface is bounded to its imple-
mentation, the modeler can choose the Transformation Helper
he needs to compute the transformation. The choice of a
specific implementation is a trade-off between execution time
and memory consumption: a Transformation Helper storing
transformation information (such as trace links) in memory
will be efficient when computing transformations on top of
relatively small models, but will not scale to larger ones.
Conversely, an implementation relying on a dedicated database
can scale to larger models but would not be optimal when
using small models. Gremlin-ATL defines two default imple-
mentations (one in memory and one in database) that can be
directly plugged to compute a transformation and extended to
provide further performances.

V. TOOL SUPPORT

Gremlin-ATL is released as a set of open source Eclipse
plugins publicly available on GitHub.5

Input ATL transformations are parsed using the standard
ATL parser, which creates a model representing the abstract
syntax of the transformation. The generated model is sent to
the ATLtoGremlin ATL transformation, which contains around
120 rules and helpers implementing the translation presented
in Section III. Once the Gremlin model has been generated,
it is transformed into a textual Gremlin query using a model-
to-text transformation. A final step binds the Model Mapping
and the Transformation Helper definitions to their concrete
implementation and the resulting script is then sent to a
Gremlin script engine, which is responsible of computing the
query on top of the database. The updated database is finally
saved with the transformed content.

Additionally, a preconfigured implementation of Gremlin-
ATL is bundled with the NeoEMF model persistence frame-
work that extends the standard Resource API with transforma-
tion operations. ATL transformations are computed using the

5https://github.com/atlanmod/Mogwai

Gremlin-ATL engine transparently, on top of a preset NeoEMF
Model Mapping implementation. The resulting model is com-
patible with NeoEMF and its content can be reified and
manipulated using the standard modeling API if needed. This
transparent integration allows the use of Gremlin-ATL for
critical model transformations, while keeping the rest of the
application code unchanged. We believe that this approach can
ease the integration of Gremlin-ATL into existing modeling
applications that have to compute complex transformations on
the top of large models.

The current implementation embeds a set of predefined
Model Mappings and Transformation Helpers. Both can easily
be adapted to specify how you want transformation-related
operations to be computed. This is done by extending a set
of abstract classes with limited implementation effort. As an
example, the model mapping used to access Neo4j databases
storing NeoEMF models defines 23 methods (around 250
LOC), and the in-database Transformation Helper defines 9
methods (around 100 LOC) implementing the transformation
operations and storing intermediate results in the database.

VI. EVALUATION

In this section we evaluate the performance of the Gremlin-
ATL framework by comparing the execution performance of
the same set of ATL transformations using the standard ATL
engine and the Gremlin-ATL framework. Note that we do
not consider alternative transformation frameworks in this
evaluation, because they are either based on the same low-
level modeling API as ATL (such as QVT [16]), or are not
designed to optimize the same transformation scenario (such
as Viatra [23]).

Our evaluation aims to address the following research
questions: (i) is Gremlin-ATL faster than standard ATL when
applied to large models stored in scalable persistence frame-
works? and (ii) does our approach scales better in terms of
memory consumption?

In the following we benchmark our approach with two
transformations, a toy one created on purpose for this analysis
and a more complex one taken from an industrial project
involving a reverse engineering scenario. Transformations are
evaluated on a set of models of increasing size, stored in Neo4j
using the NeoEMF mapping. Transformed models are also
stored in NeoEMF using the same mapping. Experiments are
executed on a computer running Fedora 20 64 bits. Relevant
hardware elements are: an Intel Core I7 processor (2.7GHz),
16GB of DDR3 SDRAM (1600MHz) and a SSD hard-disk.
Experiments are executed on Eclipse 4.6.0 (Neon) running
Java SE Runtime Environment 1.8.

A. Benchmark Presentation

Experiments are run over five models (sets 1 to 5) of increas-
ing sizes, automatically constructed by the MoDisco [2] Java
Discoverer, a reverse engineering tool that extracts low-level
models from Java code. The first two models are generated
from internal projects containing few dozens of classes, and
the larger ones are computed from the MoDisco framework

https://github.com/atlanmod/Mogwai


itself, and the Java Development Tool (JDT) plugins embedded
in Eclipse. Table III presents the size of the input models
in terms of number of elements and XMI file size. These
models are migrated to NeoEMF/Graph before executing the
benchmark to enable scalable access to their contents.

TABLE III
BENCHMARKED MODELS

Model # Elements XMI Size (MB)

set1 659 0.1
set2 6756 1.7
set3 80665 20.2
set4 1557007 420.6
set5 3609354 983.7

In order to evaluate our approach, we perform two trans-
formations that take as input the Java models conforming to
MoDisco’s Java metamodel, and translate them into models
conforming to the Knowledge Discovery Model (KDM) [24]
that is a pivot metamodel used to represent software artifact
independently of their platform.

The AbstractTypeDeclaration2DataType transformation
matches all the AbstractTypeDeclaration elements (declared
classes, interfaces, enumerations, etc.) of the input model
and create the corresponding KDM DataType. It is
composed of a single rule that matches all the subtypes
of AbstractTypeDeclaration. The second benchmarked
transformation is a subset of the Java2KDM transformation.
It is extracted from an existing industrial transformation that
takes a low-level Java model and creates the corresponding
abstract KDM model. The transformations are run in
a 512MB JVM with the arguments -server and
UseConcMarkSweepGC that are recommended by Neo4j.

B. Results

Tables IV and V present the results of executing the transfor-
mations on top of the input model sets. First columns contain
the name of the input model of the transformation, second
and third columns present the execution time and the memory
consumption of ATL engine and Gremlin-ATL, respectively.
Execution times are expressed in milliseconds and memory
consumption in megabytes.

The correctness of the output models are checked by com-
paring the results of our approach with the ones generated
by running the ATL transformation on the original input XMI
file using a large Java virtual machine able to handle it. The
comparison is performed using EMF Compare [25].

TABLE IV
ABSTRACTTYPEDECLARATION2DATATYPE RESULTS

Model Execuction Time (ms) Memory Consumption (MB)
ATL Gremlin-ATL ATL Gremlin-ATL

set1 1633 710 2.0 8.3
set2 3505 1139 3.2 10.0
set3 11480 1649 17.6 11.7
set4 67204 3427 99.3 23.0
set5 OOM6 11843 OOM 100.0

TABLE V
JAVA2KDM RESULTS

Model Execuction Time (ms) Memory Consumption (MB)
ATL Gremlin-ATL ATL Gremlin-ATL

set1 1735 1341 3.2 11.2
set2 4874 2469 11.0 12.8
set3 33407 4321 45.2 23.2
set4 5156798 38402 504.5 52.0
set5 OOM 129908 OOM 96.0

C. Discussion

The results presented in Tables IV and V show that
Gremlin-ATL is a good candidate to compute model trans-
formations on top of large models stored in NeoEMF/Graph.
Our framework is faster than the standard ATL engine for
the two benchmarked transformations, outperforming it both
in terms of execution time and memory consumption for the
larger models.

Results from Tables IV and V show that the complexity of
the transformation has a significant impact on ATL’s perfor-
mances. This is particularly visible when the transformations
are evaluated on the large models: Java2KDM is 2.9 times
slower than AbstractType2DataType on set3, and up to 76
times on set4. This difference is explained by the large
number of low-level modeling API calls that are generated
by Java2KDM in order to retrieve the matching elements,
computes rules’ conditions, and helpers.

Gremlin-ATL’s execution time is less impacted by the trans-
formation complexity, because the generated Gremlin query
is entirely computed by the database, bypassing the modeling
API. The database engine optimizes the query to detect access
patterns and cache elements efficiently, and allows to benefit
from the database indexes to retrieve elements efficiently.
Results on set4 show that Gremlin-ATL’s approach is faster
than ATL by a factor of 19 and 134 for AbstractType2DataType
and Java2KDM, respectively.

The results also show that ATL’s performance on set4 and
set5 are tightly coupled to the memory consumption. Indeed,
in our experiments we measured that most of the execution
time was spent in garbage collection operations. This high
memory consumption is caused by the in-memory nature of
the engine, that keeps in memory all the matched elements
as well as the trace links between source and target models.
When the input model grows, this in-memory information
grows accordingly, triggering the garbage collector, which
blocks the application until enough memory has been freed. In
addition, the intensive usage of the low-level model handling
API increases the memory overhead, by reifying intermediate
modeling elements that also stay in the memory.

Conversely, Gremlin-ATL does not require these complex
structures, because trace links are stored within the database
itself, and can be removed from the memory if needed. This
implementation avoids garbage collection pauses, and allows
to scale to very large models. Our approach operates on

6The application threw an OutOfMemory error after two hours



the optimized database structures, and thus does not have to
reify modeling elements, improving the memory consumption.
Looking at the Java2KDM transformation, this strategy re-
duces the memory consumption by a factor of 10 for set4.

ATL requires less memory than Gremlin-ATL to compute
the transformations on top of the small models (sets 1 and
2). This difference is caused by the initialization of the
Gremlin engine (and its underlying Groovy interpreter) used
to evaluate the generated scripts. However, this extra memory-
consumption has a fixed size and does not depend on the
evaluated transformation nor on the transformed model.

Note that the results only show execution time and memory
consumption related to the computation of the transformations,
we did not take into account the time and memory required
to generate an executable file that can be interpreted by the
ATL engine nor the time needed to produce the Gremlin
script to compute, because this extra cost is fixed for a given
transformation and does not depend on the model size. In
addition, Gremlin-ATL allows to pre-compile and to cache
existing Gremlin queries in order to limit script generation.

As a summary, our experiments report that using Gremlin-
ATL to compute a well-known model transformation out-
performs the standard ATL engine when applied on top of
large models stored in current model persistence frameworks.
Still, additional experiments could reinforce these conclusions.
We plan to extend this preliminary evaluation by reusing
transformations available in the ATL Zoo7.

VII. AN APPLICATION TO DATA MIGRATION

We have seen how Gremlin-ATL can improve performance
of transformations for large models. In this section, we show
how Gremlin-ATL can also be useful in the context of a data
migration process when the schema of the data is unavailable
(the common scenario in many NoSQL databases that are
schemaless). To do so, we implement a simple migration
operation on top of two data sources, and emphasize that using
ATL as a migration language shortens the amount of required
code to write for the migration with a limited impact on the
application performance.

In this example, the input of our process is the open source
ICIJ Offshore Leaks Database8 that contains the results of
the Panama papers investigations stored in a Neo4j database.
The output of the process is a simple H29 relational database
containing the migrated data.

The input database contains one million elements divided
into four categories represented as node’s labels: Officers,
Entities, Addresses, and Intermediates. Connections between
elements are represented by labeled edges, for example the
shareholder of an entity is represented by an edge with the
label SHAREHOLDER_OF between the corresponding Officer
and Entity nodes. Other edges are used to represent the differ-
ent roles of an Officer, the connections between Entities and
Intermediates, and their Addresses. Finally, node’s properties

7https://www.eclipse.org/atl/atlTransformations/
8Available online at https://offshoreleaks.icij.org/pages/database
9http://www.h2database.com

are used to represent additional information, such as the
different fields of an Address record.

The operation to perform is a simple data extraction task
that retrieves from the input database all the Officer elements
that are shareholders of a company. Results are stored in a
relational table containing the Officer names and the name of
the corresponding Entity.

We define a Neo4j mapping allowing to navigate the
input database as a model: allOfType(type) operations
are computed by searching for the nodes labeled by type,
and newElement(type) instructions are mapped to a node
creation with a label representing the type. We also define
getRef(from, ref) navigation operations as edge naviga-
tions, and getAtt(from, att) property accesses on the
node representing from. Note that this mapping does not
contain any information specific to the ICIJ Offshore Leaks
Database, and can be reused on top of any Neo4j database
using the same data representation.

To let the framework store the results in the desired rela-
tional database we defined an additional mapping that is able
to access a relational database and serialize model elements in
tables representing their types. Attributes are mapped to table
columns, and references to foreign keys. Note that due to the
lack of space we do not detail this mapping, but the complete
definition is available on the project repository.

Listing 3 shows the ATL transformation rule that expresses
our operation: it matches all the Officer entities that corre-
sponds to Entity shareholders in the input database and creates
a corresponding CompanyShareholder record in the output
model containing the names of the Officer and the related
Entity. Listing 4 presents the corresponding Java code that
uses the Neo4j and JDBC APIs to manipulate the databases.

When the transformation is computed, source and target
mappings are used to execute modeling operations defined in
the ATL transformation. For example, the navigation of the
SHAREHOLDER_OF reference is delegated to the Neo4j map-
ping, while the creation of the CompanyShareholder instance
is computed by the relational mapping that creates a new table
CompanyShareholder if it does not exist and inserts a new
record in it containing the provided information.

As illustrated by the provided examples, the ATL program
is around two times shorter than the corresponding Java
implementation. In addition, the ATL transformation only
relies on ATL language constructs, and does not contain any
explicit database specific operation. We believe that using ATL
as a common language to perform data migration is interesting
when modelers have to integrate data from heterogeneous
sources, and do not have the expertise to write efficient queries
both in the input and output database languages.

The execution of this data migration operation creates
296041 records in the output database. The Java implemen-
tation is computed within 10342 ms, and the Gremlin-ATL
one in 11006 ms. This execution time increase of 6.4% is
caused by the underlying Gremlin engine that adds a small
execution overhead, and our modeling layer that wraps the
native APIs. Still, we think that the gains in terms of code

https://offshoreleaks.icij.org/pages/database
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readability and maintainability can balance this slight overhead
increase and constitute an interesting solution to integrate data
from multiple sources.

1rule shareholder2relationalOfficer {
2from s : IN!Officer (not(s.name.oclIsUndefined()
3and s.SHAREHOLDER_OF->isEmpty())
4to t : OUT!CompanyShareholder(
5name <- s.name,
6company <- s.SHAREHOLDER_OF.name) }

Listing 3. Company Shareholder Migration ATL Rule

1Connection c = ds.getConnection();
2c.createStatement().execute("create table if not exists

CompanyShareholder (id integer not null
auto_increment, name varchar(200), company varchar
(200), primary key (id));");

3c.commit();
4try (Transaction tx = graphdb.beginTx()) {
5try (ResourceIterator<Node> officers = graphdb.

findNodes(Label.label("Officer"))) {
6while (officers.hasNext()) {
7Node off = officers.next();
8Iterable<Relationship> rels = off.

getRelationships(Direction.OUTGOING,
RelationshipType.withName("SHAREHOLDER_OF"));

9for (Relationship r : rels) {
10Node head = r.getEndNode();
11if(off.hasProperty("name") && head.hasProperty(

"name")) {
12String officerName = (String)off.getProperty(

"name");
13String companyName = (String)head.getProperty

("name");
14c.createStatement().execute("insert into

CompanyShareholder values (NULL, ’" +
officerName +"’, ’" + companyName + "’);");

15}}}
16officers.close();}}

Listing 4. Company Shareholder Migration Java
VIII. RELATED WORK

Several solutions have proposed to parallelize and distribute
model transformations to improve the efficiency and scalability
of existing transformation engines. ATL-MR [26] is a map-
reduce based implementation of the ATL engine that computes
transformations on top of models stored in HBase. The tool
benefits from the distributed nature of the database to compute
ATL rules in parallel, improving the overall execution time.
Parallel-ATL [27] is an implementation of the ATL engine
able to benefit from a multicore environment by splitting the
execution into several workers that access a global shared
model asynchronously. The LinTra [28] platform is another
solution that relies on the Linda coordination model to enable
concurrency and distribution of model transformations.

Compared to these approaches, Gremlin-ATL does not
require a parallel infrastructure to optimize the transformation
but instead relies on the scalability mechanisms of the database
engine, one of the strong points and initial motivations for the
apparition of NoSQL databases. For example, the distributed
Neo4j database provides a Gremlin endpoint that is able to
execute efficiently traversals on graph databases stored in a
cluster, by splitting the computation according to the data
localization. The Gremlin language itself provides native par-
allization constructs (e. g., the split-merge step) that could be
used to further improve transformation execution performance.

The Viatra project [23] is an event-driven and reactive model
transformation platform that relies on an incremental pattern

matching language to access and transform models. Viatra
receives model update notifications and uses its incremental
engine to re-compute queries and transformation in an efficient
way at the cost of a higher memory consumption. Viatra and
Gremlin-ATL work best in different scenarios. Viatra is very
efficient when a set of query/transformations are executed
multiple times on a model, while Gremlin-ATL is designed
to efficiently perform single transformation computations.

Transforming large models stored in databases is also re-
lated to the schema matching and data migration problems
targeted in the database community [29]. Several approaches
such as COMA [30] or Cupid [31] have been proposed to
detect equivalent constructs in data schemas (using schema
information or instances analysis), and integrated into data
migration frameworks [32] to semi-automate data migration
between heterogeneous sources. While Gremlin-ATL could
benefit from these approaches (e. g., by automatically con-
structing Model Mappings), they usually focus on the schema
matching phase and not on the efficient execution of the data
migration processes based on those mappings.

Our approach can also be combined with proposals on
efficient graph transformation computation, such as the ap-
proach proposed by Krause et al. that parallelizes graph
transformations using the Bulk Synchronous Parallel (BSP)
framework Apache Giraph [33]. The Gremlin language pro-
vides a connector to enable Giraph computation on top of
graph databases10, that could be used to link both approaches.

IX. CONCLUSION

In this article we presented Gremlin-ATL, a framework
that computes rule-based transformations by reexpressing them
as database queries written in the Gremlin graph traversal
language. Our evaluation shows that using Gremlin-ATL to
transform models significantly improves the performance both
in terms of execution time and memory consumption.

As future work we plan to extend our approach into a
family of mappings adapted to different NoSQL backends in
order to provide a set of NoSQL modeling frameworks able
to both store and manipulate models “natively”. We also plan
to complete our mapping with the ATL constructs that are not
yet supported and study translations from other transformation
languages, which could reuse many of the patterns defined
for ATL. Finally, we want to explore how Gremlin-ATL can
be used in other scenarios involving the query, evolution
and integration of unstructured data. Manipulating such data
requires first to discover its implicit schema/s. This schema
can be naturally expressed as an explicit model and therefore
be a natural fit for our framework that could then be used to
facilitate its manipulation.
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