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Abstract: In this paper, a Nonlinear PID (NLPID) control design is proposed. The main idea consists of combining the 
classical sliding modes approach together with the PID structure. Unlike the existing nonlinear PID 
controllers in the literature, the coefficients are constant parameters in this work. Within this paper, we 
investigate the efficiency and the performance of this technique through an application to a small Vertical 
Take Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV). The NLPID based autopilot drives the 
vehicle toward the desired configuration in the space while stabilizing the roll and the pitch angles where 
the closed-loop system stability analysis is highlighted. The numerical simulations have shown satisfactory 
results using nominal model or disturbed one compared to the use of classic sliding modes technique only. 
Experimental tests are performed to validate the effectiveness of the proposed control approach. 

1 INTRODUCTION 

Because of their layout topology, the quadrotors are 
capable of Vertical Take-Off and Landing (VTOL) 
and they have a high maneuverability. In the last 
couple of years, they are becoming more popular in 
the commercial, academic, and hobbyist sectors. The 
challenge that must be addressed by the researchers 
is to design flight controllers, insuring good 
performance with good level of robustness, knowing 
that this is a multi-variable, nonlinear and very 
unstable system. This has attracted the interest of 
many researchers in aeronautics and robotics (Yang 
and Lee, 2014; Bouzid et al., 2016a; Kun and 
Hwang, 2016).   

The desire to constantly improve the performance 
of controlled systems leads to more complexity and 
may include strong nonlinearities. As the analysis and 
synthesis of control laws used in the linear domain are 
often inadequate for nonlinear systems, therefore, a 
little sophisticated methods then become necessary to 
endeavor (Zou, 2017; Bouzid et al., 2016b).  

In this work, we investigate the design of an 
efficient control law, robust and readily 
implementable, which may provide good performance 
for VTOL vehicles in order to classify the robustness 
and performance level of different approaches 
according to operation conditions in a next 

forthcoming work. For this purpose, a Nonlinear PID 
(NLPID) control is applied to stabilize the vehicle’s 
attitude while the tracking of 3D reference trajectories 
is well ensured. This controller is proposed in order to 
alleviate the chattering problem of the sliding mode 
controllers and allows a direct tuning of the 
controller’s parameters that easily allows meeting the 
fixed desired specifications with good robustness 
level. The properties of this technique will be further 
discussed.  

The rest of this paper is organized as follows: 
Section 2 introduces the mathematical model of the 
vehicle. Section 3 presents the synthesis of the so-
called NLPID control. The application of this 
technique for quadrotor is described in Section 4 
where a stability proof is detailed. In Section 5, the 
results obtained from numerical simulations as well 
as from the experimental tests, are given under 
different operating conditions. Finally, Section 6 
contains the conclusion. 

2 VEHICLE DYNAMICS 
BACKGROUND 

The system operates in two coordinate frames: the 
inertial fixed frame ܴ଴(ܱ, ܺ, ܻ, ܼ) and the body 
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frame ܴଵ( ଵܱ, ଵܺ, ଵܻ, ܼଵ) (Figure 1). Let	ߟ =(߮, ,ߠ  describes the orientation of the aerial	்(ߖ
vehicle (Roll, Pitch, Yaw) and χ = ,ݔ) ,ݕ  denotes ்(ݖ
its absolute position with	߮ ≠ ±గଶ , ߠ ≠ ±గଶ. 

We give a brief explanation of the classic process 
followed to derive a simplified model that describes 
the drone’s in-flight behavior where more accurate 
dynamic models may be found as for instance in 
(Kun and Hwang, 2016). The structure and the 
propellers are rigid and symmetric (with a suitable 
choice of the body reference frame as depicted in 
Figure 1, the inertia matrix is diagonal). 

 

Figure 1. Quadrotor in experimentations. 

Gravity force that acts on the center of mass is 
expressed in the earth fixed frame in the negative ܼ 
direction. The total thrust is in the positive ܼ 
direction and expressed in the body fixed frame. 
Then, it must be rotated into the earth fixed frame. 
The rotation matrix ℛ(߮, is given by ℛ (ߖ,ߠ =	 ቎ܿఅܿఏ ܿఅݏఏݏఝ − అܿఝݏ ܿఅݏఏܿఝ + అܿఏݏఝݏఅݏ ఝݏఏݏఅݏ + ܿఅܿఝ ఏܿఝݏఅݏ − ܿఅݏఝ	−ݏఏ ܿఏݏఝ ܿఏܿఝ ቏ 
where ݏ(.) and  ܿ(.) are abbreviations for ݊݅ݏ(. ) and ܿݏ݋(. ) respectively. Therefore, the translational 
dynamic may be expressed as follows ݉χሷ = −݉݃݁௭ + ,߮)ଵℛݑ ,ߠ ௭ (1)݁(ߖ
where ݁௭ = (0,0,1)்	denotes the unit vector of Z-
axis, ݉ the mass, ݃ the gravity acceleration 
and	ݑଵ	the total thrust. 

Pitch and roll movements, are created by the 
difference in combined thrust in the opposite sides 
of the vehicle. However, yaw movement is 
generated by the differential drag forces. The 
rotational dynamics can be expressed as  ܫ߸ሶ = −߸ × ߸ܫ + ௔ܩ + ߬ (2)	߸ = ൫߸௫,߸௬,߸௭൯்	 denotes the angular velocity 
vector, ܫ = ,	௫ܫ	)݃ܽ݅݀ ,௬ܫ	  ௭) is the diagonal inertiaܫ		
matrix, ߬ = ,ଶݑ) ,ଷݑ ௔ܩ  ସ)் is the control torque andݑ = ൫ܬ௥ߠሶΩ௥	, ௥ܬ ሶ߮ Ω௥, 0	൯்denotes the propellers 
gyroscopic effect with ܬ௥ denotes the rotors inertia 
and Ω௥  is a mixer of the rotors speeds. The angular 

velocity ߸	of the quadrotor	 is tranformed into Euler 
angular speeds	ߟሶ . This yields (Kun and Hwang, 
ሶߟ (2016 = ቎1 sఝtanߠ cఝtan0ߠ cఝ −sఝ	0 sఝ/cఏ cఝ/cఏ ቏߸ (3)

For real life applications (inspection, coverage, 
etc.) or hovering and by using equations (1), (2) and 
(3) the simplified dynamic model of the vehicle 	may be written as: 

χሷ =
ۈۈۉ
ଵݑۇ ܿఅݏఏܿఝ + ଵݑఝ݉ݏఅݏ ఏܿఝݏఅݏ − ܿఅݏఝ݉−݃ + ଵݑ ܿఏܿఝ݉ ۋۋی

ۊ
 (4)

ሷߟ =
ۈۉ
ۇۈۈ
ሶߖሶߠ ൬ܫ௬ − ௫ܫ௭ܫ ൰ + ሶΩ௥ߠ௥ܬ + ௫ሶ߮ܫଶݑ ሶ)ߖ ௭ܫ − ௬ܫ௫ܫ ) + ௥ܬ ሶ߮ Ω௥ + ௬ሶ߮ܫଷݑ ሶ)ߠ ௫ܫ − ௭ܫ௬ܫ ) + ௭ܫସݑ ۋی

(5) ۊۋۋ

3 NONLINEAR PID 
CONTROLLER DESIGN 

In this paper, an improvement has been brought in 
order to simplify the existing controllers, and thus 
overcome some issues poorly tackled by the classic 
linear or nonlinear techniques, using NLPID. 
Usually the kind of control called “NLPID control” 
stands for the regulator for which the coefficients are 
not assumed to be linear. More precisely, in the 
literature, the controllers called nonlinear PID are 
those with gains adjusted according to the state or 
those with gains depending on the phase (Seraji, 
1997). Unlike those mentioned above, our control 
law is defined in a novel way. It consists of a 
nonlinear controller, which is derived from a method 
based upon Sliding Mode Control (SMC) theory and 
combined with a PID structure. In Reference (Eker, 
2006), a sliding surface that has a PID structure is 
used in order to design a sliding mode controller. 
This latter is proposed to improve the performance 
of the standard sliding mode one. The same idea is 
employed later for the steering of lateral moving 
strip in hot strip rolling (Choi and Lee, 2009). 
Herein, the switching term of the sliding model is 
replaced by a PID structure that uses the sliding 
surface as an input instead of the tracking error 
between the reference and the measured signals.  
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3.1 Controller Design 

Consider a class of nonlinear SISO system for ݐ ∈[0,∞) given by:  (∑௫) ൜ݔሶ = ℱ(ݔ) + ݕݑ(ݔ)ܩ = ℎ(ݔ)  (6)

where ݔ ∈ ℝ௡	is an ݊-dimentional state vector, ݑ ∈ℝ is a scalar input, ݕ ∈ ௬ܦ	 ⊂ ℝ		 is a scalar output, ℱ:ܦ௫ ⇢ ℝ௡  and ܦ:ܩ௫ ⇢ ℝ௡ are ݊-dimentional 
vector functions sufficiently smooth on a domain ܦ௫ ⊂ ℝ	௡	and  ℎ(ݔ) the output scalar function.  
Assumption (A1): There exists a diffeomorphism ܦ:߁௫ ⇢ ܴ	௡ where ܦక =  is a domain that  (௫ܦ)߁
contains the origin and a change of variables ߦ  that transforms the nonlinear system into an (ݔ)߁=
equivalent system given by ൫∑క൯ ቐ పሶߦ (ݐ) = ௡ሶߦ(ݐ)௜ାଵߦ (ݐ) = (ߦ)݂ + ݕݑ(ߦ)݃ = ଵߦ  (7)݅ = 1…݊ − ,(ߦ)݂ .1  denote continuous (ߦ)݃
nonlinear functions and ݃(ߦ)	is nonsingular for all ߦ ∈  .కܦ	

Now, let us consider a general sliding surface 
form  ݏ(ߝ௬) = ൬ ݐ݀݀ + ௬൰௡ିଵߣ ௬(t) (8)ߝ

where ߝ௬ = ݕ −  ௥  represents the tracking errorݕ

between a reference trajectory ݕ௥  and the output ݕ 
and ߣ௬ a positive constant.  

By expansion, equation (8) may be written as ݏ൫ߝ௬൯ = (ݐ)௬(௡ିଵ)ߝ + ∑ ௡ିଶ௜ୀ଴(ݐ)௬(௜)ߝ௜ߚ   (9)
where ߚ௜, ݅ = 0,… , ݊ − 2 are positive tuning 
parameters provided that they are chosen in order to 
render the equilibrium, ݏ൫ߝ௬൯ = 0, asymptotically 
stable in finite time T.  

The first-order time derivative of  ݏ൫ߝ௬൯ is ݏሶ൫ߝ௬൯ = (ݐ)௬(௡)ߝ + ∑ ௡ିଶ௜ୀ଴			௬(௜ାଵ)ߝ௜ߚ   (10)
Using the last component of system (7), where 

Assumption (A1) holds, equation (10) becomes ݏሶ൫ߝ௬൯ = (ߦ)݂ + ݑ(ߦ)݃ − ∑+																		 (ݐ)௥(௡)ݕ ௬(௜ାଵ)ߝ௜ߚ 	௡ିଶ௜ୀ଴   
(11)

Given a positive definite Lyapunov function 
candidate ܸ = 12 ௬൯ (12)ߝଶ൫ݏ

The first-order time derivative of ܸ leads to ሶܸ = ௬൯ (13)ߝሶ൫ݏ௬൯ߝ൫ݏ
Note that the reachability condition of sliding 

mode control ensures the asymptotic stability  ( ሶܸ <0). Thus, ݏሶ൫ߝ௬൯ is forced to satisfy the following 
inequalities 

ቊݏሶ൫ߝ௬൯ < 0 ℎ݁݊ݓ ௬൯ߝ൫ݏ > ௬൯ߝሶ൫ݏ0 > 0 ℎ݁݊ݓ ௬൯ߝ൫ݏ < 0 (14)

Assuming that ݏሶ൫ߝ௬൯ = (15) (ݏ)ߛߢ−
with ߢ	being a strictly positive constant and (ݏ)ߛ is a 
function defined by  ቐ(ݏ)ߛ < 0 ݂݅ ݏ < (ݏ)ߛ0 = 0 ݂݅ ݏ = (ݏ)ߛ0 > 0 ݂݅ ݏ > 0 (16)

we ensure inequalities (14).  In fact,	(ݏ)ߛ may take 
different forms of sigmoid. The discontinuous 
function (ݏ)ߛ =  represents the ideal sliding ,(ݏ)݊݃݅ݏ
modes regime.   

From (11) and (15), it immediately follows that ݑ = ିଵ௚(క) (ݏ)ߛߢ} + ∑ ௬(௜ାଵ)௡ିଶ௜ୀ଴ߝ௜ߚ (ݐ)௥(௡)ݕ−   + (17)  {(ߦ)݂

The discontinuous term (ݏ)ߛ allows a good level 
of robustness with respect to uncertainties and 
disturbances. However, the fast oscillation of the 
control signal (chattering phenomena), gives rise of 
vibration in the system during the flight where these 
dynamics are not sustained by the rotors. So, in 
order to improve the performance of the controller 
limiting the effect of the chattering phenomena, 
involved through the term	ݏሶ൫ߝ௬൯, and meet readily 
the specification of the control, we combine a PID 
structure and controller (17) determined above.  ݑ = ିଵ௚(క) ܦܫܲ} + ∑ ௬(௜ାଵ)௡ିଶ௜ୀ଴ߝ௜ߚ (ݐ)௥(௡)ݕ−   +   {(ߦ)݂

(18)

When the state trajectory lies on the sliding 
surface i.e., 0 =(ݐ)ݏ, the design problem of the 
sliding surfaces can be regarded as a linear state 
feedback equivalent control design. Therefore, from 
(17) and (18), the equivalent control is found by 
recognizing that 0 =(ݐ)ݏ. This is a necessary 
condition for the state trajectory to lie on the sliding 
surface. As known, the switching term holds when 
the trajectories are not on the sliding surface in order 
to bring these trajectories to this surface. Therefore, 
we proceed by using this surface as an input of the 
PID structure to ensure that  (ݐ)ݏ converges toward 
the origin ((ݐ)ݏ → 0) and then we ensure the 
convergence of the trajectories toward this surface.  
Therefore, the controller may be written as ݑ = ିଵ௚(క) ቐܭ௣ ቀ(ݐ)ݏ + ଵ்೔ ׬ ߬݀(߬)ݏ +		 ௗܶ௧଴ ௗ௦(௧)ௗ௧ ቁ+∑ ௬(௜ାଵ)௡ିଶ௜ୀ଴ߝ௜ߚ − (ݐ)௥(௡)ݕ + (ߦ)݂ ቑ  

,௣ܭ (19) ௗܶ and ௜ܶ denote the proportional gain, the 
derivative and integral time constants respectively.  
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This new approach is clarified by Figure 2. 

 
Figure 2: Nonlinear PID control architecture. 

3.2 Some Properties of the Proposed 
Controller 

The proposed technique builds on the SMC 
paradigm and uses a dynamic inversion-like control 
strategy to linearize the system. Unlike the SMC 
strategy, obtained controller (19) guarantees that the 
tracking error of the closed loop nominal linearized 
system goes to the origin by forcing the tracking of 
the sliding surface (namely	ݏ൫ߝ௬൯ = 0) via the PID 
controller. The absence of actual sliding action in the 
proposed technique requires a proper stability 
theorem (see Section 4.2). 

NLPID exhibits several benefits, and can be split 
up into two parts: The first part is involved as 
dynamic inversion technique in order to compensate 
the nonlinearities of the system. This part is 
represented by red colored blocks in Figure 2. The 
remaining part includes the PID structure, which 
represents the additional control needed to guarantee 
that the tracking error goes toward the origin by 
forcing the tracking of the sliding surface. We can 
observe in Figure 2 that sliding surface (9) is the 
input of the PID block instead of the tracking error 
as the classic one. Of course, this structure is 
suggested to keep almost a good level of robustness 
even with the absence of the discontinious term that 
ensures higher level of robustness.   

We observe the absence of discontinuities 
associated to jumps in the control action, which 
clearly eliminates the chattering problem and 
reduces the consumed energy. In addition, the steady 
state errors are cancelled by adding the integral 
action that penalizes the deviations between the 
output and its set point. Therefore, the control 
accuracy is improved. Furthermore, this proposed 
controller allows meeting quite readily the desired 
specification by adjusting the PID parameters on the 
hovering conditions. However, the derivative term 
of the proposed controller induces a higher order 
derivative one with respect to that needed for 
classical “Feedback Linearization”. Unfortunately, 

this is a drawback because of the additional noise 
and derivative estimation inaccuracy. These 
properties are shown in Section 5 through a series of 
numerical simulations. 

4 QUADROTOR APPLICATION 

This novel technique is herein applied to the 
quadrotor (Multi-input Multi-output system) by 
taking care of having an adequate control structure. 
In the position control, 	ݔ and ݕ  are controlled 
through two virtual inputs (ݑ௫,  ௬) that push theݑ
system to reach the prescribed references  ݔ௥ and	ݕ௥ 
respectively and allow to generate the reference 
angles (߮௥ , ,ଶݑ) are controlled by the torque vector ߟ ௥ ) via equation (23). The Euler anglesߠ ,ଷݑ  ,ସ)୘ݑ
whereas the altitude is controlled by	ݑଵ . This control 
structure allows the vehicle to ensure the tracking of 
prescribed trajectories along the three axes (X, Y 
and Z) and the yaw angle. We calculate these control 
laws by using the NLPID approach as described in 
Section 3 where the tracking errors are defined as: ߝ௫ = ݔ − ୷ߝ ,௥ݔ = ݕ − ௭ߝ	, ௥ݕ = ݖ − ఝߝ ,௥ݖ = ߮ −߮௥, 	ߝఏ = ߠ − అߝ   and	௥ߠ = ߖ −  .௥ߖ

4.1 Autopilot Design 

Translation dynamics (4) can be divided into three 
other sub-systems along the three axis (X, Y, Z). 
Each sub-system has one input (ݑ௫, ,௬ݑ  ଵ and oneݑ
output (ݔ, ,ݕ  ଵݑ respectively. We first start with (ݖ
for the altitude motion. Once this command is 
calculated we then proceed in the same way with ݑ௫	 
and ݑ௬ by considering ݑଵ	as time varying parameter, 
with ൜ݑ௫ = cఅsఏcఝ + sఅsఝݑ௬ = sఅsఏcఝ − cఅsఝ (20)

Thus, the sliding surfaces are set to: ݏ௜ = పሶߝ + ௜|௜ୀ௫,௬,௭ (21)ߝ଴௜ߚ
where ߚ଴௫,  .଴௭ are positive constantsߚ ଴௬ andߚ

Applying (19), we obtain 

ەۖۖ
۔ۖۖ
ۓۖۖ ଵݑ = ି௠௖ഇ௖ക ൝ܭ௣௭ ቀݏ௭(ݐ) + ଵ்೔೥ ׬ .(߬)௭ݏ ݀߬ +		 ௗܶ௭௧଴ ௗ௦೥(௧)ௗ௧ ቁ+ߚ଴௭ߝ௭ሶ − ݃ − ሷ௥ݖ ൡ
௫ݑ = ି௠௨భ ൝ܭ௣௫ ቀݏ௫(ݐ) + ଵ்೔ೣ ׬ .(߬)௫ݏ ݀߬ +		 ௗܶ௫௧଴ ௗ௦ೣ(௧)ௗ௧ ቁ+ߚ଴௫ߝ௫ሶ − ሷ௥ݔ ൡ
௬ݑ = ି௠௨భ ቐܭ௣௬ ൬ݏ௬(ݐ) + ଵ்೔೤ ׬ .(߬)௬ݏ ݀߬ +		 ௗܶ௬௧଴ ௗ௦೤(௧)ௗ௧ ൰+ߚ଴௬ߝ௬ሶ − ሷ௥ݕ ቑ

 

(22) 
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Then, from system (20), the required reference 
angles of the roll and pitch rotations are given by  ቐ߮௥ = ௥ߖ݊݅ݏ௫ݑ൫݊݅ݏܿݎܽ − ௥ߠ൯	௥ߖݏ݋௬ܿݑ = ݊݅ݏܿݎܽ ൬ݑ௫ܿߖݏ݋௥ + ݏ݋௥ܿߖ݊݅ݏ௬ݑ ߮ ൰	 (23)

Similarly, system (5) can be divided into three 
sub-systems for the roll, pitch and yaw rotations. 
Each one of them has one input (ݑଶ, ,ଷݑ  ସ) and oneݑ
output (߮,  respectively. Consequently, the (ߖ,ߠ
surfaces are ቐݏఝ = ఝሶߝ + ఏݏఝߝ଴ఝߚ = ఏሶߝ + అݏఏߝ଴ఏߚ = అሶߝ + అ (24)ߝ଴అߚ

where (ߚ଴ఝ, ,଴ఏߚ  .଴అ) are positive constantsߚ
Finally, the control laws are given by 

ەۖۖ
۔ۖۖۖ
ۖۖۖ
ଶݑۓ = ௫ܫ− ൞ܭ௣ఝ ൬ݏఝ(ݐ) + ଵ்೔ക ׬ .(߬)ఝݏ ݀߬ +		 ௗܶఝ௧଴ ௗ௦ക(௧)ௗ௧ ൰+ߚ଴ఝߝఝሶ + ሶΩ௥ߠ௥ܬ + ሶߖሶߠ ቀூ೤ିூ೥ூೣ ቁ − ߮௥ሷ ൢ
ଷݑ = ௬ܫ− ൞ܭ௣ఏ ቀݏఏ(ݐ) + ଵ்೔ഇ ׬ .(߬)ఏݏ ݀߬ +		 ௗܶఏ௧଴ ௗ௦ഇ(௧)ௗ௧ ቁ+ߚ଴ఏߝఏሶ + ௥ܬ ሶ߮ Ω௥ + ሶ߮ߖሶ ൬ூ೥ିூೣூ೤ ൰ − ௥ሷߠ ൢ
ସݑ = ௭ܫ− ቐܭ௣అ ቀݏఅ(ݐ) + ଵ்೔೽ ׬ .(߬)అݏ ݀߬ +		 ௗܶఅ௧଴ ௗ௦೽(௧)ௗ௧ ቁ+ߚ଴అߝఅሶ + ሶ߮ ሶߠ ቀூೣିூ೤ூ೥ ቁ − ௥ሷߖ ቑ

  

(25) 
Also ܭ௣(.),, ௜ܶ(.), ௗܶ(.) denote the proportional 

gain, the integral and derivative time constants of the 
NLPID structure respectively. 

4.2 Stability Analysis 

For the sake of completeness, we study the stability 
of the closed loop system using our proposed 
approach. 
Remark 1: all the sub-systems that describe the 
drone’s behavior in flight (three translations and 
three rotations), may be considered as two-
dimensional class of systems: 
For ݐ ∈ [0,∞) ൝ ሶଵݔ = ሶଶݔଶݔ = ݂(χ, (ߟ + ݃(χ, ݕݑ(ߟ = ଵݔ  (26)

where	(ݔଵ, ்(ଶݔ ∈ ௫ܦ ⊂ ℝ	ଶ	is a 2-dimentional state 
vector, ݑ ∈ ℝ is a scalar input, ݕ ∈ ℝ is a scalar 
output. 

For ݊ = 2, substituting surface expression  (9) 
into control law (19), the closed loop of system (26) 
written in terms of the tracking error vector 

components, ߳௬ = ቀߝ௬ଵ, ௬ଶቁ்ߝ = ݕ) − ,௥ݕ ሶݕ − ሶ௥)்  is ቊݕ ௬ሶߝ ଵ = ௬ሶߝ௬ଶߝ ଶ = ௬భߝ଴ߛ− − ௬ଶߝଵߛ + ,൫߳௬ߜ ൯ (27)ݐ

where: ߛ଴ = ௣ܭ + ௗܶܭ௣ߚ଴ + ଴1ߚ + ௗܶܭ௣ ଵߛ  = ௜ܶܭ௣ߚ଴ + ௣௜ܶ൫1ܭ + ௗܶܭ௣൯ ߜ൫߳௬, ൯ݐ = ଴௜ܶ൫1ߚ௣ܭ + ௗܶܭ௣൯නߝ௬భ(߬)݀߬		௧
଴  

Consider that system (27) can be divided into 
nominal system ߳௬ሶ = ൫߳௬൯ (28)ߴ
and an additional integral term,	Δ൫߳௬, ൯ݐ ∈ ఢ೤ܦ ×[0,∞) ⊂ ℝଷ 		⇢ ℝଶ, which equals to 

Δ൫߳௬, ൯ݐ = ൤ ,൫߳௬ߜ0  ൯൨ݐ
Thus ߳௬ሶ = ൫߳௬൯ߴ + Δ൫߳௬, ൯ (29)ݐ
where ܦ:ߴఢ೤ 		⇢ ℝ	ଶ  is a 2-dimentional vector 

functions sufficiently smooth on a domain	ܦఢ೤ ⊂ℝ	ଶ. 
Assuming that the origin of the nominal system 

is exponentially stable equilibrium and accepting 
that we have established this stability as following:  
Let V  a Lyapunov function that satisfies: ߪଵฮ߳௬ฮଶ ≤ ܸ ≤ ଶฮ߳௬ฮଶ (30)ߪ
The first-order time derivative along (28) is ሶܸ ≤ ଷฮ߳௬ฮଶ (31)ߪ−
and ‖ܸߘ‖ ≤ ସฮ߳௬ฮ (32)ߪ
for all   ߳௬ ∈ ௜ߪ   ఢ೤  andܦ > 0, ݅ = 1,… , 4  where ߘ	denotes the gradient operator.  

We suppose that	߂൫߳௬,  ൯, in a boundedݐ
neighborhood of the origin, satisfies the following 
condition ฮΔ൫߳௬, ൯ฮݐ ≤ ହฮ߳௬ฮ (33)ߪ

for all   (ݐ, ߳௬) 	∈ [0,∞) × ହߪ   ఢ೤  andܦ > 0.       
Now, let us use V as a candidate Lyapunov 

function to prove the exponential stability of overall 
system (29). The first-order time derivative of V 
along (29) gives ሶܸ = ൫߳௬൯ߴ்ܸߘ + ,Δ൫߳௬்ܸߘ ൯ (34)ݐ

Using (31), we get ሶܸ 							≤ ଷฮ߳௬ฮଶߪ− + ,ฮΔ൫߳௬	‖ܸߘ‖    ൯ฮݐ
Inequalities (32) and (33) lead to ሶܸ ≤ ଷฮ߳௬ฮଶߪ− + ହฮ߳௬ฮଶ (35)ߪସߪ
To ensure that the origin of (29) is exponentially 

stable equilibrium, the following condition must be 
satisfied	 
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ହߪ ≤ ఙయఙర  (36)

We summarize this result by Theorem 1. 

Theorem 1: Assuming that the origin of system (28) 
is exponentially stable.  Let a Lyapunov 
function,	ܸ: ఢ೤ܦ 	⇢ ℝା, defined for system (28) 

where (30)-(32) hold in domain ܦఢ೤.		Assuming that 

the integral term ߂൫߳௬,  ൯ satisfies inequality (33), ifݐ
condition (36) is satisfied, then the origin of system 
(29) is also exponentially stable. 

This result is only qualitative because the above 
proof is done without explicit knowledge of the 
Lyapunov function. In the following, we seek to find 
a candidate Lyapunov function and the adequate 
parameters,	ߪ௜, ݅ = 1,… , 5, which verify equations 
(30)-(32). We propose a quadratic candidate 
function as  ܸ൫߳௬൯ = ଵଶ ߳௬்ܲ߳௬  (37)

where ܲ = ቂܽଵ ܽଶܽଶ ܽଷቃ 
is a symmetric positive definite matrix. The first-
order time derivative along (28) gives ሶܸ (ݔ) = ௬భଶߝ଴ܽଶߛ− + (ܽଶ − ௬ଶଶ +(ܽଵߝ(ଵܽଷߛ − ଵܽଶߛ −  ௬ଶߝ௬ଵߝ(଴ܽଷߛ

(38)

Chosen σଷ = 1 (see inequality (31)), equation 
(38) leads to: 

۔ۖەۖ
ଵܽۓ = ఊభఊబ + ቀఊబାଵఊభ ቁ	ܽଶ = ଵఊబ	ܽଷ = ቀఊబାଵఊబఊభቁ   (39)

Obviously, the obtained matrix ܲ has two 
eigenvalues: ߣଵ,ଶ = ଵଶ ቀఊబమାఊభమାఊబఊబఊభ + ఊబାଵఊబఊభቁ ∓ ଵଶ√ࣞ  (40)

where ࣞ		 = ቆߛ଴ଶ + ଵଶߛ + ଵߛ଴ߛ଴ߛ + ଴ߛ + ଵߛ଴ߛ1 ቇଶ 

−4൭− ଴ଶߛ1 + ଴ଶߛ + ଵଶߛ + ଵߛ଴ߛ଴ߛ ൬ߛ଴ + ଵߛ଴ߛ1 ൰൱ 

We have also ܸߘ = ܲ߳௬ 
Then, computing ‖ܸߘ‖ we obtain ‖ܸߘ‖ ≤ ‖ܲ‖ฮ߳௬ฮ ≤ √2. ݁݅݃(ܲ)௠௔௫ฮ߳௬ฮ 

where ݁݅݃(ܲ)௠௔௫ is the maximal value of 
eigenvalues ߣଵ and ߣଶ of matrix ܲ. From (32), it 
comes that	ߪସ = √2. ݁݅݃(ܲ)௠௔௫. Then, closed loop 
system (29) is exponentially stable if                          	ߪହ ≤ 1/	√2. ݁݅݃(ܲ)௠௔௫   

Theorem 2: Let a quadratic Lyapunov function (37), 
for nominal system (28) on domain	ܦఢ೤, where ܲ is 

given by (39). If the ߂൫߳௬,  of (29) satisfies	൯ݐ
inequality (33) with	ߪହ ≤ 1/	√2. ݁݅݃(ܲ)௠௔௫, then the 
origin of system (29) is exponentially stable.  

5 SIMULATION STEP AND 
EXPERIMENTAL RESULTS 

5.1 Numerical Simulations 

Numerical simulations have been performed with 
the available UAV nominal parameters (Table 1).  

Table 1: Quadrotor parameters. ࢟ࡵ 0.429 (ࢍ࢑)࢓(	࢓.ࢍ࢑૛) ૙. ૙૙૛ૢ ࢄࡵ (૛࢓.ࢍ࢑)  (݇݃.݉ଶ) 0.0048	௭ܫ 0.0022

The proposed controller performance is being 
compared with the sliding mode controller. For this 
purpose, we consider a vertical flight at altitude of 
one meter during 50 seconds. The control 
parameters are tuned by minimizing the following 
objective function using Genetic Algorithms (GA): 

௙ܱ = ଵ௧భି௧బ ׬ ߝ்ߝ) + ௧భ௧బ((߬)	ݑ்ݑ 	݀߬  

This is in order to obtain a good trade-off between 
the faster time response and the consumed energy 
where ݐଵ and ݐ଴ are the final and the initial times 
respectively, ߝ(߬) is the tracking errors vector and ݑ 
is the inputs vector. The obtained control parameters 
for vertical flight are: 	ܭ௣௭ = 4.289,	 ௜ܶ௭ =18.527, ௗܶ௭ = 0.001 and ߚ଴௭ = 0.126	for NLPID 
controller;  ߢ௭ = 21.19	 and  ߚ଴௭ = 5.18	for SMC.  

The resulting behaviors are depicted in Figure 3. 

 
Figure 3: Comparison in vertical flight. 

From Figure 3, we observe that the NLPID has a 
slower time response. However, the command signal 
is obviously improved and presents the best control 
behavior, which is smoothly varying without 
chattering. This kind of control signals is more 
adequate for the actuators and allows performing a 
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good control without vibration and with less energy. 
Note also that the nonlinear PID exhibits no 
overshoot. This is very important benefit because the 
overshoot of any time response creates oscillations 
of the vehicle during the passage from waypoint to 
another one. Moreover, the proposed controller 
achieves minor steady state error. This is due to the 
inclusion of an integral action term. The additional 
parameters are depicted in Table 2. 

Table 2: Control parameters comparison. 

Control parameters 

Vertical motion 
Longitudinal 

motion 
Lateral  
motion 

Yaw 
 rotation 

NLPID 

௣௭ܭ = 4.29 ௜ܶ௭ = 18.6 ௗܶ௭ = ଴௭ߚ 0.01 = 0.12 

௣௫ܭ = 4.72 ௜ܶ௫ = 12.43 ௗܶ௫ = ଴௫ߚ 0.97 = ௣ఏܭ 9.42 = 0.63 ௜ܶఏ = 1.073 ௗܶఏ = ଴ఏߚ 0.043 = 0.56 

௣௬ܭ = 4.29 ௜ܶ௬ = 9.90 ௗܶ௬ = ଴௬ߚ 0.9 = ௣ఝܭ 10.3 = 0.51 ௜ܶఝ = 0.04 ௗܶఝ = ଴ఝߚ 0.70 = 0.53 

௣అܭ = 10.8 ௜ܶఅ = 11.4 ௗܶఅ = ଴అߚ 0.9 = 13.9 

SMC ߢ௭ = ଴௭ߚ 21.19 = 5.18 

௫ߢ = ଴௫ߚ 29.50 = ఏߢ 5.18 = ଴ఏߚ 1.38 = 5.26 

௬ߢ = ଴௬ߚ 30.92 = ఝߢ 6.03 = 	଴ఝߚ 0.22 = 4.05 

అߢ = ଴అߚ 31.6 = 5.1 

Now, let us check the effectiveness of the control 
laws and their level of robustness. Firstly, we 
consider uncertainties of 25%, 50% and 100% in the 
parameters with respect to the nominal values given 
in Table 1. Then, we suppose an additive Gaussian 
noise affecting the measured signals with different 
magnitudes of 5%, 0.5% and 0.05% respectively. 
The obtained results are shown in Figure 4 and 
Figure 5.  

It should be noted from Figure 4 that the 
quadrotor motors generate an additional thrust at the 
start up in order to ensure the desired control. 
Furthermore, in this case of model parameters 
uncertainties, the controller is able to, accurately; 
ensure the tracking of the desired set point.  Figure 5 
illustrates that the high noise magnitude reduces the 
 

 
Figure 4: Comparison for parameters uncertainties 
scenario. 

 
Figure 5: Comparison considering noisy measurements. 

performance of the controller only, which still 
ensures the stability of the system. 

The advantage of this novel controller is: its low 
sensitivity to the model uncertainties while adequate 
control signals are delivered. 

Now, let’s check the effectiveness of the 
controller in the case of time varying reference 
trajectory. For this particular example, the UAV has 
to stabilize its attitude while following a helix 
trajectory, having radius of 10 meters. The 
simulation-compared results are sketched in Figure 
6. 

Figure 6 shows the stable tracking behavior of 
the complete closed loop system where the outputs 
converge to the desired trajectory with minor steady 
state errors. 

5.2 Experimental Results 

To validate the proposed autopilot through a series 
of experimental tests, we have used an available X-
shaped quadrotor aerial platform (AR-drone V2). 
The designed autopilot was implemented in C++  
under Robot Operating System (ROS) open source 
framework using a publisher/subscriber paradigm 
that ensures all communications between real robots 
(for more details see: ros.org).  The position in the 
plan XY is determined using the frontal camera 
based on Parallel Tracking and Mapping (PTAM) 
algorithm developed in (Engel et al., 2012). The 
main program runs on the ground station, which 
communicate with the quadrotor via Wi-Fi link.  

In this simple proposed scenario, the desired 
trajectory is formed by successive straight-line 
segments. The vehicle starts from the origin to reach 
the point	(ݔ, ,ݕ (ݖ = (2݉, 2݉, 1݉). 

In Figure 7, we observe that the outputs converge 
to the desired trajectory with significant steady state 
accuracy. The control signals seem to be in 
acceptable form where the magnitudes stay within 
the allowable ranges (see Figure 8). Overall, this 
experimental test confirms the simulation results and 
shows the effectiveness of the technique. 

u
1
 [

N
]
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Figure 6: Tracking errors time responses. 

 

 

Figure 7: System time responses. 

 

Figure 8: Control signals. 

6 CONCLUSIONS 

A quadrotor model was simplified in order to 
elaborate simple control laws for a purpose of 
implementation. A novel control design was 
proposed. It is shown that this method guarantees 
exponential stability. Numerical simulations were 
carried out in order to evaluate the effectiveness of 
the designed control system. Besides, experimental 
tests were performed. One may guess that, as matter 
of fact, the proposed methodology turns out to take 
profit of the advantages that may be brought by the 
PID and SMC controllers simultaneously and left 
aside their eventual drawbacks. In addition, the 
robustness against model uncertainties by choosing 
appropriate control parameters are guaranteed. Due 
to the fact that the use of sign function in the sliding 
mode control leads to high oscillations in the control 
signals, which is undesired chattering phenomenon, 
so, we introduced a nonstandard PID structure as a 
possible solution to overcome this drawback whilst 
the steady state errors vanishes under the effect of 
the integral action. In the near future work, we will 
study the stability of the system considering 
saturation modules to imitate the real case.  
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