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Abstract—This paper introduces a new class of mother wavelet
functions, based on a specific analysis window which allows a
recursive implementation of the Continuous Wavelet Transform
(CWT). Using this new transform, we propose to compute
a sharpened time-frequency representation by rewording the
reassigned scalogram and the (first and second-order) syn-
chrosqueezed CWT. We also propose an extension of the CWT
reassignment operators, using the Levenberg-Marquardt algo-
rithm, which can control the energy concentration of a reassigned
scalogram through a damping parameter. Thus, our methods
provide tools which pave the way of the real-time computation
of reversible and almost-ideal time-frequency representations.

I. INTRODUCTION

Most of the real-world signals are non-stationary and
made of several time-varying components which can only
be revealed by a transform with a narrow time-frequency
localization. The Constant Q Transform (CQT) [1] and its
related continuous-time transforms such as the S-transform
[2] or the Continuous Wavelet Transform (CWT) [3], have
shown their superiority over the Short-Time Fourier Transform
(STFT) in many application cases, in particular for audio sig-
nals, due to their varying frequency resolution which models
the signal cochlea transformation [4], [5], [6]. However, the
main inconvenience of all these methods compared to the
STFT, is that they cannot be efficiently implemented by the
means of the Fast Fourier Transform (FFT) algorithm since
they use analysis windows of different width, which depend
on frequency. A solution was provided by the fast wavelet
transform [7] which uses a recursive implementation combined
with resampling operations that imposes to each analyzed scale
to be a power of two. Therefore, in the proposed work, we
first introduce a new mother wavelet function, based on a
previously proposed analysis window which leaded us to an
efficient STFT implementation through causal recursive filtering
[8]. This allows to compute the CWT using a filter-banks
without restriction on the scale and using linear combinations
involving the previously computed coefficients of the trans-
form with the analyzed signal. Second, we also propose to
reword the reassignment operators, its variant involving the
Levenberg-Marquardt algorithm [9], and also the first- and
the second-order (vertical) recursive synchrosqueezed CWT.

This research was supported by the French ANR ASTRES project (ANR-
13-BS03-0002-01).

All these tools pave the way of a real-time implementation
of a sharpened and invertible time-frequency representation
(TFR).

The remainder of the paper is organized as follows. In
Section II, we first recall the definition of the CWT with its
reassignment operators and its synchrosqueezed transform. In
Section III, we introduce a specific mother wavelet function
to allow a recursive implementation of the CWT when it
is discretized. Then, the proposed methods are evaluated in
numerical simulations presented in Section IV. Finally, the
paper is concluded with future work directions in Section V.

II. FILTER-BASED CWT, ITS REASSIGNMENT AND ITS
SYNCHROSQUEEZING

Let L1(R) and L2(R) denote the space of integrable and
square integrable functions. Now, we consider a signal x ∈
L1(R), and an admissible wavelet Ψ ∈ L2(R), which satisfies
0 < CΨ =

∫
R |FΨ(ω)|2 dω|ω| < +∞, the Fourier transform of x

being expressed as Fx(ω) =
∫
R x(t) e−jωtdt, with j2 = −1.

Hence, the CWT of a signal x for any time t and any scale
s, can be defined as [10]

Wx(t, s) =
1

|s|

∫ +∞

−∞
x(τ)Ψ

(
τ − t
s

)∗
dτ, (1)

where z∗ is the complex conjugate of z. For this definition,
we choose the 1

|s| instead of the common 1√
|s|

for the

normalization, since it is more adapted for mode extraction.
Now, if we define each scale as s = ω0

ω , with ω0 > 0, the
central frequency of FΨ, then Eq. (1) can now be expressed
as

CWx(t, ω) =
|ω|
ω0

∫ +∞

−∞
x(τ)Ψ

(
ω

ω0
(τ − t)

)∗
dτ (2)

=

∫ +∞

−∞
x(τ) g

(
t− τ, ω0

ω

)
dτ. (3)

where g(t, s) = 1
|s|Ψ(− t

s )∗ can be viewed as the impulse
response of a filter used in Eq. (3), considered as a convolution
product. Hence, a TFR is provided by |CWx(t, ω)|2, which
is also called scalogram. However, this quadratic distribution
does not belong to the Cohen’s class since it is related to
the Wigner-Ville distribution through a frequency-dependent
separable kernel [11], [12].



For any admissible and analytic wavelet (i.e. we assume
that supp(FΨ(ω)) = [0,+∞[ and ||FΨ(ω)|| = 1), then,
the Plancherel theorem leads us to the frequency domain
expression of the CWT, given by

CWx(t, ω) =

∫
R
Fx(Ω)FΨ(

ω0Ω

ω
) ejΩt

dΩ

2π
. (4)

Thus, we can now obtain the following reconstruction
formula [11], [12] (Morlet formula)

x(t) =
1

C ′Ψ

∫
R

CWx(t, ω)
dω

|ω|
, (5)

where C ′Ψ =

∫
R
FΨ(ω)

dω

|ω|
is a proportionality factor. If x is

real-valued, x(t) = 2Re
(

1
C′

Ψ

∫ +∞

0

CWx(t, ω)
dω

ω

)
, can be

used rather than Eq. (5).

A. Reassignment
Time-frequency reassignment [13] is a sharpening tech-

nique, which improves the localization of a TFR by moving its
values to new coordinates which are closer to the real time-
frequency support of the analyzed signal. For the CWT, it uses
the reassignment operators which can be computed as follows
[13]

t̃(t,ω) = t+
ω0 CWTΨ

x (t,ω)

ω CWx(t,ω)
t̂(t, ω) = Re

(
t̃(t, ω)

)
(6)

ω̃(t,ω) = −ω CWDΨ
x (t,ω)

ω0 CWx(t,ω)
ω̂(t, ω) = Im (ω̃(t, ω)) (7)

where CWT Ψ
x (t, ω) and CWDΨ

x (t, ω) are two CWTs using the
specific mother wavelet T Ψ(t) = tΨ(t) and DΨ(t) = dΨ

dt (t).
Hence, a sharpened TFR also called reassigned scalogram, is

obtained by moving the scalogram values to new coordinates
according to (t, ω) 7→ (t̂(t, ω), ω̂(t, ω)), which is computed as
RCWx(t, ω) =∫∫
R2

|CWx(τ,Ω)|2 δ
(
t− t̂(τ,Ω)

)
δ (ω − ω̂(τ,Ω)) dτ dΩ. (8)

where δ(t) denotes the Dirac distribution. Despite a better
localization, the resulting TFR is not reversible contrarily to
the synchrosqueezing transform (cf. Section II-C).

B. Levenberg-Marquardt reassignment
New reassignment operators were proposed [9] and allow

to adjust the energy localization in the time-frequency plane
through a damping parameter µ. Finally, the Levenberg-
Marquardt root finding algorithm leads us to new reassignment
operators for CWT, which can be expressed as:(

t̂µ(t, ω)
ω̂µ(t, ω)

)
=

(
t
ω

)
−
(
∇tRx(t, ω) + µI2

)−1
Rx(t, ω) (9)

Rx(t, ω) =

(
t− t̂(t, ω)
ω − ω̂(t, ω)

)
=

 −Re
(
ω0CWT Ψ

x (t,ω)
ωCWx(t,ω)

)
ω + Im

(
ωCWDΨ

x (t,ω)
ω0CWx(t,ω)

)
(10)

∇tRx(t, ω) =
(
∂Rx

∂t (t, ω) ∂Rx

∂ω (t, ω)
)

=

(
γ11 γ12

γ21 γ22

)

where I2 is the 2 × 2 identity matrix. The elements of the
matrix ∇tRx(t, ω) are computed as:

γ11 =
∂

∂t

[
−Re

(
ω0CWTΨ

x (t,ω)

ωCWx(t,ω)

)]
(11)

= 1 + Re

(
CWT DΨ

x (t,ω)CWx(t,ω)− CWT Ψ
x (t,ω)CWDΨ

x (t,ω)

CWx(t,ω)2

)

γ21 =
∂

∂t

[
ω + Im

(
ωCWDΨ

x (t,ω)

ω0CWx(t,ω)

)]
(12)

=
ω2

ω2
0

Im

(
CWDΨ

x (t,ω)
2 − CWD

2Ψ
x (t,ω)CWx(t,ω)

CWx(t,ω)2

)

γ12 =
∂

∂ω

[
−Re

(
ω0CWT Ψ

x (t,ω)

ωCWx(t,ω)

)]
(13)

=
1

ω2
+
ω0 − ω
ω2

Re

(
CWT Ψ

x (t,ω)

CWx(t,ω)

)

+ Re

(
CWDωTΨ

x (t,ω)CWx(t,ω)− CWT Ψ
x (t,ω)CWDωΨ

x (t,ω)

CWx(t, ω)2

)

γ22 =
∂

∂ω

[
ω + Im

(
ωCWDΨ

x (t,ω)

ω0CWx(t,ω)

)]
= 1 + Im

(
CWDΨ

x (t,ω)

CWx(t,ω)

)
(14)

+ Im

(
CWDΨ

x (t,ω)2 − CWDΨ
x (t,ω)CWx(t,ω)

CWx(t, ω)2

)

+ ωIm

(
CWDωDΨ

x (t,ω)CWDΨ
x (t,ω) + CWDωΨ

x (t,ω)CWDΨ
x (t,ω)

CWx(t, ω)2

)
,

with DωΨ( ωω0
t)= ∂

∂ω

[
Ψ( ωω0

t)
]
, DωT Ψ( ωω0

t)= ∂
∂ω

[
T Ψ( ωω0

t)
]
,

and DωDΨ( ωω0
t) = ∂2

∂ω∂t

[
Ψ( ωω0

t)
]
.

Thus, the Levenberg-Marquardt reassigned scalogram is
simply obtained by replacing (t̂, ω̂) by (t̂µ, ω̂µ) in Eq. (8).

C. Synchrosqueezed CWT

Synchrosqueezing [14] can be viewed as a variant of the
reassignment method, which relocates the transform instead
of its squared modulus to allow a signal reconstruction. In
practice, it should be deduced from the CWT synthesis formula
given by Eq. (5). Thus, the synchrosqueezed CWT can be
defined as:

Sx(t, ω) = |ω|
∫
R

CWx(t, ω′)δ (ω − ω̂(t, ω′))
dω′

|ω′|
, (15)

for which a sharpened TFR is provided by its squared modulus.
Hence, this transform can be inverted by

x̂(t) =
1

C ′Ψ

∫
R

Sx(t, ω)
dω

|ω|
. (16)

For multicomponent signals, synchrosqueezing also allows
to retrieve separately each mode by restricting the integration
bounds in Eq. (16) to the corresponding frequency support of



this component. This support is assumed to be in the vicinity
of a ridge which can be directly estimated from the TFR as
proposed for example in [15].

D. Second-Order Synchrosqueezing

Second-order synchrosqueezing was first proposed by Ober-
lin et al. in [16] to improve TFRs of strongly modulated chirp
signals. Assuming a signal model expressed as

x(t) = a(t) ejΦ(t), with Φ(t) = ϕx + ωxt+ αx
t2

2
, (17)

where a(t) and Φ(t) stand for the time-varying amplitude and
phase.

Vertical synchrosqueezing uses an improved estimation of
the instantaneous frequency (rather than the classical reas-
signment operator), thanks to a local modulation estimation
q̃ which verifies α̂ = Im(q̃) (the reader can refer to [17] for
details).

Thus, an improved instantaneous frequency estimator can
be computed as

ω̂(2)(t, ω) =

{
Im
(
ω̃(t,ω) + q̃x(t,ω)(t− t̃(t,ω))

)
if |q̃x(t,ω)|<∞

ω̂(t, ω) otherwise.
(18)

Specifically to the CWT, an efficient local modulation estimator
[18] provided by q̃x(t, ω) =

∂ω̃
∂t (t,ω)
∂t̃
∂t (t,ω)

, can be used in Eq.(18).
Finally, this definition with Eqs. (6) and (7), lead us to:

q̃x(t, ω) =

ω2

ω2
0

(
CWD

2Ψ
x (t,ω)CWΨ

x (t,ω)− CWDΨ
x (t,ω)

2
)

CWDΨ
x (t,ω)CWT Ψ

x (t,ω)− CWT DΨ
x (t,ω)CWΨ

x (t,ω)
,

(19)
which allows a direct computation through the CWT values, us-
ing the specific mother wavelet functions D2Ψ(t) = ∂2

∂t2 [Ψ(t)]
and T DΨ = tDΨ(t).

III. RECURSIVE IMPLEMENTATION

According to Eq. (3), the computation of CWx(t, ω) can
also be viewed as a filtering operation which can be recursively
implemented if we use for g a specific causal infinite impulse
response filter, that corresponds to a modified version of the
analysis window proposed in our previous work for the STFT
[8], [19] (cf. Fig. 1):

gk(t, s) =
tk−1

(sT )k(k − 1)!
ep

t
s U(t),∀s>0, (20)

Ψk(t) = gk(−t, 1)∗ (21)

with p = − 1
T + jω0, k ≥ 1 being the filter order, T the time

spread of the window and U(t) the Heaviside step function.
The Fourier transform of the resulting impulse response gk

displayed in Fig. 1), can be expressed as

Fgk(ω) =

∫
R
gk(t, 1) e−jωtdt =

1

(1 + j(ω − ω0)T )k
, (22)

and can be used to compute C ′Ψ which can be numerically
approximated using the rectangle rule. Hence, the use of gk(t)
is motivated by the fact that this window is a simple solution

(a) |gk(t)|

(b) |Fgk (ω)|

Fig. 1. Plot of the modulus of the analysis window |gk(t)| proposed in [8]
(a) and of the frequency response of the resulting filter used for a recursive
computation of the CWT with ω0 = 2π100 rad.s−1 and 1/Ts=1000 Hz.

for an ordinary differential equation of the k-th order, which
appears when Eq. (3) is differentiated with respect to time
[19]. First, this property allows a discrete-time implementation
in terms of a difference equation resulting from a recurrence
equation. Second, this solution leads to simple relations be-
tween the different windows, when they are differentiated or
multiplied by tn (∀n ∈ N).

Using this definition, the partial derivatives with respect to
frequency of Ψk given by Eq. (21), denoted Dω in Eqs. (13)
and (14), can now be substituted using:

DωΨk(
ω

ω0
t)=

1

ω

(
(k − 1)Ψk(

ω

ω0
t) + (jω0 −

1

T
)T Ψk(

ω

ω0
t)

)
.

(23)
This leads to a computation through several recursive filters

gk, only involving differentiation with respect to time.



A. Discretization

Let n ∈ Z and m = 0, 1, ...,M − 1 being respectively the
discrete time and frequency indices for a sampling period Ts.
Since ω0T = 2πf0T , ω = 2πm

MTs
and t = nTs, the filter defined

by Eqs. (3) and (20) can be computed as [8], using the impulse
invariance method [20] as a function of f0T as

Gk(z,
ω0

ω
) = TsZ

{
gk(t,

ω0

ω
)
}

=

k−1∑
i=0

bi[m]z−i

1 +

k∑
i=1

ai[m]z−i

,

(24)

with bi[m] =

(
m

f0TM

)k
1

(k − 1)!
Bk−1,k−i−1α

i
m, (25)

ai[m] = Ak,i (−αm)
i
, and αm = e(− 1

f0T +j2π) m
M

(26)

where Z {f(t)} =
∑+∞
n=0 f(nTs)z

−n is the z transform of
f(t), Bk,i =

∑i
j=0(−1)jAk+1,j(i + 1 − j)k denotes the

Eulerian numbers and Ak,i =

(
k
i

)
= k!

i!(k−i)! the binomial

coefficients.
Hence, CWg

k[n,m] ≈ CWx(nTs,
2πm
MTs

) can be computed
from the sampled analyzed signal x[n] by a standard recursive
equation expressed as:

CWg
k[n,m] =

k−1∑
i=0

bi[m]x[n− i]−
k∑
i=1

ai[m] CWg
k[n− i,m].

(27)

The z transform of the other specific impulse responses can
be expressed as functions of Gk(z, ω0

ω ) at different orders
using the relation Ψk( ωtω0

) = ω0

ω gk(t, ω0

ω ) and the properties
expressed below [8]:

TsZ{T gk(t, s)} = kT Gk+1(z, s) (28)

TsZ {Dgk(t, s)} =
1

T
Gk−1(z, s) + p Gk(z, s) (29)

TsZ {DT gk(t, s)} = k (Gk(z, s) + pT Gk+1(z, s)) (30)
TsZ {T Dgk(t, s)} = TsZ {DT gk(t, s)− gk(t, s)} (31)

= (k − 1) Gk(z, s) + kpT Gk+1(z, s)

TsZ
{
T 2gk(t, s)

}
= k(k + 1)T 2 Gk+2(z, s) (32)

TsZ
{
D2gk(t, s)

}
=

1

T 2
Gk−2(z, s) +

2p

T
Gk−1(z, s)

+ p2 Gk(z, s). (33)

These results hold for any k ≥ 1 provided that G0(z, s) =
G−1(z, s) = 0. Eqs. (28) and (29) generalize to any value of
k some results already presented in [19], while Eqs. (30) to
(33) provide the discrete-time linear systems required by the
Levenberg-Marquardt reassignment operators and the second-
order vertical synchrosqueezing.

B. Practical recursive implementation
Considering a sampled discrete-time signal x[n] ≈ x(nTs),

the recursive discrete-time CWT is computed using the differ-
ence equation given by (27).

The CWTs using the specific mother wavelet functions
required to compute the reassignment operators are recursively
computed thanks to the relations between the different filters
provided by Eqs. (28)-(33).

Thus, the recursive implementation can be summarized by
the following procedure.

1) Compute the required CWg
k[n,m] using x[n − i] and

CWg
k[n− l,m] with i ∈ [0, k − 1], l ∈ [1, k]

2) Compute the other required specific filtered signals (i.e.
CWT gk , CWDgk , CWDT gk , CWT

2g
k or CWD

2g
k ) using

CWg
k with different filter orders

3) Compute the discrete-time reassignment operators de-
fined as n̂ = t̂

Ts
and m̂ = ω̂MTs

2π
4) If n̂ ≤ n then update TFR[n̂,m] else store the triplet

(CWg
k[n,m], n̂,m) into a list

5) Update TFR[n,m] using all previously stored triplets
such as n̂ = n and remove them from the list

IV. COMPUTATION ON A SYNTHETIC SIGNAL

Fig. 2 compares the new proposed recursive TFRs corre-
sponding to the CWT with those provided by the recursive
STFT proposed in [8], [17]. For this, we use a 500 samples
long multicomponent real signal made of two impulses, one
sinusoid, one chirp, one sinusoidally modulated sinusoid and
a white Gaussian noise with a Signal-to-Noise Ratio (SNR)
equal to 25 dB. To make our results comparable between the
CWT and the STFT, our computations use M = 500, k = 7
and we define for both transforms the same window spread
L = T

Ts
= 6, and a central normalized frequency λ0 = 0.2

which leads to f0T = λ0L = 1.2.
These figures illustrate the advantage of the CWT compared

to the STFT to localize the two impulses and the time-varying
components. For each transform, the reassigned and syn-
chrosqueezed versions clearly illustrate the improvement of the
signal components localization compared to the initial TFR. As
expected, the reassigned TFRs obtains the best time-frequency
localization, while the Levenberg-Marquardt approach requires
a fine candidate of its damping parameter µ. The recursive
synchrosqueezed CWT and STFT which are invertible, also pro-
vide an efficient time-frequency localization which is further
improved by vertical synchrosqueezing, except for the impulse
signals. The reconstruction quality of the analyzed signal is
measured in terms of Reconstruction Quality Factor (RQF),
defined as [8]

RQF = 10 log10

( ∑
n |x[n]|2∑

n |x[n]− x̂[n]|2

)
. (34)

In this simulation, the CWT obtains poorer RQFs than the
STFT. This can be explained since our computations use a
linear scale for the frequencies and the result is a constant
frequency resolution which advantages the STFT over the CWT
for signal reconstruction. This issue could be compensated for
the CWT if a logarithmic scale is used.
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Fig. 2. TFRs comparison between (a) the recursive scalogram, (b) the recursive reassigned scalogram, (c) the squared modulus of the synchrosqueezed
CWT, (d) the squared modulus of the vertically synchrosqueezed CWT, (e) the recursive spectrogram, (f) the recursive reassigned spectrogram, (g) the squared
modulus of the synchrosqueezed STFT, (h) the squared modulus of the vertically synchrosqueezed STFT.

V. CONCLUSION

We have proposed a new mother wavelet function allowing
a recursive implementation of the CWT through causal IIR
filtering. We have also introduced a specific formulation of
the Levenberg-Marquardt reassignment operators designed for
the CWT, which is also valid for the non-recursive version of
the CWT. Thus, these new tools for which MATLAB codes
are available on-line [21], [22], pave the way of real-time
implementation of sharpen and invertible TFRs comparable to
the CQT [1]. In future work, we will complete a further investi-
gation of these new proposed tools in terms of efficiency, from
a theoretical point of view, but also from a practical point of
view by considering potential application scenarios.
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