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Abstract

We propose a mathematical method to analyze the numerous algorithms performing Image
Matching by Affine Simulation (IMAS). To become affine invariant they apply a discrete set of
affine transforms to the images, previous to the comparison of all images by a Scale Invariant
Image Matching (SIIM), like SIFT . Obviously this multiplication of images to be compared
increases the image matching complexity. Three questions arise: a) what is the best set of affine
transforms to apply to each image to gain full practical affine invariance? b) what is the lowest
attainable complexity for the resulting method? c) how to choose the underlying SIIM method?
We provide an explicit answer and a mathematical proof of quasi-optimality of the solution to
the first question. As an answer to b) we find that the near-optimal complexity ratio between
full affine matching and scale invariant matching is more than halved, compared to the current
IMAS methods. This means that the number of key points necessary for affine matching can be
halved, and that the matching complexity is divided by four for exactly the same performance.
This also means that an affine invariant set of descriptors can be associated with any image.
The price to pay for full affine invariance is that the cardinality of this set is 6.34 times larger
than for a SIIM.

1 Introduction

Image matching, which consists in detecting shapes common to two images, is a crucial issue for a
large number of computer vision applications, such as scene recognition [55, 9, 46] and detection [14,
43], object tracking [60], robot localization [47, 54, 40], image stitching [2, 8], image registration [58,
26] and retrieval [17, 16], 3D modeling and reconstruction [13, 15, 56, 1], motion estimation [57], photo
management [49], symmetry detection [29] or even image forgeries detection [12]. The problem has
implementation variants depending on the set up. If for example the user knows that both compared
images are related, the focus is on detecting the most reliable common set of shape descriptors. In
the detection set up, an image is compared to a database of images and the question is to retrieve
related images in the database. This is for example crucial for performing video search [50]. Local
shape descriptors must be extracted for this purpose, and this description should be as invariant as
possible to viewpoint changes and of course as sparse as possible. In our discussion we will most
of the time refer to the simpler set up where two images are being compared. But the reduction
of the number of descriptors is of course still more important for comparing an image to an image
database as initially proposed in [48]. In this last reference, large sets of descriptors are sparsified
by clustering techniques. This only indicates how important it is to reduce as much as possible the
set of affine descriptors of each image.

Detectors, descriptors and affine invariance Given a query image of some physical object and
a set of target images, the first goal of image matching is to decide if these target images contain
a view of the same object. If the answer is positive, image matching aims at localizing this object
in these target images. Deciding if the object is present is difficult and becomes especially tricky
for large image databases, for which the control of false matches is crucial. Another difficulty of the
matching problem comes from the change of camera viewpoints between images. In order to cope
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with these viewpoint changes, the whole matching process should be as invariant as possible to the
resulting image deformations. As we shall develop, this requires affine invariance for the recognition
process.

The classical approach to image matching consists in three steps: detection, description and
matching. First, keypoints are detected in the compared images. Second, regions around these points
are described and encoded in local invariant descriptors. Finally, all these descriptors are compared
and possibly matched. Using local descriptors yields robustness to context changes. Both the
detection and description steps are usually designed to ensure some invariance to various geometrical
or radiometric changes.

Local image point detectors are always translation invariant. While the venerable Harris point
detector [18] is only invariant to translations and rotations, the Harris-Laplace [31], Hessian-Laplace [33]
or DoG (Difference-of-Gaussian) region detectors [27] are invariant to similarity transformations, i.e.
translations, rotations and scale changes. To ensure invariance to affine transforms, some authors
have proposed moment-based region detectors [25, 6] including the Harris-Affine and Hessian-Affine
region detectors [32, 33]. Locally affine invariant region detectors can also be based on edges [53,
52], intensity [51, 52], or entropy [19]. Finally, the detectors MSER (“maximally stable extremal
region”) [30] and LLD (“level line descriptor”) [41, 42, 11] both rely on level lines. Yet the affine
invariance of these detectors is limited by the fact that optical blur and affine transforms do not
commute, as shown in [39]. Level line based detectors like MSER therefore are not fit to handle scale
changes. Indeed, they do not take into account the effect of blur on the level line geometry [11].

In the last 15 years, numerous invariant image descriptors have been proposed in the literature,
but the most well-known and the most widely used remains the scale-invariant feature transform
(SIFT), introduced by Lowe in his landmark paper [27]. SIFT makes use of a DoG region detector.
It is fully invariant to similarities (see [38] for a mathematical proof of this fact). Each SIFT
descriptor is composed of histograms of gradient orientation around a key point, invariant to local
radiometric changes and to geometrical image similarities. As a result, the SIFT method can be
considered as partially invariant to illumination, fully invariant to geometrical similarities. But its
success is certainly also due to its robustness to reasonable viewpoint changes.

The superiority of SIFT based descriptors has been demonstrated in several comparative studies [34,
37]. As a consequence, many variants of the SIFT descriptor have emerged, among which we can
mention PCA-SIFT [21], GLOH (gradient location-orientation histogram) [34], SURF (speeded up
robust features) [7] or RootSIFT [5]. The main claims of these variants are a lower complexity or
a greater robustness to viewpoint changes. In the same vein, binary descriptors have also received
much attention. Focusing on speed and efficiency, the BRIEF [10], BRISK [23] or LATCH [24]
descriptors are compact and represented by sequences of bits, and can be compared more quickly
than floating point descriptors like those used in SIFT. Descriptors based on nonlinear scale spaces,
such as KAZE [3] or its accelerated version AKAZE [4], have also been proposed to locally adapt
blur to the image data.

None of the previously mentioned state-of-the-art methods is fully affine invariant. The SIFT
method does not cover the whole affine space and its performance drops under substantial viewpoint
changes. SIFT and the other aforementioned descriptors cannot cope with viewpoint differences
larger than 60◦ for planar objects [39, 35], and are still usable but much less efficient for angles larger
than 45◦ [20]. We shall give and use here concrete measurements of their resilience to view angle
changes.

To overcome this limitation, several simulation-based solutions have been recently proposed. The
core idea of these algorithms, that we choose to call by the generic term IMAS (Image Matching by
Affine Simulation), is to simulate a set of views from the initial images, by varying the camera
orientation parameters. These simulations allow to capture far stronger viewpoint angles than
standard matching approaches, up to 88◦. Among those IMAS algorithms, we can mention ASIFT
[59], FAIR-SURF [44] and MODS [35].

A first suggestion to construct affine invariant descriptors by simulating affine distortions appeared
in [45] where the authors proposed to simulate two tilts and two shear deformations in a cloth
motion capture application. As argued in [59, 35, 44], if a physical object has a smooth or piecewise
smooth boundary, its views obtained by cameras in different positions undergo smooth apparent
deformations. These regular deformations are locally well approximated by affine transforms of the
image plane. By focusing on local image descriptors, the changes of aspect of objects can therefore
be modeled by affine image deformations.

The first IMAS method provided with a mathematical proof of affine invariance is ASIFT [39, 59].
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The authors of this paper proposed it as an affine invariant extension of SIFT and proved it to be
fully affine invariant in a continuum model. The structure of ASIFT is generic in the sense that it
can be implemented with any local descriptor, provided this descriptor has a robustness to viewpoint
changes similar to SIFT descriptors. Unlike MSER, LLD, Harris-Affine and Hessian-Affine, which
attempt at normalizing all of the six affine parameters, ASIFT simulates three parameters and
normalizes the rest. More specifically, ASIFT simulates the two camera axis parameters, and then
applies SIFT which simulates the scale and normalizes the rotation and the translation. Of the six
parameters required for affine invariance, three are therefore simulated and three normalized.

Two recent successful methods follow the same affine simulation path. FAIR-SURF [44] combines
the affine invariance of ASIFT and the efficiency of SURF. The MODS image comparison algorithm
introduced in [35] also relies on this principle and affine simulations are generated on-demand if
needed in the process of comparing two images. MODS employs a combination of different detectors
when comparing images. It outperforms state-of-the-art image comparison approaches both in affine
robustness and speed.

Other IMAS approaches without local descriptors have also been put up for template matching.
FAsT-Match [22] delivers affine invariance by assuming that the template (a patch in the query
image) can be recovered inside the target image by a unique affine map. Meaning there is no
subjacent projective map to identify. Contrary to IMAS with local descriptors, the six required
parameters to attain affine invariance are simulated instead of three of the present paper.

In this paper, we are interested in generic IMAS algorithms based on local descriptors and in
their geometric optimization. In order to measure the degree of viewpoint change between different
views of the same scene, we draw on the concept of absolute and relative transition tilts, previously
introduced in [39, 59], and we illustrate why simulating large tilts on both compared images is
necessary to obtain a fully affine invariant recognition. Indeed, transition tilts can in practice be
much larger than absolute tilts, since they may behave like the square of absolute tilts.

The key question of IMAS methods is how to choose the list of affine transforms applied to the
images before comparison. This list should be as short as possible to limit the computing time. But
it should also sample the widest possible range of affine transforms. As we shall see, this question is
closely related to the question of finding optimal coverings of the space of affine tilts. This question
is formalized and solved in Section 2, where we find nearly optimal coverings. Section 3 applies this
result to IMAS algorithms. It first presents a complete mathematical theory of IMAS algorithms,
proving that they are fully affine invariant under the assumption that the underlying SIIM has a
(quantifiable) limited affine invariance. Section 4 gives an experimental validation. It starts by
measuring the exact extent of affine invariance for several SIIMs and deduces the corresponding
complexity required to attain full affine invariance from each. Section 5 is a conclusion.

2 The space of affine tilts

In this section, we introduce the space of tilts for planar affine transforms, and we look for optimal
coverings of this space. Optimal coverings will be used in the next section to define an optimal
discrete set of affine transformations as the basis for IMAS algorithms. The rest of this section
can be read as a sequence of purely geometric results. However, the reader might prefer to keep
in mind that the affine transforms considered here can be interpreted as different viewpoints of a
camera, or more generally as the transition from an image taken from a viewpoint to an image taken
from another viewpoint. Indeed, given a frontal snapshot of a planar object u(x) = u(x, y), we can
transition from any affine view Bu of the same object to any other affine view Au through the affine
transformation AB−1. This requires some notation. For any linear invertible map A ∈ GL+ (2),
we denote the affine transform A of a continuous image u(x) by Au(x) = u(Ax). We recall classic
notation for three subsets of the general linear group GL (2) of invertible linear maps of the plane,

GL+ (2) = {A ∈ GL (2) | det (A) > 0} ,
GO+ (2) =

{
A ∈ GL+ (2) |A is a similarity

}
,

GL+
∗ (2) = GL+ (2) \GO+ (2) ,

where we call similarity any combination of a rotation and a zoom, and the symbol \ denotes the
set difference operator. Our central notion in the discussion is the tilt of an affine transform, which
we now define.

3



2.1 Absolute tilts

Proposition 1 ([39]). Every A ∈ GL+
∗ (2) is uniquely decomposed as

A = λR1 (ψ)TtR2 (φ) (1)

where R1, R2 are rotations and Tt =

[
t 0
0 1

]
with t > 1, λ > 0, φ ∈ [0, π[ and ψ ∈ [0, 2π[.

Remark 2. It follows from this proposition that any affine map A ∈ GL+ (2) is either uniquely
decomposed as in (1) or is directly expressed as a similarity λR1.

Figure 1: Geometric Interpretation of (1)

Figure 1 shows a camera viewpoint interpretation of this affine decomposition where the longitude
φ and latitude θ = arccos 1

t characterize the camera’s viewpoint angles, ψ parameterizes the camera
spin and λ corresponds to the zoom. In the ideal affine model, the camera is supposed to stand at
infinite distance from a flat image u, so that the deformation of u induced by the camera indeed is
an affine map. But the above approximation is still valid provided the image’s size is small with
respect to the camera distance. In other terms the affine model is locally valid for each small and
approximately flat patch of a physical surface photographed by a camera at some distance. Yet,
the affine deformation of the object’s aspect will be different for each of its patches. This explains
why affine invariant recognition methods deal with local descriptors. The parameter t defined above
measures the so-called absolute tilt between the frontal view and a slanted view. The uniqueness of
the decomposition in (1) justifies the next definition.

Definition 3. We call absolute tilt of A the real number τ (A) defined by
GL+ (2) → [1,∞[

A 7→

{
1 if A ∈ GO+ (2)

t if A ∈ GL+
∗ (2)

where t is the parameter found when applying Proposition 1 to A.

Proposition 4. Let A ∈ GL+ (2). Then

τ (A) =

√
λ1

λ2
= |||A|||2

∣∣∣∣∣∣A−1
∣∣∣∣∣∣

2

where λ1 ≥ λ2 are the singular values of A and |||·|||2 is the usual Euclidean matrix norm.

Proof. The case of a similarity being straightforward, suppose that A ∈ GL+
∗ (2). Then, using (1)

we can re-write

A = R1

(
γ1 0
0 γ2

)
R2

where R1, R2 are two rotations and γ1 ≥ γ2 > 0. So

A?A = Rt2

(
γ2

1 0
0 γ2

2

)
R2
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whose eigenvalues are
λ1 = γ2

1 and λ2 = γ2
2

but γ1, γ2 > 0 imply

A =
√
λ2R1

(√
λ1

λ2
0

0 1

)
R2

and finally τ (A) =
√

λ1

λ2
. In addition, it is well known that

|||A|||2 =
√
ρ (A?A) =

√
λ1,∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2

=

√
ρ
(

(AA?)
−1
)

=
1√
λ2

where ρ (A?A) is the largest eigenvalue of A?A, i.e, the largest singular value of A.

2.2 Transition Tilts

Image descriptors like those proposed in the SIFT method are invariant to translations, rotations
and Gaussian zooms, which in terms of the camera position interpretation (see Figure 1) correspond
to a fronto-parallel motion of the camera, a spin of the camera and to an optical zoom. We shall
focus on the last part TtR2 of the decomposition (1) because it is the one that is imperfectly dealt
with by SIIMs. SIIMs are instead able to detect objects up to a similarity. This leads us to the
next definition.

Definition 5. Let A,B ∈ GL+ (2). Then we define the right equivalence relation ∼ as

A ∼ B ⇔ AB−1 ∈ GO+ (2) .

Remark 6. It is important to notice here that the right and left equivalence relations do differ because

AB−1 ∈ GO+ < B−1A ∈ GO+.

For example, take
A = T2Rπ

4
and B−1 = Rπ

4
T2,

then
AB−1 = 2Rπ

2
∈ GO+

whereas
B−1A = Rπ

4
T4Rπ

4
/∈ GO+.

Definition 7. Let A,B ∈ GL+ (2). We call transition tilt between A and B the absolute tilt of
AB−1, i.e.

τ
(
AB−1

)
.

The transition tilt has an agreeable visual interpretation appearing in Figure 2. By Formula
(1) applied to AB−1, passing from an image Bu to an image Au comprises a single non-Euclidean
transformation, namely the central tilt matrix Tτ(AB−1) which squeezes the image in the direction of
x after having rotated it. Thus the transition tilt measures the amount of image distortion caused by
a change of view angle. We now state and give a brief proof of the formal properties of the transition
tilt stated in [39].

Proposition 8. For A,B ∈ GL+ (2) we have

1. τ
(
AB−1

)
= 1 ⇔ A ∼ B;

2. τ (A) = τ
(
A−1

)
;

3. τ
(
AB−1

)
= τ

(
BA−1

)
;

4. τ
(
AB−1

)
≤ τ (A) τ (B);

5. max
{
τ(A)
τ(B) ,

τ(B)
τ(A)

}
≤ τ

(
AB−1

)
.
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Buu

Figure 2: Passage from transition tilts (left side) to absolute tilts (right side).

Proof. 1)
τ
(
AB−1

)
= 1⇔ AB−1 = λR⇔ A = λRB

2) By proposition 4

τ (A) = |||A|||2
∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2

= τ
(
A−1

)
3) From 2) we have

τ
(
AB−1

)
= τ

((
AB−1

)−1
)

= τ
(
BA−1

)
4) By proposition 4

τ
(
AB−1

)
=

∣∣∣∣∣∣AB−1
∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣(AB−1
)−1
∣∣∣∣∣∣∣∣∣

2

≤ |||A|||2
∣∣∣∣∣∣B−1

∣∣∣∣∣∣
2
|||B|||2

∣∣∣∣∣∣A−1
∣∣∣∣∣∣

2

= τ (A) τ (B)

5) From 4) we have

τ (A) = τ
(
AB−1B

)
≤ τ

(
AB−1

)
τ (B)

and the same relation for B.

Definition 9. We call Space of Tilts, denoted by Ω, the quotient GL+ (2) / ∼ where the equivalence
relation ∼ has been given in Definition 5.

This proposition completes Definition 5 and clarifies the geometrical interpretation of the space of
tilts: an element in the space of tilts represents the set of all the camera spins and zooms associated
with a certain tilt in a certain direction.

Notation 1. Let A ∈ GL+ (2). We denote by [A] the equivalence class in the space of tilts associated
to A i.e.

[A] =
{
B ∈ GL+ (2) |A ∼ B

}
.

Definition 10. We denote by i the canonical injection from the space of tilts to GL+ (2) defined by

i :

{
Ω → GL+ (2)

[A] 7→ Tτ(A)Rφ(A)
.

This injection filters out the canonical representative from each class which is a mere tilt in the
x direction.
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Remark 11. Clearly, the function i satisfies

[A] = [i ([A])]

and the space of tilts can be parameterized by picking these representative elements in each class as

Ω = [Id]
⋃  ⋃

(t,φ)∈]1,∞[×[0,π[

[TtRφ]

 .

The next proposition brings an additional justification to Definition 9. It means that the transition
tilt does not depend on the choice of the class representative in the space of tilts.

Proposition 12. Let A, B, C, D ∈ GL+ (2) satisfying C ∈ [A] and D ∈ [B]. Then

τ
(
BA−1

)
= τ

(
DC−1

)
.

Proof. Let C ∈ [A] , D ∈ [B]. We first remark that if either A ∈ GO+ (2) or B ∈ GO+ (2) then the
transition tilt operation is respectively the absolute tilt of D or C, which does not depend on the
class representative.

So without loss of generality suppose A,B ∈ GL+
∗ (2). Then, by proposition 1, they are re-written

in a unique way as

A = λAQATsRA

B = λBQBTtRB

and the same result can be applied to the following two matrices

BA−1 = λBA−1QBA−1Tτ(BA−1)RBA−1 (2)

TtRBR
−1
A T−1

s = αQ3Tt3R3.

Moreover

BA−1 = λBQBTtRB (λAQATsRA)
−1

=
αλB
λA

(QBQ3)︸ ︷︷ ︸
rotation

Tt3
(
R3Q

−1
A

)︸ ︷︷ ︸
rotation

.

Then, by uniqueness of decomposition in equation (2) we have Tτ(BA−1) = Tt3 , implying

τ
(
BA−1

)
= τ

(
TtRBR

−1
A T−1

s

)
.

Again, the same methodology applied to

C = λCQCA

= λCλAQCQATsRA

and

D = λDQDB

= λDλBQDQBTtRB

shows that
τ
(
DC−1

)
= τ

(
TtRBR

−1
A T−1

s

)
= τ

(
BA−1

)
.

The next proposition follows directly from Proposition 8.

Proposition 13. The function d

d :

{
Ω × Ω → R+

([A] , [B]) 7→ log τ
(
BA−1

)
is a metric acting on the space of tilts.
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Proof. First, d is well defined thanks to Proposition 12 which ensures the independence from class
representatives. Let us now prove the four metric axioms:
1) By definition of the absolute tilt ∀A,B ∈ GL+ (2) one has that τ

(
AB−1

)
≥ 1. This implies

d ([A] , [B]) ≥ 0.

2) By Proposition 8-1) ∀A,B ∈ GL+ (2)

d ([A] , [B]) = 0 ⇔ τ
(
AB−1

)
= 1

⇔ A ∼ B
⇔ [A] = [B]

3) ∀A,B ∈ GL+ (2), Proposition 8-3) states that

τ
(
BA−1

)
= τ

(
AB−1

)
which implies

d ([A] , [B]) = d ([B] , [A])

4) ∀A,B,C ∈ GL+ (2), Proposition 8-4) assures that the following inequality holds

τ
(
BC−1

(
AC−1

)−1
)
≤ τ

(
BC−1

)
τ
(
AC−1

)
.

As the logarithm is monotone in [1,∞[, by simply applying it to both sides one obtains the triangular
inequality for d.

2.3 Neighborhoods in the space of tilts

Now that we have introduced the space of tilts and the adequate metric on this space to measure
image distortion, we wish to explore optimal coverings for this space. We start by establishing closed
formulas for disks in this 2D space.

Theorem 14. Given an element of the space of tilts in canonical form [TtR (φ1)], the disk B ([TtR (φ1)] , r)
in the space of tilts centered at this element and with radius r corresponds to the following set{

[TsR (φ2)] |G (t, s, φ1, φ2) ≤ e2r + 1

2er

}
where

G (t, s, φ1, φ2) =

( t
s + s

t

2

)
cos2 (φ1 − φ2) +

( 1
st + st

2

)
sin2 (φ1 − φ2) .

The proof of this theorem is given in the appendix. Figure 3 displays such disks in polar
coordinates (log τ cos (φ) , log τ sin (φ)). This representation will be convenient to visualize region
coverings defined by disks in the space of tilts. Figure 4 is illustrating an observation hemisphere,
which displays in a geometric environment the space of tilts, the class of affine transformations in
question (green dots) and their neighborhoods (black surfaces). Notice that green dots represent
camera viewpoints as depicted in Figure 1. In both representations, the pairs (τ, φ) and (τ, φ+ π)
are denoting the same element of the space of tilts. This is easily interpreted: Two identical images
of a planar scene are indeed obtained by an affine camera positioned with a π longitude difference.

Proposition 15. Let A,B,C ∈ GL+ (2). Then

[A]C = [AC] ,

i.e, classes in Ω are stable by right multiplication. Moreover,

d ([AC] , [BC]) = d ([A] , [B]) .
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(a) B
(

[Id], log
√

2
)

(b) B
([

T√2R0

]
, log
√

2
)

(c) B
(

[T2R0], log
√

2
)

(d) B
(

[T4R0], log
√

2
)

Figure 3: (Polar coordinates)

Green point - Affine transformation in question

Dashed line - ∂B
(

[Id] , log 4
√

2
)

Dotted line - Equal tilts
Red line - Disk’s boundary

Proof. 1) Proof of [A]C ⊂ [AC].

B ∈ [A] =⇒ B = λRA

=⇒ BC = λRAC

=⇒ BC ∈ [AC]

2) Proof of [AC] ⊂ [A]C.

D ∈ [AC] =⇒ D = λRAC

=⇒ D ∈ [A]C

3)

d ([AC] , [BC]) = log τ
(
AC (BC)

−1
)

= log τ
(
AB−1

)
= d (A,B)

Remark 16. Proposition 15 guarantees that transition tilts remain unchanged by right compositions.
Furthermore, as argued in the proof of Proposition 24, the right composition with an element C ∈
GL+ (2) could be seen as a modification from a hypothetic frontal image u to another hypothetic
frontal image C−1u. All this gives both motivation and meaning to the forthcoming Theorem 18.

Remark 17. One might also be interested in the way disks are transformed by left multiplication of
elements belonging to GL+ (2). Unfortunately, in general

C [A] 6= [CA] .
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(a) B
(

[Id], log
√

2
)

(b) B
([

T√2R0

]
, log
√

2
)

(c) B
(

[T2R0], log
√

2
)

(d) B
(

[T4R0], log
√

2
)

Figure 4: (Perspective views)

Green point - Affine transformation in question

Dashed line - ∂B
(

[Id] , log 4
√

2
)

Black surface - Disk in question

Take for example C = A = Tt so

Rπ
2

= Tt

(
1

t
Rπ

2
Tt

)
/∈ [Tt2 ] .

Furthermore, for C ∈ GL+ (2) one has

τ
(
CAB−1C−1

)
= c2

(
CAB−1C−1

)
=
∣∣∣∣∣∣CAB−1C−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣C (AB−1
)−1

C−1
∣∣∣∣∣∣∣∣∣

2

≤ |||C|||22
∣∣∣∣∣∣C−1

∣∣∣∣∣∣2
2

∣∣∣∣∣∣AB−1
∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣(AB−1
)−1
∣∣∣∣∣∣∣∣∣

2

= τ (C)
2
τ
(
AB−1

)
so, in general

d ([CA] , [CB]) ≤ 2d ([C] , [Id]) + d ([A] , [B]) .

The following theorem will be crucial in the next Section to explain why IMAS algorithms are
truly affine invariant.

10



Theorem 18. Let

Γ1 = B ([Id] , log Λ1)

Γ2 = B ([Id] , log Λ2)

Γ′ = B ([Id] , log Λ2r) .

be three neighborhoods of [Id] in Ω where Λ1,Λ2, r ∈ [1,∞[, and assume that S1,S2 ⊂ Ω are two
log r-coverings of Γ1 and Γ′, i.e

Γ1 ⊂
⋃
S∈S1

B (S, log r)

Γ′ ⊂
⋃
S∈S2

B (S, log r) .

Then, for every [A] ∈ Γ1, [B] ∈ Γ2, there exist C ∈ GL+ (2) with τ (C) ≤ r, SA ∈ S1 and SB ∈ S2

such that

d
(
SA,

[
(AC)

−1
])

= 0

d
(
SB ,

[
(BC)

−1
])

≤ log r.

A sketch of Theorem 18 appears in Figure 5.

[Id]

Γ1

SA=
[
(AC)

−1
]

[Id]

Γ2

Γ′

SA

B (SA, log r)

[
A−1

]

[
B−1

]

SB[
(BC)−1

]
B (SB , log r)

Figure 5: Sketch of the proof of Theorem 18.

Proof. Let us set C = A−1i (SA)
−1

where i appears in Definition 10.

1) Proof of d
(
SA,

[
(AC)

−1
])

= 0.

Proposition 8-2) directly implies

d ([Id] , [A]) = d
(
[Id] ,

[
A−1

])
.

Then, as S1 is a log r-covering of Γ1, there exists SA ∈ S1 such that[
A−1

]
∈ B (SA, log r)

11



meaning that, the following inequality holds

d
(

[Id] ,
[
A−1i (SA)

−1
])

= log τ
(
A−1i (SA)

−1
)

= d
([
A−1

]
, SA

)
≤ log r.

Finally, as d is a metric (by Proposition 13) we know

d
(
SA,

[
(AC)

−1
])

= d (SA, [i (SA)]) = 0.

2) Proof of d
(
SB ,

[
(BC)

−1
])
≤ log r.

By first using Proposition 8 followed by Proposition 13 we have

τ (BC) ≤ τ (B) τ
(
C−1

)
= Λ2r

⇓

d
(

[Id] ,
[
(BC)

−1
])

= log τ (BC) ≤ log Λ2r

⇓[
(BC)

−1
]
∈ Γ′.

Once more, as S2 is a log r-covering of Γ′, there exists SB ∈ S2 such that[
(BC)

−1
]
∈ B (SB , log r) .

3 Application: optimal affine invariant image matching algorithms

The theory and results presented above provide a well suited geometrical framework for image
matching by affine simulation (IMAS). This section gives the mathematical formalism and a mathematical
proof that IMAS based algorithms are fully affine invariant, up to sampling errors. While the former
sections only dealt with affine geometry, we now must introduce in the formalism the camera blur,
as we shall deal with digital image recognition. Our goal is to define rigorously affine invariant
recognition for digital images.

Consider a continuous and bounded image u (x) defined for every x = (x, y) ∈ R2. All continuous
image operators including the sampling will be written in capital letters A, B and their composition
as a mere juxtaposition AB.

Definition 19. For any A ∈ GL+ (2), we define the affine transform A of a continuous image u by

Au(x) :=u(Ax).

Homotheties and rotations acting on continuous images are similarly written as

Hλu (x) = u (λx) ;

Rφu (x) = u (Rφx) .

We now introduce a compact notation for the various convolutions with Gaussians. We shall
denote by ?x the 1-D convolution convolution operator in the x-direction, i.e.

G ?x u (x, y) =

∫
R
G (z)u (x− z, y) dz.

Similarly, we denote by ?y the 1-D convolution convolution operator in the y-direction. We denote
by Gσ, Gxσ and Gyσ respectively the 2D and 1D convolution operators in the x and y directions with

Gcσ (x, y) :=
1

2π(cσ)2
e
− x

2+y2

2(cσ)2

Gxcσ (x) :=
1√

2πcσ
e
− x2

2(cσ)2

Gycσ (y) :=
1√

2πcσ
e
− y2

2(cσ)2

12



namely

Gσu := Gcσ ? u

Gxσu := Gxcσ ?x u

Gyσu := Gycσ ?y u.

Here the constant c ≥ 0.7 is large enough to ensure that all convolved images, initially sampled at 1
distance, can be sub-sampled at Nyquist distance σ without causing significant aliasing.

Remark 20. Gσ satisfies the semigroup property

GσGβ = G√
σ2+β2 . (3)

By a mere change of variables in the integral defining the convolution, the next formula holds and
will be useful:

GσHγu = HγGσγu. (4)

In the classic Shannon-Nyquist framework, we shall denote the image sampling operator (on a
unary grid) by S1. Thus S1u is defined on the grid Z2. The Shannon-Whittaker interpolator of a
digital image on Z2 will be denoted by I.

As developed in [59], the whole image comparison process, based on local features, can proceed
as though images where (locally) obtained by using digital cameras that stand far away, at infinity.
The geometric deformations induced by the motion of such cameras are affine maps. A model is
also needed for the two main camera parameters not deducible from its position, namely sampling
and blur. The digital image is defined on the camera CCD plane. The pixel width can be taken
as length unit, and the origin and axes chosen so that the camera pixels are indexed by Z2. The
digital initial image is always assumed well-sampled and obtained by a Gaussian blur with standard
deviation around 0.8. In all that follows, u0 denotes the (theoretical) infinite resolution image that
would be obtained by a frontal snapshot of a plane object with infinitely many pixels. The digital
image obtained by any camera at infinity is therefore formalized as u = S1G1AT u0, where A is any
linear map with positive singular values and T any plane translation. Thus we can summarize the
general image formation model with cameras at infinity as follows.

Definition 21 (Image formation model). Digital images of a planar object whose frontal infinite
resolution image is u0, obtained by a digital camera far away from the object, satisfy

u =: S1G1AT u0 (5)

where A is any linear map and T any plane translation. G1 denotes a Gaussian kernel broad enough
to ensure no aliasing by 1-sampling, namely IS1G1AT u0 = G1AT u0.

Figure 6: The projective camera model u = S1G1Au0. A is a planar projective transform (a
homography). G1 is an anti-aliasing Gaussian filtering. S1 is the CCD sampling.

The image formation model in Definition 21 is illustrated in Figure 3.

13



3.1 Inverting tilts

We now formalize the notion of tilt. There are actually three different notions of tilt, that we must
carefully distinguish.

Definition 22. Given t > 1, the tilt factor, define:
• Geometric tilts

T xt u0(x, y) =: u0(tx, y);

T yt u0(x, y) =: u0(x, ty).

• Simulated tilts (taking into account camera blur)

Txt v =: T xt Gx√t2−1
?x v;

Tyt v =: T yt G
y√
t2−1

?y v.

• Digital tilts (transforming a digital image u into a digital image)

u→S1Txt Iu;

u→S1Tyt Iu.
Digital tilts are the ones used in practice. It all adds up because the simulated tilt yields a blur

permitting S1-sampling.
If u0 is an infinite resolution image observed with a camera tilt of t in the x direction, the observed

image is G1T
x
t u0. Our main problem is to reverse such tilts. This operation is in principle impossible,

because geometric tilts do not commute with blur. However, the first formula of the next Theorem
23 shows that Tyt is, up to a zoom out, a pseudo inverse to T xt .

The meaning of this result is that a tilted image G1T
x
t u can be tilted back by tilting in the

orthogonal direction. The price to pay is a t zoom out. The second relation in the theorem means
that the application of the simulated tilt to an image that can be well sampled by S1 yields an image
that keeps that well sampling property.

Theorem 23. Let t ≥ 1. Then

TytG1T
x
t = G1Ht; (6)

TytG1 = G1T
y
t . (7)

Proof. Since Ht = T yt T
x
t , (6) follows from (7) by composing both sides on the right by (T xt )−1. Let

us now prove (7). We shall use the following obvious facts

G1 = Gx1G
y
1 = Gy1G

x
1 (8)

which follows from the separability of the Gaussian and Fubini’s theorem and the commutation

Gx1T
y
t = T yt Gx1 (9)

which is true because Gx1 and T yt act separably on the variables x and y. Using first (4) in the y
dimension where T yt is a mere homothety, and then successively (9), (8), the semigroup property for
the Gaussians, and Definition 22 we get

T yt G
y
t = Gy1T

y
t ⇒

Gx1T
y
t G

y
t = Gx1G

y
1T

y
t ⇒

T yt G
y
tGx1 = G1T

y
t ⇒

T yt G
y√
t2−1

Gy1G
x
1 = G1T

y
t ⇒

TytG1 = G1T
y
t ,

which proves (7).

The meaning of Theorem 23 is that we can design an exact algorithm that simulates all inverse
tilts for comparing two digital images. This algorithm handles two images u = G1AT1w0 and
v = G1BT2w0 that are two snapshots from different view points of a flat object whose front infinite
resolution image is denoted by w0.
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3.2 Proof that IMAS works

In this section, the formal IMAS algorithm is duly presented (Algorithm 1). Our goal is to prove
that it works. This proof is a direct application of the results introduced of the previous section.
The algorithm and its proof rely on the formal assumption that there exists an image comparison
algorithm able to compare image pairs with tilts lower than log r. The core idea of IMAS algorithms
is illustrated in Figure 7.

Algorithm 1 Formal IMAS (Image Matching by Affine Simulation)

Enviroment:
Parameters and assumptions from Theorem 18 with

Si =
{[
T xtik

Rφik

]}
k=1,...,ni

.

Input:
Query and target images: u and v.

Start:
1: ∀k = 1, ..., n1 do

uk = Txt1kRφ1
k
u.

2: ∀k = 1, ..., n2 do
vk = Txt2kRφ2

k
v.

3: ∀(k1, k2) ∈ {1, ..., n1} × {1, ..., n2}

Mk1,k2 = SIIM-Matches(uk1 , vk2).

Output:

M =
⋃

(k1,k2)∈{1,...,n1}×{1,...,n2}

Mk1,k2 .

Figure 7: IMAS algorithms start by applying a finite set of optical affine simulations to u and v,
followed by pairwise comparisons.
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Proposition 24. Let u and v be respectively query and target images which are related by a transition
tilt under Λ1Λ2, i.e. there exist a continuous image w0 and A,B ∈ GL+ (2) with

τ (A) ≤ Λ1 and τ (B) ≤ Λ2

such that
u = G1AT1w0 and v = G1BT2w0 (10)

where T1, T2 are planar translations. Then, under the assumptions of Theorem 18, the formal IMAS
of Algorithm 1 generates two affine versions of the images u and v with a transition tilt lower than
r.

Proof. By Theorem 18 there exist SA ∈ S1, SB ∈ S2 and C ∈ GL+ (2) with τ (C) ≤ r such that

d
(
SA,

[
(AC)

−1
])

= 0

d
(
SB ,

[
(BC)

−1
])

≤ log r.

Consider the slanted view of the frontal continuous image w0 defined by w1 := C−1w0. Then we can
rewrite query and target images as

u = G1ACT1w1 and v = G1BCT2w1.

By Proposition 15, the above modification keeps transitions tilts stable, i.e.

d ([AC] , [BC]) = d ([A] , [B]) ,

so we can reason as if w1 were the frontal image, instead of w0.
Now, the formal IMAS Algorithm 1 will apply i (SA) = T xtARφA and i (SB) = T xtBRφB respectively

on the query and target images. This is:
1. TxtARφA to u, which yields

ũ = G1i (SA)ACT1w1

= G1λRT1w1.

2. TxtBRφB to v, which yields

ṽ = G1i (SB)BCT2w1.
But

d ([Id] , [i (SB)BC]) = log τ (i (SB)BC)

= d
(
SB ,

[
(BC)

−1
])

≤ log r

which proves that the affine relation between ũ and ṽ involves a transition tilt under r.

Remark 25. Two logr-coverings of the same region

Γ = B ([Id] , log Λ)

would then ensure that the formal IMAS Algorithm 1 manages to reduce transition tilts under Λ2

r
between two images into transition tilts under r. A relation between covered absolute tilts, attainable
transition tilts and maximal viewpoint angle can be found in Table 1.

3.3 Optimal discrete coverings in the space of tilts

We now consider the problem of providing two optimal sets S1,S2 ⊂ Ω permitting the application of
Theorem 18. These sets should ensure a minimal complexity for the IMAS algorithm. We thus need to
define an optimality criterion. We observe that an IMAS algorithm simulates affine transformations
on a digital image and then compares descriptors coming from those simulated versions. One
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Covered absolute tilts Attainable transition tilts Viewpoint angle
(τ (A) ≤

√
rΛ and τ (B) ≤

√
rΛ)

(
τ
(
AB−1

)
≤ Λ2

) (
arccos 1

Λ2

)
Λ = 8 64 89.1◦

Λ = 4
√

2 32 88.2◦

Λ = 4 16 86.4◦

Λ = 2
√

2 8 82.8◦

Λ = 2 4 75.5◦

Λ =
√

2 2 60◦

Table 1: Link between absolute tilts, transition tilts and viewpoint.

would like to minimize the overall number of descriptor comparisons while maintaining the detection
efficiency. This minimization is not equivalent to a minimization of the number of simulated versions
being used. We shall base our efficiency criterion on two straightforward remarks. The first one is
that if a digital image suffers a tilt t in any direction, its area gets modified by a factor 1

t . The
second one is that the expected number of keypoints in a digital image is proportional to its area.
Both remarks imply that the complexity of an IMAS algorithm will be given by the overall area of
the simulated images being ultimately compared. This justifies the next definition.

Definition 26. We call area ratio of S (a finite set of elements in Ω) the real number∑
S∈S

1

τ (S)
.

The area ratio fixes the factor (larger than 1) by which the image area is being multiplied when
summing the areas of all of its tilted versions. Then, as the ultimate goal is to reduce the number of
key points comparisons, it is natural to look for a set S whose area ratio is close to the infimum among
all log r-coverings of Γ. Unfortunately, even in R2, the mathematical problem of finding a covering of
a certain set with a minimum amount of disks is well known to be NP-hard. It is therefore difficult to
find an optimal solution for our problem, and unlikely that it will be proved to be optimal even if it
is. Fortunately, our search space in the set of log r-coverings can be drastically reduced by imposing
practical and theoretical constraints to S. Those constraints follow from simple requirements for an
image matching method.

Definition 27. We shall say that a set S ∈ Ω is feasible if and only if:
1. [Id] ∈ S.

2. There exist n ∈ N+ and

(t1, ..., tn, φ1, ..., φn) ∈ [1,∞[
n × ]0, π]

n

such that

S \ {[Id]} =

n⋃
i=1

{
[TtiRkφi ] ∈ Ω | k = 0, ...,

⌊
π

φi

⌋}
where bac denotes the nearest integer less than or equal to a real number a.

Remark 28. Definition 27-1) avoids an image resolution loss before comparison, an obvious requirement.
Imposing groups of concentric equidistant tilts as in Definition 27-2) is a sound isotropy requirement.

Definition 29. Set Γ = B ([Id] , log Λ). A feasible set S ∈ Ω with parameters

(n, (t1, ..., tn, φ1, ..., φn)) ∈ N+ × [1,∞[
n × ]0, π]

n

is said to be optimal among feasible sets if and only if it realizes the minimal area ratio. In other
words, optimal feasible sets are solutions of:

arg min
(n,(t1,...tn,φ1,...φn))∈N+×[1,∞[n×]0,π]n

1 +

n∑
i=1

|Jti,φi |
ti

(11)

subject to: Γ ⊂ Blog r
[Id] ∪

 ⋃
1≤i≤n

⋃
S∈Jti,φi

Blog r
[S]
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where Jti,φi is the set of transformations of the form

TtiRφi , TtiR2φi ..., TtiR
⌊
π
φi

⌋
φi
,

|Jti,φi | is the cardinal of Jti,φi and Blog r
[S] is denoting B ([S] , log r).

Fortunately for our problem with the realistic values Λ = 6 and r = log 1.8, n = 2 can be fixed,
as easy heuristics indicate that any covering with n > 2 has a far too large area ratio. Thus our
optimization in a realistic setting ends up being performed in dimension 4 for sets (t1, t2, φ1, φ2). With
n thus fixed the optimization problem in (11) can be exhaustively optimized. In this minimization
we deal with 4 dimensions and more specifically with 1004 feasible sets by sampling each parameter.
This yields an almost exact discrete exhaustive optimization by sampling densely the explored set
(t1, t2, φ1, φ2) with 100 different values for each parameter. The next proposition describes the result
of this optimization and verifies that it is indeed feasible.

Proposition 30. There exists a feasible log 1.8-covering, depicted in Figure 9c, with area ratio equal
to 6.34. It is an approximated solution of the optimization problem in (11) for Γ = {[TtRφ] | t ≤ 6},
n = 2. Therefore, the infimum area ratio among all log 1.8-coverings of {[TtRφ] | t ≤ 6} is lower than
6.34.

Proof. We are dealing with 4 dimensions to minimize and more specifically with 1004 feasible sets.
Computing area ratios for each feasible set is straightforward but validating the covering condition is
a more involved computational issue. For the sake of clearness, the intersection of disks boundaries,
which are composed at most of two elements for non identical disks, shall be denoted by

Σ1 = ∂Blog 1.8

[Tt1 ]
∩ ∂Blog 1.8[

Tt1Rφ1

] Σ2 = ∂Blog 1.8

[Tt2 ]
∩ ∂Blog 1.8[

Tt2Rφ2

]
and their respective closest and farthest elements will be denoted by

minΣ1 := arg min
S∈Σ1

d (S, [Id]) maxΣ1 := arg max
S∈Σ1

d (S, [Id]) ,

minΣ2 := arg min
S∈Σ2

d (S, [Id]) maxΣ2 := arg max
S∈Σ2

d (S, [Id]) .

In order to check if a feasible set does cover the specified region we propose to verify the following
four conditions depicted in Figure 8:

1. Σ1 6= ∅ and Σ2 6= ∅.

2. minΣ1 must lie inside the ball Blog 1.8
[Id] , which ensures a covering of Blog τ(maxΣ1)

[Id] .

3. maxΣ2 must lie outside the region Γ, which ensures a covering of the annulus defined by

Γ \ Blog τ(minΣ2)
[Id] .

4. For ε small, all elements S ∈ Fε must lie inside some disks of radius log (1.8− ε), i.e.

S ∈
⋃

1≤i≤2

⋃
S′∈Jti,φi

Blog(1.8−ε)
[S′] ,

where Fε is a finite ε-dense set of the annulus defined by

Blog τ(minΣ2)
[Id] \ Blog τ(maxΣ1)

[Id] .

Notice that the fourth condition only ensures a log (1.8− ε)-covering up to an error

ε = max
S′∈Γ

min
S∈Fε

d (S, S′)

and so, by dilating back disks radius to 1.8 one ensures log 1.8-coverings.
By using the procedure described above, an approximated solution to the optimization problem

in (11) has been obtained. Its parameters can be found in Table 2. Its corresponding representation
in the space of tilts appears in Figure 9c.

The procedure in the proof of Proposition 30 has also been applied to find more near optimal
coverings appearing in Figure 9.
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Covered area

B ([Id] , log r)

[Id] [Tt1 ]

[Tt1Rφ1
]

min Σ1

max Σ1

(a) Second condition

Covered area

Γ

B ([Id] , log r)

[Id] [Tt2 ]

[Tt2Rφ2
]

min Σ2
max Σ2

(b) Third condition

B ([Id] , log r)

[Id] [Tt1 ]

[Tt1Rφ1
]

max Σ1

[Tt2 ]

[Tt2Rφ2
]

min Σ2

Fε
(c) Fourth condition

Figure 8: Verifying covering conditions for feasible sets in Proposition 30.

Parameter Value

topt1 2.88447

φopt1 0.394085

topt2 6.2197

φopt2 0.196389

Table 2: Approximated solution to the optimization problem in (11)

4 Experimental Validation

We are now able to propose and evaluate for each SIIM method its IMAS, namely its affine-invariant
extension. This affine invariant version relies on two facts. First, each SIIM identifies viewpoint
changes, under a certain transition tilt threshold (that we shall estimate in this section). Second,
any smooth map is locally approximable by an affine map. Hence, under the assumption that the
surface of photographed objects is locally smooth, all viewpoint changes can be understood as local
transition tilts changes (see Figure 1). Third, once provided with a logr-covering of Γ = Γ′, where r
is less than the transition tilt threshold of the SIIM, Proposition 24 states that Algorithm 1 offers
an affine-invariant version of the considered SIIM. Indeed, there is at least one pair of simulated
images whose transition tilt is less than r, and on these two images the SIIM can succeed. The
affine invariance property is ensured for transition tilts changes up to Λ1Λ2, i.e. for viewpoint angle

changes of about arccos
(

1
Λ1Λ2

)
. We shall denote by ts1×s2max the associated maximum tilt tolerance

with respect to a matching method for images with size larger than s1 × s2.
In our experiments, all SIIM methods were immersed in the same affine extension set-up. The

simulation of optical tilts, matching and filtering were handled in the very same way. This set-up
received as a parameter the name of the base detector+extractor method to perform, then a brute
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(a) Optimal log 1.6-covering of
{[

TtRφ
]
| t ≤ 5.6

}
with

28 affine simulations representing an area ratio of 8.42.
(b) Optimal log 1.7-covering of

{[
TtRφ

]
| t ≤ 5.8

}
with

25 affine simulations representing an area ratio of 7.06.

(c) Optimal log 1.8-covering of
{[

TtRφ
]
| t ≤ 6

}
with

25 affine simulations representing an area ratio of 6.34.
(d) Optimal log 1.9-covering of

{[
TtRφ

]
| t ≤ 8

}
with

27 affine simulations representing an area ratio of 6.18.

(e) Optimal log 2-covering of
{[

TtRφ
]
| t ≤ 10

}
with 32

affine simulations representing an area ratio of 6.02.

Figure 9: Near-optimal coverings in the space of tilts.
Gray areas - Uncovered.
Blue areas - Covered by at least two disks.
White areas - Covered by only one disk.
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(a) 640× 480 (b) 650× 488 (c) 850× 680

(d) 800× 600 (e) 468× 493 (f) 800× 640

(g) 640× 480 (h) 800× 600 (i) 640× 480

Figure 10: Tolerance image dataset.

force matcher was performed with the second-closest neighbor acceptance criterion proposed by D.
Lowe in [28]. Finally, as presented in [39, 59], three main filters were applied: first, only unique
matches were taken into account; second, groups of multiple-to-one and one-to-multiple matches
were removed; finally, only matches coming from the most significant geometric model (if it existed!)
were kept. In our case, as all tests were based on planar transformations, the ORSA homography
detector [36] (a parameterless variant of RANSAC) was applied to filter out matches not compatible
with the dominant homography.

All detectors, all extractors and the matcher were taken from the Open Source Computer Vision
(OPENCV) Library, version 3.2.0.

4.1 Maximal tilt tolerance computation for each SIIM

From the complexity viewpoint, the main quantitative parameter for extending a SIIM into an
IMAS is its tilt tolerance. We do not question the invariance of descriptors with respect to zoom
and rotations but rather how they perform against transition tilts changes incurred when matching,
for example, G1Id u to G1TtRφu where t ∈ [1,∞[ and φ ∈ [0, π[.

We used the tolerance image dataset displayed in Figure 10 to evaluate the maximal tilt tolerance
of each SIIM with respect to images of similar size. Images in this dataset have a fixed size and
were selected to obtain a diversity of challenging scenarios. In order to approximate t700×550

max , we
simulated optical tilts on the tolerance image dataset and then tested whether this affine simulation
was identified by ORSA Homography with a precision of 3 pixels. This test determined upper bounds
U700×550

max depicted in Figure 11 for nine of the best state-of-the-art SIIMs.

This test yielded upper bounds for t700×550
max , based on its application to nine images whose sizes

are close to 700 × 550. Supposing a maximal angle error computation of π
10 , we assumed that for

each SIIM

t700×550
max =

U700×550
max

1

|cos( π10 )|
≈ U700×550

max

1.05

and constructed its affine invariant version with log t700×550
max -coverings.

4.2 Affine-invariant methods

The matching process is as symmetric as possible. No significant changes should come along by
interchanging the roles of the query and target images. In the case of IMAS algorithms this symmetry
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(a) RootSIFT
(
U700×550
max = 2

)
(b) SIFT

(
U700×550
max = 1.8

)
(c) FREAK

(
U700×550
max = 1.8

)

(d) AKAZE
(
U700×550
max = 1.7

)
(e) BRISK

(
U700×550
max = 1.7

)
(f) ORB

(
U700×550
max = 1.5

)

(g) SURF
(
U700×550
max = 1.5

)
(h) LATCH

(
U700×550
max < 1.4

)
(i) BRIEF

(
U700×550
max � 1.4

)
Figure 11: Represented in the space of tilts, the associated upper bounds (U700×550

max ) for maximum
tilt tolerances.
Black dot - [Id].
Coloured dots stand for tested tilts [TtRφ] where t ∈ {1.4, 1.5, · · · , 2.4} and φ ∈ {0, 10, · · · , 170}.
Blue dots - attainable tilts for all images in the dataset.
Red dots - unattainable tilts for at least one image in the dataset.
Gray areas -

{
[TtRφ] |t ≥ U700×550

max

}
.

White areas -
{

[TtRφ] |t ≤ U700×550
max

}
.

implies a unique set of optical tilts to simulate on both query and target images. Thus, if this unique
set of optical tilts represents a log r-covering of

Γ1 = Γ′ = {[TtRφ] | t ≤ Λ}

then Proposition 24 ensures that any IMAS based on a SIIM whose maximum tilt tolerance is greater

than r is able to identify all tilts under Λ2

r by simulating all affine maps in the log r-covering.

Several coverings in the space of tilts have been proposed in [39, 59, 44, 35] for SIFT and SURF.
Figure 14 displays these coverings. They are clearly not optimal. Indeed, most of these coverings do
not really cover the region they were meant to, except for ASIFT [39, 59] (which instead is visually
redundant) and for the affine DoG-SIFT version in [35].

In order to compare the efficiency of those coverings, query and target images were generated in

a way so as to test Algorithm 1 to the limit, i.e., forcing the worst case scenario in which
[
(BC)

−1
]

lies in Γ′ \ Γ2. We simulated the optical tilts on query and target images coming from one single
image. This image, denoted by w0 and appearing in Figure 12, was then used to compute the inputs
of Algorithm 1 as follows:

• Query image (non-fixed tilt), G1At,φw0 where At,φ = RφTtRπ
2

.

• Target image (fixed tilt), G1Bφw0 where Bφ = Rφ+π
2
TΛ.
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Figure 12: Image w0 (3264× 1836) for the IMAS efficiency test

The veritable interest of these affine maps being the inverse maps they determine, namely,[
A−1
t,φ

]
=
[
TtRπ

2−φ
]
,[

B−1
φ

]
= [TΛRφ] ,

which according to Proposition 8-4, attain maximal transition tilts for fixed tilts such as t and Λ, i.e.

τ
(
A−1
t,φBφ

)
= tΛ.

When ORSA Homography was able to identify the affine map that relates query and target
images, we counted the event as a success. Clearly, if Γ′ and Γ2 are truly log r-covered then

Proposition 24 implies that all tests for which
[
A−1
t,φ

]
∈ Γ1 should be counted as a success. Results

in Figure 13 were as expected and highlight the importance of using the right coverings for extreme
cases. Both ASIFT and Optimal Affine-SIFT were able to capt most of all transition tilts that

Proposition 24 predicted, namely those under Λ2

r .
We must keep in mind that these log r-coverings depend on tilt tolerances found over images

in Figure 10. Maximal tilt tolerances are linked to the size of images being compared and as a
consequence the disks radius might grow or shrink proportionally to the minimum size of all simulated
images. Moreover, Proposition 24 does not take into account discretization errors and relies on two
main hypotheses:

1. The considered SIIM is truly rotation and zoom invariant.

2. For images similar to the input image, the SIIM under consideration has a maximal tilt tolerance
not smaller than r.

As anticipated, the area ratio associated to a covering reliably evaluates the difference of performance
between affine versions of the same matching method. Being proportionally linked to the total amount
of keypoints, the area ratio of Definition 26 predicts the order of growth in computation time. For
example, the SIFT keypoint computation part induced by the optimal covering in Figure 9b is twice
faster than the one induced by the ASIFT covering. The same goes for the matching part, only this
time the optimal version is four times faster. Since both coverings cover about the same region, our
Optimal Affine-SIFT supplants ASIFT with no qualitative matching loss.

Two examples of performance over query and target images from Figure 15 and 16 are respectively
found in Table 3 and Table 4. In Table 3, Affine-ORB and Affine-BRIEF both fail because of too
many false matches. The best scores found by ORSA to identify meaningful homographies were
respectively 16 out of 905 and 6 out of 1409. Code optimization, smart tweaks and parallelism
performance may vary from SIIM to SIIM and from IMAS to IMAS, which ultimately may lead
to discrepant area ratio predictions on computation time. This is the case of SURF (and optimal
Affine-SURF) whose implementation uses several fine and clever optimizations. Nonetheless, the
optimal Affine-SIFT yields more matches for a lower computation time.
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(a) Optimal Affine-SIFT (r = 1.7)
Γ1 =

{[
TtRφ

]
| t ≤ 3.41

}
Γ′ =

{[
TtRφ

]
| t ≤ 5.8

} (b) ASIFT (r = 1.8)
Γ1 =

{[
TtRφ

]
| t ≤ 3.05

}
Γ′ =

{[
TtRφ

]
| t ≤ 5.5

}

(c) MEDIUM configuration for DoG-SIFT
(r = 1.8)
Γ1 =

{[
TtRφ

]
| t ≤ 5

}
Γ′ =

{[
TtRφ

]
| t ≤ 9

}
(d) Optimal Affine-SURF (r = 1.4)
Γ1 =

{[
TtRφ

]
| t ≤ 3.57

}
Γ′ =

{[
TtRφ

]
| t ≤ 5

}

(e) FAIR-SURF - simulated tilts (r = 1.5)
Γ1 =

{[
TtRφ

]
| t ≤ 3.77

}
Γ′ =

{[
TtRφ

]
| t ≤ 4

√
2
} (f) FAIR-SURF - fixed tilts (r = 1.5)

Γ1 =
{[

TtRφ
]
| t ≤ 3.77

}
Γ′ =

{[
TtRφ

]
| t ≤ 4

√
2
}

Figure 13: Extreme test results.
Black dot - [Id].

Coloured dots stand for
[
A−1
t,φ

]
and belong to a fixed log 1.1 uniform discretization of the annulus{

[TtRφ] | 2 ≤ t ≤ 4
√

2
}

. The angle φ implicitly fixes
[
B−1
φ

]
= [TΛRφ] where Λ = arg maxt [TtRφ] ∈

Γ′.
Blue/Red dots - Success/Failure of ORSA Homography in identifying the underlying affine map.

In Table 4 the reader will notice that Affine-ORB has less matches than ORB itself, which
might seem contradictory. This happens when post-processing the matches, more specifically, when
applying the second filter. The multiple-to-one/one-to-multiple filter, initially proposed in [39, 59],
is meant to filter out undesired aberrant matches but, unfortunately, many good ones get also
eliminated. In spite of this handicap, Affine-ORB is able to catch more matches with higher transition
tilts.

5 Conclusion

Image matching by affine simulations (IMAS) is acknowledged as the best methodology to match
images of the same scene regardless of the viewpoint change. Its time complexity is one of the main
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(a) Proposed covering for ASIFT in [39, 59]. This is
a log 1.8-covering of

{[
TtRφ

]
| t ≤ 5.5

}
with 41 affine

simulations representing an area ratio of 13.77.

(b) Proposed covering for FAIR-SURF in [44],
called fixed tilts. This is a log 1.5-covering
of

{[
TtRφ

]
| t ≤ 1.7

}
with 23 affine simulations

representing an area ratio of 11.42.

(c) Proposed covering for FAIR-SURF in [44],
called simulated tilts. This is a log 1.5-covering
of

{[
TtRφ

]
| t ≤ 1.65

}
with 41 affine simulations

representing an area ratio of 13.77.

(d) Proposed covering in [35], called MEDIUM
configuration for DoG-SIFT. This is a log 1.8-covering
of

{[
TtRφ

]
| t ≤ 1.8

}
with 45 affine simulations

representing an area ratio of 9.

(e) Proposed covering in [35], called HARD
configuration for DoG-SIFT. This is a log 1.8-covering
of

{[
TtRφ

]
| t ≤ 9.6

}
with 61 affine simulations

representing an area ratio of 13.

(f) Proposed covering in [35], called HARD
Configuration for SURF-SURF. This is a
log 1.5-covering of

{[
TtRφ

]
| t ≤ 1.5

}
with 112

affine simulations representing an area ratio of 21.28.

Figure 14: Examples of coverings found in the literature for maximum tilt tolerances as in Figure
11.
Gray areas - Uncovered.
Blue areas - Covered by at least two disks.
White areas - Covered by only one disk.
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(a) 800× 640 (b) 800× 640

Figure 15: Graffiti. Both images generate a large number amount of keypoints for most methods.

M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

SIFT 0 1 1 0.69 0.70 0.18
ASIFT 1013 13.7 189.6 12.46 138.59 3.05

(Optimal) Affine-SIFT 795 7.06 49.8 6.04 29.61 1.39
RootSIFT 0 1 1 0.72 0.71 0.18

Affine-RootSIFT 658 6.9 47.6 5.05 20.70 1.44
SURF 0 1 1 1.01 0.79 0.19

(Optimal) Affine-SURF 471 14.82 219,6 12.53 35.24 1.40
BRISK 0 1 1 1.75 0.27 0.18

Affine-BRISK 421 8.42 70,89 18.95 8.68 2.06
BRIEF 0 1 1 0.05 0.01 0.19

Affine-BRIEF 0 14.82 219,6 4.20 2.18 6.08
ORB 0 1 1 0.05 0.02 0.17

Affine-ORB 0 14.82 219,6 4.34 5.13 3.25
AKAZE 0 1 1 0.42 0.13 0.21

Affine-AKAZE 194 8.42 70,89 5.00 6.23 3.74
LATCH 0 1 1 0.11 0.02 0.00

Affine-LATCH 37 14.82 219,6 4.52 2.16 0.17
FREAK 0 1 1 0.34 0.15 0.18

Affine-FREAK 145 7.06 49.8 4.37 2.38 1.94

Table 3: Matching methods performance over query and target images from Figure 15. The proposed
matching methods in this paper appear in bold. Computations were performed on an Intel(R)
Core(TM) i5-4210U CPU 1.70GHz with 2 cores.
M - Matches.
ar - area ratio.

26



(a) 600× 450 (b) 600× 450

Figure 16: Adam. Both images generate a small number of keypoints for most methods.

M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

SIFT 102 1 1 0.23 0.01 0.09
ASIFT 317 13.7 189.6 5.43 1.68 0.47

(Optimal) Affine-SIFT 292 7.06 49.8 2.71 0.38 0.30
RootSIFT 110 1 1 0.25 0.01 0.09

Affine-RootSIFT 219 6.9 47.6 2.23 0.28 0.24
SURF 110 1 1 0.24 0.03 0.14

(Optimal) Affine-SURF 663 14.82 219,6 3.68 1.19 0.73
BRISK 29 1 1 1.57 0.00 0.04

Affine-BRISK 49 8.42 70,89 17.57 0.06 0.08
BRIEF 0 1 1 0.03 0.00 0.00

Affine-BRIEF 7 14.82 219,6 2.06 0.09 0.03
ORB 102 1 1 0.02 0.01 0.8

Affine-ORB 90 14.82 219,6 2.12 0.31 0.40
AKAZE 20 1 1 0.16 0.00 0.03

Affine-AKAZE 51 8.42 70,89 2.31 0.06 0.09
LATCH 54 1 1 0.07 0.01 0.04

Affine-LATCH 101 14.82 219,6 1.72 0.12 0.10
FREAK 124 1 1 0.14 0.01 0.10

Affine-FREAK 182 7.06 49.8 2.54 0.11 0.31

Table 4: Matching methods performance over query and target images from Figure 16. The
proposed IMAS methods proposed here appear in bold. Computations were performed on an Intel(R)
Core(TM) i5-4210U CPU 1.70GHz with 2 cores.
M - Matches.
ar - area ratio.
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drawbacks that has been widely criticized in the literature. The mathematical derivations in this
paper imply that IMAS based methods really are affine-invariant provided the base SIIM satisfies:
scale+rotation invariance, sufficient distinctiveness, and an acceptable viewpoint tolerance measured
as its transition tilt. We have proved that, as summarized in Figure 14, all former IMAS methods are
over-simulating optical tilts. We therefore have developed a method finding for each SIIM an optimal
IMAS method which only depends on the tilt tolerance of the SIIM. This led us to measure the tilt
tolerance of a number of classic SIIMs. We found for example that the optimal IMAS extension of
SIFT needs twice less descriptors and therefore is four times faster than ASIFT. This improvement
applies to all state of the art IMAS, that can be accelerated by a factor of four. Another consequence
is that the set of affine descriptors associated with an image can be halved.
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6 Appendix

6.1 Proof of theorem 14

By proposition 12 we know that

τ
(
BA−1

)
= τ

(
i ([B]) i ([A])

−1
)

where i is the injection in Definition 10. Thus, without loss of generality, we focus in computing the
absolute tilt of

C = TtR2Q
−1
2 T−1

s

= TtR (φ)T−1
s

where R (φ) = R2Q
−1
2 . Proposition 4 states that the ratio between the singular values of C can be

used to compute its absolute tilt.

6.1.1 Trace and determinant

First, we start by computing the trace and determinant of

C?C = T−1
s R (φ)

−1
TtTtR (φ)T−1

s ,

which are clearly

det (C?C) =
t2

s2

and

Tr (C?C) =

(
t2

s2
+ 1

)
cos2 φ+

(
1

s2
+ t2

)
sin2 φ.
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6.1.2 The eigenvalues of C?C

Let H =

(
a c
c b

)
= C?C and λ+, λ− being the biggest and smallest eigenvalues of C?C respectively.

It is well known that

Tr (H) = λ+ + λ−

det (H) = λ+λ−

and even more that both Tr and det also appear in the characteristic polynomial

|C?C − λId| = λ2 − λ (a+ b) +
(
ab− c2

)
= λ2 − λTrH + detH.

On the other hand, the eigenvalues of a symmetric positive definite matrix are in R, which implies

that

√
(TrH)

2 − 4detH ≥ 0, and so one can write

λ− =
Tr (H)−

√
(TrH)

2 − 4detH

2
,

λ+ =
Tr (H) +

√
(TrH)

2 − 4detH

2
.

Now, after some computations, the ratio between the biggest and smallest eigenvalues is

λ+

λ−
=

(
TrH

2 +

√
(TrH)2−4detH

2

)2

detH

=
s2

t2

g
2

+

√
g2 − 4 t

2

s2

2

2

(12)

where g denotes the function

g (t, s, φ) := Tr (C?C)

=

(
t2

s2
+ 1

)
cos2 φ+

(
1

s2
+ t2

)
sin2 φ.

6.1.3 Computing τ (C)

Proposition 4 tells that the absolute tilt of C is

τ (C) =

√
λ+

λ−

=
s

t

g
2

+

√
g2 − 4 t

2

s2

2


=

s

t

g

2
+

√(s
t

g

2

)2

− 1

= G (s, t, φ) +

√
(G (s, t, φ))

2 − 1

where

G (s, t, φ) =
s

t

g (s, t, φ)

2
.
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6.1.4 Disks in the space of tilts

Let A := [TtR2] ∈ Ω be fixed and let us find conditions on B := [TsQ2] ∈ Ω to satisfy

B ∈ B (A, log r)

which are clearly

d (A,B) = log τ
(
i (A) i (B)

−1
)
≤ log r

m

τ
(
i (A) i (B)

−1
)
≤ r

where i is the injection in Definition 10. Thus, just by applying the above to C := i (A) i (B)
−1

we
obtained

G (s, t, φ) +

√
(G (s, t, φ))

2 − 1 = τ
(
AB−1

)
≤ r

where R (φ) = R2Q
−1
2 . So √

G2 − 1 ≤ r −G
m

G2 − 1 ≤ r2 − 2rG+G2

m

G ≤ r2 + 1

2r
.
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